Evaluation of the Nutritional Value of Prunus dulcis Blossoms and the Antioxidant Compounds of Their Extracted Oil Using Green Extraction Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Preparation
2.3. Extraction of Oil and Determination of Fat Content
2.4. Analyses of the Oil
2.4.1. Fatty Acid Composition
2.4.2. Determination of Total Carotenoid Content (TCC)
2.4.3. Determination of Total Polyphenol Content (TPC)
2.5. Analyses of the Defatted Solid Residue
2.5.1. Extraction and Determination of Crude Protein Content
2.5.2. Extraction and Determination of Carbohydrate Content
2.5.3. Extraction and Determination of L-ascorbic Acid Content
2.5.4. Determination of TCC
2.5.5. Extraction and Determination of TPC
2.5.6. Antioxidant Activity by Ferric-Reducing Antioxidant Power (FRAP) Assay, DPPH Radical Scavenging Activity, and Hydrogen Peroxide (H2O2) Scavenging Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Composition of Prunus dulcis Blossoms (PDBs) and Prunus dulcis Blossom Oil (PDBO)
3.2. Total Polyphenol Content (TPC) and Total Carotenoid Content (TCC) of Prunus dulcis Blossom Oil (PDBO)
3.3. Antioxidant Properties of Prunus dulcis Blossom (PDB) Extracts after Three Different Extraction Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aksic, M.F. Fruit Oils: Chemistry and Functionality; Ramadan, M.F., Ed.; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-12472-4. [Google Scholar]
- Sana, S.; Akhter, N.; Amjum, F.; Gul Khan, S.; Akram, M. Genetic Diversity in Almond (Prunus dulcis). In Prunus—Recent Advances; IntechOpen: London, UK, 2022; Volume 11, p. 13. ISBN 0000957720. [Google Scholar]
- Austerlitz, F.; Mariette, S.; Machon, N.; Gouyon, P.H.; Godelle, B. Effects of Colonization Processes on Genetic Diversity: Differences between Annual Plants and Tree Species. Genetics 2000, 154, 1309–1321. [Google Scholar] [CrossRef]
- Austerlitz, F.; Garnier-Géré, P.H. Modelling the Impact of Colonisation on Genetic Diversity and Differentiation of Forest Trees: Interaction of Life Cycle, Pollen Flow and Seed Long-Distance Dispersal. Heredity 2003, 90, 282–290. [Google Scholar] [CrossRef]
- Liu, D.; Baral, N.R.; Liang, L.; Scown, C.D.; Sun, N. Torrefaction of Almond Shell as a Renewable Reinforcing Agent for Plastics: Techno-Economic Analyses and Comparison to Bioethanol Process. Environ. Res. Infrastruct. Sustain. 2023, 3, 015004. [Google Scholar] [CrossRef]
- Massantini, R.; Frangipane, M.T. Progress in Almond Quality and Sensory Assessment: An Overview. Agriculture 2022, 12, 710. [Google Scholar] [CrossRef]
- Sumi, K.; Rao, G.P.; Abeysinghe, S.; Tiwari, A.K.; Manimekalai, R.; Hegde, V.; Babu, M.K. Chapter 6—Up-to-Date Information of Phytoplasma Diseases Associated with Palm Species in Asian Countries. In Phytoplasma Diseases of Major Crops, Trees, and Weeds; Tiwari, A.K., Caglayan, K., Hoat, T.X., Al Subhi, A., Nejat, N., Reddy, G., Eds.; Phytoplasma Diseases in Asian Countries; Academic Press: Cambridge, MA, USA, 2023; Volume 2, pp. 141–166. ISBN 978-0-323-91897-8. [Google Scholar]
- Yada, S.; Huang, G.; Lapsley, K. Natural Variability in the Nutrient Composition of California-Grown Almonds. J. Food Compos. Anal. 2013, 30, 80–85. [Google Scholar] [CrossRef]
- Summo, C.; Palasciano, M.; De Angelis, D.; Paradiso, V.M.; Caponio, F.; Pasqualone, A. Evaluation of the Chemical and Nutritional Characteristics of Almonds (Prunus dulcis (Mill). D.A. Webb) as Influenced by Harvest Time and Cultivar. J. Sci. Food Agric. 2018, 98, 5647–5655. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, S.; Venkatachalam, M.; Mistry, A.M.; Lapsley, K.; Sathe, S.K. Almond (Prunus dulcis L.) Protein Quality. Plant Foods Hum. Nutr. 2005, 60, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Annunziata, G.; Arnone, A.; Tenore, G.C.; Süntar, İ.; et al. Almonds (Prunus dulcis Mill. D. A. Webb): A Source of Nutrients and Health-Promoting Compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef]
- Skrajda-Brdak, M.; Dąbrowski, G.; Konopka, I. Edible Flowers, a Source of Valuable Phytonutrients and Their pro-Healthy Effects—A Review. Trends Food Sci. Technol. 2020, 103, 179–199. [Google Scholar] [CrossRef]
- Wetwitayaklung, P.; Phaechamud, T.; Limmatvapirat, C.; Keokitichai, S. The Study of Antioxidant Activities of Edible Flower Extracts. Acta Hortic. 2008, 786, 185–192. [Google Scholar] [CrossRef]
- Mlcek, J.; Rop, O. Fresh Edible Flowers of Ornamental Plants—A New Source of Nutraceutical Foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Stefaniak, A.; Meller, E.; Wysocka, G. Mineral Composition of Some Edible Flowers. J. Elem. 2018, 23, 151–162. [Google Scholar] [CrossRef]
- Friedman, H.; Agami, O.; Vinokur, Y.; Droby, S.; Cohen, L.; Refaeli, G.; Resnick, N.; Umiel, N. Characterization of Yield, Sensitivity to Botrytis Cinerea and Antioxidant Content of Several Rose Species Suitable for Edible Flowers. Sci. Hortic. 2010, 123, 395–401. [Google Scholar] [CrossRef]
- Dastidar, A.G.; Chakraborty, S.; Saha, A.; Das, S.; Zaman, Q.F. Edible Flowers: A New Source of Minerals. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 38–54. [Google Scholar] [CrossRef]
- Rop, O.; Mlcek, J.; Jurikova, T.; Neugebauerova, J.; Vabkova, J. Edible Flowers—A New Promising Source of Mineral Elements in Human Nutrition. Molecules 2012, 17, 6672–6683. [Google Scholar] [CrossRef] [PubMed]
- Purohit, S.R.; Rana, S.S.; Idrishi, R.; Sharma, V.; Ghosh, P. A Review on Nutritional, Bioactive, Toxicological Properties and Preservation of Edible Flowers. Futur. Foods 2021, 4, 100078. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, H.; Zhang, M.; Chitrakar, B.; Bhandari, B.; Wang, B. Edible Flowers: Review of Flower Processing and Extraction of Bioactive Compounds by Novel Technologies. Food Res. Int. 2019, 126, 108660. [Google Scholar] [CrossRef]
- Murador, D.C.; de Souza Mesquita, L.M.; Vannuchi, N.; Braga, A.R.C.; de Rosso, V.V. Bioavailability and Biological Effects of Bioactive Compounds Extracted with Natural Deep Eutectic Solvents and Ionic Liquids: Advantages over Conventional Organic Solvents. Curr. Opin. Food Sci. 2019, 26, 25–34. [Google Scholar] [CrossRef]
- Ben Amor, B.; Allaf, K. Impact of Texturing Using Instant Pressure Drop Treatment Prior to Solvent Extraction of Anthocyanins from Malaysian Roselle (Hibiscus sabdariffa). Food Chem. 2009, 115, 820–825. [Google Scholar] [CrossRef]
- Banji, A.F.; Shadrach, I.; Adegoke, A.S.; Adewole, O.A. Determination of Bioactive Constituents and Mineral Contents of Avocado Pear Seed Oil. Dutse J. Pure Appl. Sci. 2023, 9, 177–184. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible Plant Oil: Global Status, Health Issues, and Perspectives. Front. Plant Sci. 2020, 11, 1315. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Sharma, A.; Upadhyaya, K.C. Vegetable Oil: Nutritional and Industrial Perspective. Curr. Genom. 2016, 17, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Dursun Capar, T.; Dedebas, T.; Yalcin, H.; Ekici, L. Extraction Method Affects Seed Oil Yield, Composition, and Antioxidant Properties of European Cranberrybush (Viburnum opulus). Ind. Crops Prod. 2021, 168, 113632. [Google Scholar] [CrossRef]
- Tura, M.; Ansorena, D.; Astiasarán, I.; Mandrioli, M.; Toschi, T.G. Evaluation of Hemp Seed Oils Stability under Accelerated Storage Test. Antioxidants 2022, 11, 490. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Sottile, F.; Massaglia, S.; Peano, C. Ecological and Economic Indicators for the Evaluation of Almond (Prunus dulcis L.) Orchard Renewal in Sicily. Agric. 2020, 10, 301. [Google Scholar] [CrossRef]
- Prasedya, E.S.; Frediansyah, A.; Martyasari, N.W.R.; Ilhami, B.K.; Abidin, A.S.; Padmi, H.; Fahrurrozi; Juanssilfero, A.B.; Widyastuti, S.; Sunarwidhi, A.L. Effect of Particle Size on Phytochemical Composition and Antioxidant Properties of Sargassum Cristaefolium Ethanol Extract. Sci. Rep. 2021, 11, 17876. [Google Scholar] [CrossRef] [PubMed]
- Makanjuola, S.A. Influence of Particle Size and Extraction Solvent on Antioxidant Properties of Extracts of Tea, Ginger, and Tea–Ginger Blend. Food Sci. Nutr. 2017, 5, 1179–1185. [Google Scholar] [CrossRef]
- Athanasiadis, V.; Chatzimitakos, T.; Kalompatsios, D.; Palaiogiannis, D.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Efficacy and Synergistic Effect of α- and δ-Tocopherol as Natural Antioxidants in the Stabilization of Sunflower Oil and Olive Pomace Oil during Storage Conditions. Int. J. Mol. Sci. 2023, 24, 1113. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Pair, S.D.; Roberts, W. Lycopene Content Differs among Red-Fleshed Watermelon Cultivars. J. Sci. Food Agric. 2001, 81, 983–987. [Google Scholar] [CrossRef]
- Kalantzakis, G.; Blekas, G.; Pegklidou, K.; Boskou, D. Stability and Radical-Scavenging Activity of Heated Olive Oil and Other Vegetable Oils. Eur. J. Lipid Sci. Technol. 2006, 108, 329–335. [Google Scholar] [CrossRef]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Rumbos, C.I.; Athanassiou, C.G.; Lalas, S.I. Enhancing the Nutritional Profile of Tenebrio Molitor Using the Leaves of Moringa Oleifera. Foods 2023, 12, 2612. [Google Scholar] [CrossRef] [PubMed]
- Chatzimitakos, T.; Athanasiadis, V.; Makrygiannis, I.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Nutritional Quality and Antioxidant Properties of Brown and Black Lentil Sprouts. Horticulturae 2023, 9, 668. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Bozinou, E.; Lalas, S.I. Response Surface Optimization for the Enhancement of the Extraction of Bioactive Compounds from Citrus Limon Peel. Antioxidants 2023, 12, 1605. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadis, V.; Chatzimitakos, T.; Kotsou, K.; Palaiogiannis, D.; Bozinou, E.; Lalas, S.I. Optimization of the Extraction Parameters for the Isolation of Bioactive Compounds from Orange Peel Waste. Sustainability 2022, 14, 13926. [Google Scholar] [CrossRef]
- Lakka, A.; Grigorakis, S.; Kaltsa, O.; Karageorgou, I.; Batra, G.; Bozinou, E.; Lalas, S.; Makris, D.P. The Effect of Ultrasonication Pretreatment on the Production of Polyphenol-Enriched Extracts from Moringa oleifera L. (Drumstick Tree) Using a Novel Bio-Based Deep Eutectic Solvent. Appl. Sci. 2020, 10, 220. [Google Scholar] [CrossRef]
- Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Hydrogen Peroxide Scavenging Activity of Novel Coumarins Synthesized Using Different Approaches. PLoS ONE 2015, 10, e0132175. [Google Scholar] [CrossRef] [PubMed]
- Jawad, M.; Schoop, R.; Suter, A.; Klein, P.; Eccles, R. Perfil de Eficacia y Seguridad de Echinacea Purpurea En La Prevención de Episodios de Resfriado Común: Estudio Clínico Aleatorizado, Doble Ciego y Controlado Con Placebo. Rev. Fitoter. 2013, 13, 125–135. [Google Scholar]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible Flowers: Bioactive Profile and Its Potential to Be Used in Food Development. Food Res. Int. 2020, 129, 108868. [Google Scholar] [CrossRef]
- Sheng, Z.W.; Ma, W.H.; Jin, Z.Q.; Bi, Y.; Sun, Z.G.; Dou, H.T.; Gao, J.H.; Li, J.Y.; Han, L.N. Investigation of Dietary Fiber, Protein, Vitamin E and Other Nutritional Compounds of Banana Flower of Two Cultivars Grown in China. Afr. J. Biotechnol. 2010, 9, 3888–3895. [Google Scholar]
- Sotelo, A.; López-García, S.; Basurto-Peña, F. Content of Nutrient and Antinutrient in Edible Flowers of Wild Plants in Mexico. Plant Foods Hum. Nutr. 2007, 62, 133–138. [Google Scholar] [CrossRef]
- Ibourki, M.; Bouzid, H.A.; Bijla, L.; Aissa, R.; Sakar, E.H.; Ainane, T.; Gharby, S.; Hammadi, A. El Physical Fruit Traits, Proximate Composition, Fatty Acid and Elemental Profiling of Almond [Prunus dulcis Mill. DA Webb] Kernels from Ten Genotypes Grown in Southern Morocco. OCL Oilseeds Fats Crops Lipids 2022, 29, 9. [Google Scholar] [CrossRef]
- Chensom, S.; Okumura, H.; Mishima, T. Primary Screening of Antioxidant Activity, Total Polyphenol Content, Carotenoid Content, and Nutritional Composition of 13 Edible Flowers from Japan. Prev. Nutr. Food Sci. 2019, 24, 171–178. [Google Scholar] [CrossRef]
- Grzeszczuk, M.; Wesołowska, A.; Jadczak, D.; Jakubowska, B. Nutritional Value of Chive Edible Flowers [Wartość Odżywcza Jadalnych Kwiatów Szczypiorku]. Acta Sci. Pol. Hortorum Cultus 2011, 10, 85–94. [Google Scholar]
- Kara, H.; Ayyildiz, H.F.; Tarhan, İ.; Erci, F.; Bakır, M.R. Bioactive Phytochemicals from Almond (Prunus dulcis) Oil Processing By-Products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products; Ramadan Hassanien, M.F., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–25. ISBN 978-3-030-63961-7. [Google Scholar]
- Kung, W.; Lin, M. Beneficial Impacts of Alpha-Eleostearic Acid from Wild Bitter Melon and Curcumin on Promotion of CDGSH Iron-Sulfur Domain 2: Therapeutic Roles in CNS Injuries and Diseases. Int. J. Mol. Sci. 2021, 22, 3289. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, Y.; Seo, K.W. Efficacy of Monounsaturated Fatty Acids in Reducing Risk of the Cardiovascular Diseases, Cancer, Inflammation, and Insulin Resistance: A Narrative Review. Ann. Clin. Nutr. Metab. 2023, 15, 2–7. [Google Scholar] [CrossRef]
- Joris, P.J.; Mensink, R.P. Role of Cis-Monounsaturated Fatty Acids in the Prevention of Coronary Heart Disease. Curr. Atheroscler. Rep. 2016, 18, 38. [Google Scholar] [CrossRef]
- Lunn, J.; Theobald, H.E. The Health Effects of Dietary Unsaturated Fatty Acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Babio, N.; Martínez-González, M.A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary Fat Intake and Risk of Cardiovascular Disease and All-Cause Mortality in a Population at High Risk of Cardiovascular Disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated Fatty Acids and Risk of Coronary Heart Disease: Modulation by Replacement Nutrients. Curr. Atheroscler. Rep. 2010, 12, 384–390. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Subash-Babu, P.; Alshatwi, A.A. Effects of Increasing Ratios of Dietary Omega-6/Omega-3 Fatty Acids on Human Monocyte Immunomodulation Linked with Atherosclerosis. J. Funct. Foods 2018, 41, 258–267. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Dietary Polyphenol Impact on Gut Health and Microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 690–711. [Google Scholar] [CrossRef] [PubMed]
- Melhaoui, R.; Kodad, S.; Houmy, N.; Belhaj, K.; Mansouri, F.; Abid, M.; Addi, M.; Mihamou, A.; Sindic, M.; Serghini-Caid, H.; et al. Characterization of Sweet Almond Oil Content of Four European Cultivars (Ferragnes, Ferraduel, Fournat, and Marcona) Recently Introduced in Morocco. Scientifica 2021, 2021, 9141695. [Google Scholar] [CrossRef] [PubMed]
- Gracia, B.M.; Reig, D.L.; Rubio-Cabetas, M.J.; García, M.Á.S. Study of Phenolic Compounds and Antioxidant Capacity of Spanish Almonds. Foods 2021, 10, 2334. [Google Scholar] [CrossRef] [PubMed]
- Lipan, L.; Moriana, A.; López Lluch, D.B.; Cano-Lamadrid, M.; Sendra, E.; Hernández, F.; Vázquez-Araújo, L.; Corell, M.; Carbonell-Barrachina, Á.A. Nutrition Quality Parameters of Almonds as Affected by Deficit Irrigation Strategies. Molecules 2019, 24, 2646. [Google Scholar] [CrossRef] [PubMed]
- Martín-Peláez, S.; Covas, M.I.; Fitó, M.; Kušar, A.; Pravst, I. Health Effects of Olive Oil Polyphenols: Recent Advances and Possibilities for the Use of Health Claims. Mol. Nutr. Food Res. 2013, 57, 760–771. [Google Scholar] [CrossRef]
- Johnson, E.J. The Role of Carotenoids in Human Health. Nutr. Clin. Care 2002, 5, 56–65. [Google Scholar] [CrossRef]
- Zanqui, A.B.; Barros, T.V.; Barão, C.E.; da Silva, C.; Cardozo-Filho, L. Production of Blends of Edible Oil and Carrot Carotenoids Using Compressed Propane: Enhancement of Stability and Nutritional Characteristics. J. Supercrit. Fluids 2021, 171, 105189. [Google Scholar] [CrossRef]
- Franke, S.; Fröhlich, K.; Werner, S.; Böhm, V.; Schöne, F. Analysis of Carotenoids and Vitamin E in Selected Oilseeds, Press Cakes and Oils. Eur. J. Lipid Sci. Technol. 2010, 112, 1122–1129. [Google Scholar] [CrossRef]
- Borguini, R.G.; Pacheco, S.; Chávez, D.W.H.; Couto, G.A.; Wilhelm, A.E.; Santiago, M.C.P.d.A.; Do Nascimento, L.d.S.d.M.; de Jesus, M.S.C.; Godoy, R.L.d.O. Carotenoid Extraction Using Edible Vegetable Oil: An Enriched Provitamin a Product. Sci. Agric. 2020, 78, e20190332. [Google Scholar] [CrossRef]
- Li, Z.; Lee, H.W.; Liang, X.; Liang, D.; Wang, Q.; Huang, D.; Ong, C.N. Profiling of Phenolic Compounds and Antioxidant Activity of 12 Cruciferous Vegetables. Molecules 2018, 23, 1139. [Google Scholar] [CrossRef] [PubMed]
- Begum, Y.A.; Deka, S.C. Chemical Profiling and Functional Properties of Dietary Fibre Rich Inner and Outer Bracts of Culinary Banana Flower. J. Food Sci. Technol. 2019, 56, 5298–5308. [Google Scholar] [CrossRef] [PubMed]
- Chambial, S.; Dwivedi, S.; Shukla, K.K.; John, P.J.; Sharma, P. Vitamin C in Disease Prevention and Cure: An Overview. Indian J. Clin. Biochem. 2013, 28, 314–328. [Google Scholar] [CrossRef] [PubMed]
- Naidu, K.A. Erratum to: Extensive next-Generation Sequencing Analysis in Chronic Lymphocytic Leukemia at Diagnosis: Clinical and Biological Correlations. J. Hematol. Oncol. 2016, 9, 103. [Google Scholar] [CrossRef]
- Garzón, G.A.; Wrolstad, R.E. Major Anthocyanins and Antioxidant Activity of Nasturtium Flowers (Tropaeolum majus). Food Chem. 2009, 114, 44–49. [Google Scholar] [CrossRef]
- Khattak, K.F. Antioxidant Activities and Phytochemicals of Tagetes Erecta Flowers as Affected by Drying Methods. J. Appl. Environ. Biol. Sci. 2014, 4, 253–262. [Google Scholar]
Crude Protein (g/100 g dw) | Carbohydrates (g/100 g dw) | Fat (g/100 g dw) |
---|---|---|
1.34 ± 0.02 | 29.97 ± 1.04 | 1.75 ± 0.05 |
Fatty Acid | Prunus dulcis Blossom Oil (%) |
---|---|
Lauric (C12:0) | 1.36 ± 0.09 |
Myristic (C14:0) | 1.82 ± 0.13 |
Palmitic (C16:0) | 14.88 ± 1.09 |
Arachidic (C20:0) | 14.38 ± 0.4 |
∑ Saturated (SFA) | 32.44 ± 1.71 |
Oleic (C18:1) | 25.17 ± 1.26 |
∑ Monounsaturated (MUFA) | 25.17 ± 1.26 |
Linoleic (C18:2, ω-6) | 15.64 ± 0.61 |
Linolenic (C18:3, ω-3) | 10.15 ± 0.55 |
α-Eleostearic (C18:3, ω-3 isomer) | 16.6 ± 0.68 |
∑ Polyunsaturated (PUFA) | 42.39 ± 1.84 |
∑ Unsaturated (UFA) 1 | 67.56 ± 3.1 |
PUFA:SFA ratio | 1.31 ± 0.01 |
MUFA:PUFA ratio | 0.59 ± 0 |
ω-6:3 ratio | 0.58 ± 0 |
COX 2 | 4.05 ± 0.19 |
Technique | TPC (mg GAE/g) | FRAP (μmol AAE/g) | DPPH (μmol AAE/g) | H2O2 (μmol AAE/g) | L-ascorbic Acid (mg/100 g) |
---|---|---|---|---|---|
ST 1 | 10.13 ± 0.06 c | 54.22 ± 1.02 b | 14.16 ± 0.48 b | 129.74 ± 4.62 a | 978.86 ± 2.03 c |
US 2 | 11.69 ± 0.13 b | 59.61 ± 0.2 a | 15.56 ± 0.72 a,b | 130.57 ± 6.84 a | 1013.15 ± 1.16 b |
US + ST 3 | 12.56 ± 0.17 a | 62.06 ± 1.89 a | 16.6 ± 0.51 a | 141.15 ± 1.36 a | 1047.03 ± 0.51 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatzimitakos, T.; Athanasiadis, V.; Kotsou, K.; Makrygiannis, I.; Bozinou, E.; Lalas, S.I. Evaluation of the Nutritional Value of Prunus dulcis Blossoms and the Antioxidant Compounds of Their Extracted Oil Using Green Extraction Method. Appl. Sci. 2024, 14, 2001. https://doi.org/10.3390/app14052001
Chatzimitakos T, Athanasiadis V, Kotsou K, Makrygiannis I, Bozinou E, Lalas SI. Evaluation of the Nutritional Value of Prunus dulcis Blossoms and the Antioxidant Compounds of Their Extracted Oil Using Green Extraction Method. Applied Sciences. 2024; 14(5):2001. https://doi.org/10.3390/app14052001
Chicago/Turabian StyleChatzimitakos, Theodoros, Vassilis Athanasiadis, Konstantina Kotsou, Ioannis Makrygiannis, Eleni Bozinou, and Stavros I. Lalas. 2024. "Evaluation of the Nutritional Value of Prunus dulcis Blossoms and the Antioxidant Compounds of Their Extracted Oil Using Green Extraction Method" Applied Sciences 14, no. 5: 2001. https://doi.org/10.3390/app14052001
APA StyleChatzimitakos, T., Athanasiadis, V., Kotsou, K., Makrygiannis, I., Bozinou, E., & Lalas, S. I. (2024). Evaluation of the Nutritional Value of Prunus dulcis Blossoms and the Antioxidant Compounds of Their Extracted Oil Using Green Extraction Method. Applied Sciences, 14(5), 2001. https://doi.org/10.3390/app14052001