Assessment of Bioavailability Parameters of Mono- and Bistriazole Derivatives of Propynoylbetulin
Abstract
1. Introduction
2. Materials and Methods
2.1. General Method
2.2. Data Set
2.3. Assessment of Experimental and Calculated Lipophilicity
2.4. Assessment of Bioavailability Parameters
3. Results
4. Discussion
(r = 0.860; SD = 1.465; VIP = 2.13; F = 18.45),
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rutkowska, E.; Pajak, K.; Jóźwiak, K. Lipophilicity-methods of determination and its role in medicinal chemistry. Acta Pol. Pharm. 2013, 70, 3–18. [Google Scholar] [PubMed]
- Arnott, J.A.; Planey, L.S. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012, 7, 863–875. [Google Scholar] [CrossRef] [PubMed]
- Ginex, T.; Vazquez, J.; Gilbert, E.; Herrero, E.; Luque, J.F. Lipophilicity in drug design: An overview of lipophilicity descriptors in 3D-QSAR studies. Future Med. Chem. 2019, 11, 1177–1193. [Google Scholar] [CrossRef]
- Lee, M.H.; Kim, H.D.; Jang, J.Y. Delivery systems designed to enhance stability and suitability of lipophilic bioactive compounds in food processing: A review. Food Chem. 2024, 437, 137910. [Google Scholar] [CrossRef] [PubMed]
- Erckes, V.; Steuer, C. A story of peptides, lipophilicity and chromatography—Back and forth in time. RSC Med. Chem. 2022, 16, 676–687. [Google Scholar] [CrossRef]
- Pyka-Pająk, A.; Parys, W.; Dołowy, M. Comparison of the utility of RP-TLC technique and different computational methods to assess the lipophilicity of selected antiparasitic, antihypertensive, and anti-inflammatory drugs. Molecules 2019, 24, 3187. [Google Scholar] [CrossRef]
- Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry; Wiley&Sons: Chichester, UK, 1997; pp. 57–64. [Google Scholar]
- Cimpan, G. Lipophilicity determination of organic substances by reversed-phase TLC. In Encyclopedia of Chromatography, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 999–1001. [Google Scholar]
- Hubicka, U.; Żuromska-Witek, B.; Komsta, Ł.; Krzek, J. Lipophilicity study of fifteen fluoroquinolones by reversed-phase thin-layer chromatography. Anal. Methods 2015, 7, 3841–3848. [Google Scholar] [CrossRef]
- Bhatt, N.M.; Chavada, V.D.; Sanyal, M.; Shrivastav, P.S. Influence of organic modifier and separation modes for lipophilicity assessment of drugs using thin layer chromatography indices. J. Chromatogr. A 2018, 1571, 223–230. [Google Scholar] [CrossRef]
- Emonts, J.; Buyel, J.F. An overview of descriptors to capture protein properties—Tools and perspectives in the context of QSAR modeling. Comput. Struct. Biotechnol. J. 2023, 21, 3234–3247. [Google Scholar] [CrossRef]
- Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Marciniec, K.; Chrobak, E.; Bębenek, E.; Boryczka, S. Lipophilicity, pharmacokinetic properties, and molecular docking study on SARS-CoV-2 target for betulin triazole derivatives with attached 1,4-quinone. Pharmaceutics 2021, 13, 781. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Marciniec, K.; Chrobak, E.; Bębenek, E.; Boryczka, S. Chromatographic and computational screening of lipophilicity and pharmacokinetics of newly synthesized betulin-1,4-quinone hybrids. Processes 2021, 9, 376. [Google Scholar] [CrossRef]
- Morak-Młodawska, B.; Jeleń, M.; Martula, E.; Korlacki, R. Study of lipophilicity and ADME properties of 1,9-diazaphenothiazines with anticancer action. Int. J. Mol. Sci. 2023, 24, 6970. [Google Scholar] [CrossRef] [PubMed]
- Šegan, S.; Jevtić, I.; Tosti, T.; Penjišević, J.; Šukalović, V.; Kostić-Rajačić, S.; Milojković-Opsenica, D. Determination of lipophilicity and ionization of fentanyl and its 3-substituted analogs by reversed-phase thin-layer chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022, 1211, 123481. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Kawczak, P.; Greber, K.E.; Kapica, H.; Nowakowska, J.; Bączek, T. Application of reversed-phase thin layer chromatography and QSRR modelling for prediction of protein binding of selected β-blockers. J. Pharm. Biomed. Anal. 2019, 176, 112767. [Google Scholar] [CrossRef]
- Deep, A.; Kumar, D.; Bansal, N.; Narasimhan, B.; Marwaha, R.K.; Sharma, P.C. Understanding mechanistic aspects and therapeutic potential of natural substances as anticancer agents. Phytomed. Plus 2023, 3, 100418. [Google Scholar] [CrossRef]
- Mazumder, K.; Aktar, A.; Roy, P.; Biswas, B.; Hossain, M.E.; Sarkar, K.K.; Bachar, S.C.; Ahmed, F.; Monjur-Al-Hossain, A.S.M.; Fukase, K. A review on mechanistic insight of plant derived anticancer bioactive phytocompounds and their structure activity relationship. Molecules 2022, 27, 3036. [Google Scholar] [CrossRef]
- Lo Faro, F.A.; Di Trana, A.; La Maida, N.A.; Tagliabracci, R.; Giorgetti, F.; Busardò, P. Biomedical analysis of new psychoactive substances (NPS) of natural origin. J. Pharm. Biomed. Anal. 2020, 179, 112945. [Google Scholar] [CrossRef]
- Mancuso, C.; Siciliano, R.; Barone, E.; Preziosi, P. Natural substances and Alzheimer’s disease: From preclinical studies to evidence based medicine. Biochim. Biophys. Acta 2012, 1822, 616–624. [Google Scholar] [CrossRef]
- Zhao, J.; Li, R.; Pawlak, A.; Henklewska, M.; Sysak, A.; Wen, L.; Yi, J.E.; Obmińska-Mrukowicz, B. Antitumor activity of betulinic acid and betulin in canine cancer cell lines. In Vivo 2018, 32, 1081–1088. [Google Scholar] [CrossRef]
- Schwiebs, A.; Radeke, H.H. Immunopharmacological activity of betulin in inflammation-associated carcinogenesis. Anticancer Agents Med. Chem. 2018, 18, 645–651. [Google Scholar] [CrossRef]
- Buko, V.; Zavodnik, I.; Palecz, B.; Stepniak, A.; Kirko, S.; Shlyahtun, A.; Misiuk, W.; Belonovskaya, E.; Lukivskaya, O.; Naruta, E.; et al. Betulin/2-hydroxypropyl-β-cyclodextrin inclusion complex: Physicochemical characterization and hepatoprotective activity. J. Mol. Liq. 2020, 309, 113118. [Google Scholar] [CrossRef]
- Chaniad, P.; Sudsai, T.; Septama, A.W.; Chukaew, A.; Tewtrakul, S. Evaluation of anti-HIV-1 integrase and anti-inflammatory activities of compounds from betula alnoides buch-ham. Adv. Pharmacol. Sci. 2019, 2019, 2573965. [Google Scholar] [CrossRef] [PubMed]
- Javed, S.; Mahmood, Z.; Khan, K.M.; Sarker, S.D.; Javaid, A.; Khan, I.H.; Shoaib, A. Lupeol acetate as a potent antifungal compound against opportunistic human and phytopathogenic mold Macrophomina phaseolina. Sci. Rep. 2021, 11, 8417. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, Z.; Wang, R.; Zhu, M. Synthesis and characterization of methacrylate-functionalized betulin derivatives as antibacterial comonomer for dental restorative resins. ACS Biomater. Sci. Eng. 2021, 7, 3132–3140. [Google Scholar] [CrossRef]
- Li, J.; Jiang, B.; Chen, C.; Fan, B.; Huang, H.; Chen, G. Biotransformation of betulin by Mucor subtilissimus to discover anti-inflammatory derivatives. Phytochemistry 2019, 166, 112076. [Google Scholar] [CrossRef]
- Amiri, S.; Dastghaib, S.; Ahmadi, M.; Mehrbod, P.; Khadem, F.; Behrouj, H.; Aghanoori, M.R.; Machaj, F.; Ghamsari, M.; Rosik, J.; et al. Betulin and its derivatives as novel compounds with different pharmacological effects. Biotechnol. Adv. 2020, 38, 107409. [Google Scholar] [CrossRef]
- Guo, W.B.; Zhang, H.; Yan, W.Q.; Liu, Y.M.; Zhou, F.; Cai, D.S.; Zhang, W.X.; Huang, X.M.; Jia, X.H.; Chen, H.S.; et al. Design, synthesis, and biological evaluation of ligustrazine—Betulin amino-acid/dipeptide derivatives as anti-tumor agents. Eur. J. Med. Chem. 2020, 185, 111839. [Google Scholar] [CrossRef]
- Chen, G.Q.; Guo, H.Y.; Quan, Z.S.; Shen, Q.K.; Li, X.; Luan, T. Natural products-pyrazine hybrids: A review of developments in medicinal chemistry. Molecules 2023, 28, 7440. [Google Scholar] [CrossRef]
- Csuk, R.; Deigner, H.P. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg. Med. Chem. Lett. 2019, 29, 949–958. [Google Scholar] [CrossRef]
- Dudchak, R.; Podolak, M.; Holota, S.; Szewczyk-Roszczenko, O.; Roszczenko, P.; Bielawska, A.; Lesyk, R.; Bielawski, K. Click chemistry in the synthesis of antibody-drug conjugates. Bioorg. Chem. 2024, 143, 106982. [Google Scholar] [CrossRef]
- Huisgen, R. 1,3-Dipolar cycloaddition. Chemistry 1984, 1, 1. [Google Scholar]
- Salma, U.; Ahmad, S.; Alam, M.Z.; Khan, S.A. A review: Synthetic approaches and biological applications of triazole derivatives. J. Mol. Struct. 2024, 1301, 137240. [Google Scholar] [CrossRef]
- Hashemi, S.M.; Badali, H.; Irannejad, H.; Shokrzadeh, M.; Emami, S. Synthesis and biological evaluation of fluconazole analogs with triazole-modified scaffold as potent antifungal agents. Bioorg. Med. Chem. 2015, 23, 1481–1491. [Google Scholar] [CrossRef]
- Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 2012, 19, 239–280. [Google Scholar] [CrossRef]
- Borden, K.L.; Culjkovic-Kraljacic, B. Ribavirin as an anti-cancer therapy: Acute myeloid leukemia and beyond? Leuk. Lymphoma 2010, 51, 1805–1815. [Google Scholar] [CrossRef]
- Denis, J.; Ledoux, M.P.; Nivoix, Y.; Herbrecht, R. Isavuconazole: A new broad-spectrum azole. Part 1: In vitro activity. J. Mycol. Med. 2018, 28, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Ramos, P.; Pepliński, P.; Pilawa, B. Impact of UVC radiation on interaction of selected antifungal drugs (azole derivatives) with model DPPH free radical. Ann. Acad. Med. Siles 2020, 74, 77–90. [Google Scholar] [CrossRef]
- Slaihim, M.M.; Al-Suede, F.S.R.; Khairuddean, M.; Ahamed, M.B.K.; Majid, A.M.S.A. Synthesis, characterisation of new derivatives with mono ring system of 1,2,4-triazole scaffold and their anticancer activities. J. Mol. Struct. 2019, 1196, 78–87. [Google Scholar] [CrossRef]
- Roy, K.K. Targeting the active sites of malarial proteases for antimalarial drug discovery: Approaches, progress and challenges. Int. J. Antimicrob. Agents 2017, 50, 287–302. [Google Scholar] [CrossRef] [PubMed]
- Kaproń, B.; Czarnomysy, R.; Wysokiński, M.; Andrys, R.; Musilek, K.; Angeli, A.; Supuran, C.T.; Plech, T. 1,2,4-Triazole-based anticonvulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy. J. Enzyme Inhib. Med. Chem. 2020, 35, 993–1002. [Google Scholar] [CrossRef]
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.Y.; Chen, Z.A.; Shen, Q.K.; Quan, Z.S. Application of triazoles in the structural modification of natural products. J. Enzyme Inhib. Med. Chem. 2021, 36, 1115–1144. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Bębenek, E.; Chrobak, E.; Marciniec, K.; Latocha, M.; Kuśmierz, D.; Jastrzębska, M.; Boryczka, S. Betulin-1,4-quinone hybrids: Synthesis, anticancer activity and molecular docking study with NQO1 enzyme. Eur. J. Med. Chem. 2019, 177, 302–315. [Google Scholar] [CrossRef] [PubMed]
- Chrobak, E.; Jastrzębska, M.; Bębenek, E.; Kadela-Tomanek, M.; Marciniec, K.; Latocha, M.; Wrzalik, R.; Kusz, J.; Boryczka, S. Molecular Structure, in vitro anticancer study and molecular docking of new phosphate derivatives of betulin. Molecules 2021, 26, 737. [Google Scholar] [CrossRef]
- Bębenek, E.; Jastrzębska, M.; Kadela-Tomanek, M.; Chrobak, E.; Orzechowska, B.; Zwolińska, K.; Latocha, M.; Mertas, A.; Czuba, Z.; Boryczka, S. Novel triazole hybrids of betulin: Synthesis and biological activity profile. Molecules 2017, 22, 1876. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Marciniec, K.; Chrobak, E.; Bębenek, E.; Latocha, L.; Kuśmierz, D.; Boryczka, S. Design, synthesis and biological activity of 1,4-quinone moiety attached to betulin derivatives as potent DT-diaphorase substrate. Bioorg. Chem. 2021, 106, 104478. [Google Scholar] [CrossRef]
- Bębenek, E.; Kadela-Tomanek, M.; Chrobak, E.; Jastrzębska, M.; Książek, M. Synthesis and structural characterization of a new 1,2,3-triazole derivative of pentacyclic triterpene. Crystals 2022, 12, 422. [Google Scholar] [CrossRef]
- Boryczka, S.; Bębenek, E.; Wietrzyk, J.; Kempińska, K.; Jastrzębska, M.; Kusz, J.; Nowak, M. Synthesis, structure and cytotoxic activity of new acetylenic derivatives of betulin. Molecules 2013, 18, 4526–4543. [Google Scholar] [CrossRef]
- Virtual Computational Chemistry Laboratory. Available online: http://www.vcclab.org (accessed on 10 January 2024).
- Molinspiration. Available online: https://www.molinspiration.com/services/logp.html (accessed on 10 January 2024).
- SwissADME. Available online: http://www.swissadme.ch/index.php (accessed on 10 January 2024).
- Biosig. Available online: https://biosig.lab.uq.edu.au/pkcsm/prediction (accessed on 10 January 2024).
- Kulkarni, A.; Han, Y.; Hopfinger, A. Predicting Caco-2 cell permeation coefficients of organic molecules using membrane-interaction QSAR analysis. J. Chem. Inf. Comput. Sci. 2002, 42, 331–342. [Google Scholar] [CrossRef]
- Feher, M.; Schmidt, J. Property distributions: Differences between drugs, natural products, and molecules from combinatorial chemistry. J. Chem. Inf. Comput Sci. 2003, 43, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Hutter, M. Prediction of blood-brain barrier permeation using quantum chemically derived information. J. Comput. Aided Mol. Des. 2003, 17, 415–433. [Google Scholar] [CrossRef]
- Rosés, M.; Bosch, E.; Ràfols, C.; Fuguet, E. Chromatographic hydrophobicity index (CHI). Adv. Chromatogr. 2012, 50, 377–414. [Google Scholar] [PubMed]
- Mannhold, R.; Poda, G.I.; Ostermann, C.; Tetko, I.V. Calculation of molecular lipophilicity: State-of-the-art and comparison of log P methods on more than 96,000 compounds. J. Pharm. Sci. 2009, 98, 861–893. [Google Scholar] [CrossRef]
- Lin, S.Y.; Yang, Y.H.; Liu, H.H. Development of liposome/water partition coefficients predictive models for neutral and ionogenic organic chemicals. Ecotoxicol. Environ. Saf. 2019, 179, 40–49. [Google Scholar] [CrossRef]
- Endo, S.; Escher, B.I.; Goss, K.U. Capacities of membrane lipids to accumulate neutral organic chemicals. Environ. Sci. Technol. 2011, 45, 5912–5921. [Google Scholar] [CrossRef]
- Anderberg, M.R. Cluster Analysis for Applications; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Santini, S.; Jain, R. Similarity measures. IEEE Trans. Pattern Anal. Mach. Intell. 1999, 21, 871–883. [Google Scholar] [CrossRef]
- Liberti, L.; Lavor, C.; Maculan, N.; Mucherino, A. Euclidean distance geometry and applications. SIAM Rev. 2014, 56, 1–62. [Google Scholar] [CrossRef]
- Kadela-Tomanek, M.; Jastrzębska, M.; Chrobak, E.; Bębenek, E. Lipophilicity and ADMET analysis of quinoline-1,4-quinone hybrids. Pharmaceutics 2022, 15, 34. [Google Scholar] [CrossRef]
- Walters, W.P. Going further than Lipinski’s rule in drug design. Expert Opin. Drug Discov. 2012, 7, 99–107. [Google Scholar] [CrossRef]
- Jangam, C.S.; Bhowmick, S.; Chorge, R.D.; Bharatrao, L.D.; Patil, P.C.; Chikhale, R.V.; AlFaris, N.A.; ALTamimi, J.Z.; Wabaidur, S.M.; Islam, M.A. Pharmacoinformatics-based identification of anti-bacterial catalase-peroxidase enzyme inhibitors. Comput. Biol. Chem. 2019, 83, 107136. [Google Scholar] [CrossRef] [PubMed]
- Pluskota, R.; Jaroch, K.; Kośliński, P.; Ziomkowska, B.; Lewińska, A.; Kruszewski, S.; Bojko, B.; Koba, M. Selected drug-likeness properties of 2-arylidene-indan-1,3-dione derivatives-chemical compounds with potential anti-cancer activity. Molecules 2021, 26, 256. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Dress, K.; Edwards, M. Using the Golden Triangle to optimize clearance and oral absorption. Bioorg. Med. Chem. Lett. 2009, 19, 5560–5564. [Google Scholar] [CrossRef]
Compound | RM0 | b | r | logPTLC | φ0 | Compound | RM0 | b | r | logPTLC | φ0 |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5.78 | −0.06 | 0.995 | 6.68 | 90.17 | 2 | 8.09 | −0.09 | 0.992 | 9.20 | 90.09 |
3 | 6.15 | −0.07 | 0.997 | 7.09 | 86.86 | 11 | 7.05 | −0.08 | 0.992 | 8.07 | 86.29 |
4 | 6.31 | −0.07 | 0.994 | 7.26 | 86.68 | 12 | 7.15 | −0.08 | 0.993 | 8.17 | 86.04 |
5 | 6.29 | −0.07 | 0.993 | 7.24 | 85.12 | 13 | 6.57 | −0.08 | 0.995 | 7.54 | 83.38 |
6 | 6.85 | −0.08 | 0.988 | 7.85 | 87.15 | 14 | 7.75 | −0.09 | 0.994 | 8.83 | 87.18 |
7 | 3.67 | −0.05 | 0.988 | 4.39 | 73.11 | 15 | 3.08 | −0.05 | 0.950 | 3.75 | 59.69 |
8 | 4.56 | −0.06 | 0.992 | 5.36 | 78.76 | 16 | 5.68 | −0.08 | 0.998 | 6.58 | 70.65 |
9 | 4.44 | −0.05 | 0.994 | 5.23 | 81.92 | 17 | 4.35 | −0.06 | 0.990 | 5.13 | 75.65 |
10 | 5.57 | −0.07 | 0.994 | 6.46 | 85.04 | 18 | 6.59 | −0.08 | 0.987 | 7.57 | 82.89 |
Compound | LogPlit | RM0 | b | r | LogPTLC |
---|---|---|---|---|---|
A | 2.43 | 1.87 | −0.02 | 0.985 | 2.43 |
B | 3.18 | 2.42 | −0.02 | 0.981 | 3.03 |
C | 4.45 | 4.08 | −0.03 | 0.992 | 4.84 |
D | 4.79 | 4.11 | −0.05 | 0.970 | 4.87 |
E | 6.01 | 4.87 | −0.04 | 0.972 | 5.69 |
F | 6.38 | 5.50 | −0.06 | 0.985 | 6.38 |
Compound | ALOGPs | AClogP | miLogP | XLOGP2 | XLOGP3 |
---|---|---|---|---|---|
3 | 6.60 | 6.97 | 8.70 | 9.87 | 10.21 |
4 | 6.60 | 7.02 | 8.77 | 10.30 | 10.31 |
5 | 6.42 | 6.78 | 8.56 | 9.59 | 9.93 |
6 | 6.67 | 9.11 | 8.90 | 10.29 | 10.85 |
7 | 4.11 | 3.51 | 5.08 | 6.11 | 6.39 |
8 | 5.01 | 4.21 | 6.58 | 6.71 | 7.72 |
9 | 5.38 | 5.26 | 7.05 | 7.81 | 8.22 |
10 | 5.77 | 5.29 | 7.65 | 8.29 | 9.00 |
11 | 7.39 | 8.09 | 9.35 | 11.93 | 12.14 |
12 | 7.45 | 8.21 | 9.43 | 12.25 | 12.34 |
13 | 7.40 | 7.72 | 9.21 | 11.37 | 11.58 |
14 | 7.56 | 8.38 | 9.56 | 12.77 | 13.42 |
15 | 2.87 | 1.17 | 3.00 | 4.40 | 4.49 |
16 | 4.69 | 2.59 | 6.00 | 5.61 | 7.17 |
17 | 5.19 | 4.69 | 6.93 | 7.81 | 8.16 |
18 | 6.10 | 4.74 | 8.12 | 8.76 | 9.73 |
Compound | M | TPSA | HA | HD | RT | logPapp | HIA | logKp | logBB | logPS |
---|---|---|---|---|---|---|---|---|---|---|
3 | 627.90 | 77.24 | 5 | 1 | 7 | 0.737 | 100 | −2.730 | −0.522 | −1.288 |
4 | 648.89 | 77.24 | 6 | 1 | 7 | 0.808 | 100 | −2.732 | −0.741 | −2.240 |
5 | 652.91 | 101.03 | 6 | 1 | 7 | 0.485 | 100 | −2.733 | −0.689 | −1.355 |
6 | 659.95 | 102.54 | 5 | 1 | 8 | 0.660 | 99 | −2.731 | −0.699 | −1.251 |
7 | 699.92 | 167.39 | 5 | 10 | 7 | 0.342 | 60 | −2.735 | −1.853 | −3.671 |
8 | 761.00 | 152.87 | 9 | 3 | 8 | 0.250 | 99 | −2.736 | −1.314 | −3.001 |
9 | 595.86 | 97.47 | 6 | 2 | 8 | 0.627 | 100 | −2.780 | −0.714 | −2.606 |
10 | 623.87 | 103.54 | 7 | 1 | 9 | 0.658 | 100 | −2.762 | −0.928 | −2.677 |
11 | 813.08 | 114.02 | 8 | 0 | 12 | 0.528 | 100 | −2.735 | −1.406 | −2.289 |
12 | 849.06 | 114.02 | 10 | 0 | 12 | 0.484 | 100 | −2.735 | −1.845 | −2.536 |
13 | 863.10 | 161.60 | 10 | 0 | 12 | 0.001 | 100 | −2.735 | −1.742 | −2.402 |
14 | 877.21 | 164.62 | 8 | 0 | 14 | 0.529 | 100 | −2.735 | −1.764 | −2.193 |
15 | 957.13 | 294.34 | 20 | 8 | 10 | 0.097 | 11 | −2.735 | −3.534 | −5.467 |
16 | 1079.31 | 252.65 | 18 | 12 | 4 | 0.605 | 88 | −2.735 | −2.454 | −4.070 |
17 | 748.99 | 154.48 | 10 | 2 | 14 | 0.071 | 100 | −2.736 | −1.815 | −3.280 |
18 | 805.01 | 166.62 | 12 | 0 | 16 | 0.089 | 91 | −2.735 | −2.220 | −3.420 |
Program | Correlation Equation | r | SD |
---|---|---|---|
ALOGPs | logPTLC = 0.928 LogPcalc + 0.580 | 0.928 | 0.670 |
ACLOGP | logPTLC = 0.841 LogPcalc + 3.907 | 0.840 | 0.827 |
milogP | logPTLC = 0.916 LogPcalc + 0.979 | 0.916 | 0.682 |
XLOGP2 | logPTLC = 0.889 LogPcalc + 1.926 | 0.889 | 0.675 |
XLOGP3 | logPTLC = 0.937 LogPcalc + 1.157 | 0.937 | 0.565 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadela-Tomanek, M.; Sokal, A.; Stocerz, K.; Bębenek, E.; Chrobak, E.; Olczyk, P. Assessment of Bioavailability Parameters of Mono- and Bistriazole Derivatives of Propynoylbetulin. Appl. Sci. 2024, 14, 1695. https://doi.org/10.3390/app14051695
Kadela-Tomanek M, Sokal A, Stocerz K, Bębenek E, Chrobak E, Olczyk P. Assessment of Bioavailability Parameters of Mono- and Bistriazole Derivatives of Propynoylbetulin. Applied Sciences. 2024; 14(5):1695. https://doi.org/10.3390/app14051695
Chicago/Turabian StyleKadela-Tomanek, Monika, Arkadiusz Sokal, Klaudia Stocerz, Ewa Bębenek, Elwira Chrobak, and Paweł Olczyk. 2024. "Assessment of Bioavailability Parameters of Mono- and Bistriazole Derivatives of Propynoylbetulin" Applied Sciences 14, no. 5: 1695. https://doi.org/10.3390/app14051695
APA StyleKadela-Tomanek, M., Sokal, A., Stocerz, K., Bębenek, E., Chrobak, E., & Olczyk, P. (2024). Assessment of Bioavailability Parameters of Mono- and Bistriazole Derivatives of Propynoylbetulin. Applied Sciences, 14(5), 1695. https://doi.org/10.3390/app14051695