A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties
Abstract
:Featured Application
Abstract
1. Introduction
2. Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Quality Assessment
2.4. Intended Audience
3. Bio-Functional Compounds and Health Benefits of Kiwi Fruit and Its Juice
3.1. Some Historical Aspects of Kiwi Fruit
3.2. Kiwi Nutritional Value and Bioactive Composition
3.2.1. Kiwi Vitamins
3.2.2. Kiwi Phenolics
3.2.3. Kiwi Pigments
3.2.4. Other Important Kiwi Nutrients
4. Health Benefits and Composition of Kiwi By-Products
4.1. Kiwi Seeds
4.2. Kiwi Eaves
4.3. Kiwi Peel/Skin
4.4. Kiwi Pomace
Composition | Amount | By-Product |
---|---|---|
Total phenolics | 329 mg/g | Seeds [38] |
Total proteins | 12.62% 12.72–14.94% | Peels [34] Seeds [38] |
Total lipids | 3.7% 28.3–35% | Peels [34] Seeds [11] |
Total carotenoids | 5.70 ± 0.033 mg/g DW 1.55 ± 0.093 | Peels [34] Pomace [34] |
Phenolic profile | ||
Total phenolics | 14.3–24.6 (GAE) 9.71 ± 0.28 mg GAE/g DW 3.79 ± 0.15 mg GAE/g DW 200 mg/g | Peels [34,35] Pomace [34] Leaf [11] |
Chlorogenic acid | 0.40 mg/g | Peels [44] |
Catechin | 45 mg/g 0.36 mg/g | Seeds [11] Peels [44] |
P-coumaric acid | 53 mg/g | Seeds [11] |
Hydroxybenzoic acid | 63 mg/g | Seeds [11] |
Caffeic acid | 0.15 mg/g | Peels [44] |
Epicatechin | 0.32 mg/g | Peels [44] |
5. Valorization of Bioactive Compounds from Kiwi By-Products in the Application of Health-Promoting Functional Foods, Supplements, and Nutraceuticals
5.1. Kiwi Bioactives: From the Fruit’s Bio-Waste to Functional Products Promoting Wellness
5.2. Overview of Kiwi’s Rich Content in Phenolics and Novel Protein Discoveries Associated with ITS Antioxidant Health Benefits
5.3. Kiwi Bioactives in Functional Foods Applications
5.4. Health-Promoting Properties of Kiwi Fruit-Based Nutraceuticals
6. Kiwi Bioactives in Cosmetics Applications
6.1. Kiwi as a Sustainable Natural Source of Bioactives for Healthy Natural Cosmetics
6.2. Kiwi Bioactives and Skin Health
6.2.1. Phenolic Compounds
6.2.2. Vitamin C
6.2.3. Vitamin E
6.2.4. Collagen
6.2.5. Carotenoids
6.3. Other Cosmetics’ Applications
Bio-Functional Ingredient of Kiwi or Its By-Products | Bioactive Compounds | Potential Functional Cosmetic Product | Activity | References |
---|---|---|---|---|
Kiwi extract (solution of peeled kiwi powder in distilled water) |
|
|
| [103] |
Kiwi paste |
|
|
| [104] |
Raw kiwi piece (cut from the fleshy part) |
|
|
| [105] |
Raw kiwi piece (cut from the fleshy part) |
|
|
| [106] |
Kiwi peel extract |
|
|
| [44] |
Kiwi |
|
|
| [95] |
7. Conclusions, Limitations, and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bergman, P.; Brighenti, S. Targeted Nutrition in Chronic Disease. Nutrients 2020, 12, 1682. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Cockerham, W.C.; Hamby, B.W.; Oates, G.R. The Social Determinants of Chronic Disease. Am. J. Prev. Med. 2017, 52, S5–S12. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Sailo, B.L.; Banik, K.; Harsha, C.; Prasad, S.; Gupta, S.C.; Bharti, A.C.; Aggarwal, B.B. Chronic diseases, inflammation, and spices: How are they linked? J. Transl. Med. 2018, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, Inflammation, and Chronic Diseases: How Are They Linked? Molecules 2015, 20, 9183–9213. [Google Scholar] [CrossRef] [PubMed]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative Stress: Harms and Benefits for Human Health. Oxid. Med. Cell. Longev. 2017, 2017, 8416763. [Google Scholar] [CrossRef]
- Pros and Cons of the Mediterranean Diet. Verywell Fit. Available online: https://www.verywellfit.com/the-mediterranean-diet-pros-and-cons-4685664 (accessed on 6 November 2023).
- Mediterranean Diet: MedlinePlus Medical Encyclopedia. Available online: https://medlineplus.gov/ency/patientinstructions/000110.htm (accessed on 6 November 2023).
- Lau, K.Q.; Sabran, M.R.; Shafie, S.R. Utilization of Vegetable and Fruit By-products as Functional Ingredient and Food. Front. Nutr. 2021, 8, 661693. [Google Scholar] [CrossRef] [PubMed]
- Comunian, T.A.; Silva, M.P.; Souza, C.J.F. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Chamorro, F.; Carpena, M.; Fraga-Corral, M.; Echave, J.; Rajoka, M.S.; Barba, F.J.; Cao, H.; Xiao, J.; Prieto, M.A.; Simal-Gandara, J. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chem. 2022, 370, 131315. [Google Scholar] [CrossRef]
- Dias, M.; Caleja, C.; Pereira, C.; Calhelha, R.C.; Kostic, M.; Sokovic, M.; Tavares, D.; Baraldi, I.J.; Barros, L.; Ferreira, I.C. Chemical composition and bioactive properties of byproducts from two different kiwi varieties. Food Res. Int. 2020, 127, 108753. [Google Scholar] [CrossRef]
- Kiwi Fruit: Leading Producers Worldwide. 2021. Available online: https://www.statista.com/statistics/812434/production-volume-of-leading-kiwi-producing-countries/ (accessed on 7 November 2023).
- Cassano, A.; Donato, L.; Conidi, C.; Drioli, E. Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innov. Food Sci. Emerg. Technol. 2008, 9, 556–562. [Google Scholar] [CrossRef]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef]
- Siddiquie, S.; Ahmad, A.; Ahsan, F.; Mahmood, T.; Arif, M.; Khushtar, M.; Islam, A. Current Phytochemical and Pharmacological Outlook of Actinidia deliciosa (Kiwi Fruit). Curr. Funct. Foods 2023, 1, 3–17. [Google Scholar] [CrossRef]
- Drummond, L. Chapter Three—The Composition and Nutritional Value of Kiwifruit. In Advances in Food and Nutrition Research; Boland, M., Moughan, P.J., Eds.; Nutritional Benefits of Kiwifruit; Academic Press: Cambridge, MA, USA, 2013; Volume 68, pp. 33–57. [Google Scholar] [CrossRef]
- Linster, C.L.; Van Schaftingen, E. Vitamin C. FEBS J. 2007, 274, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef] [PubMed]
- Daud, Z.A.M.; Ismail, A.; Sarmadi, B. Ascorbic Acid: Physiology and Health Effects. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Oxford, UK, 2016; pp. 266–274. [Google Scholar] [CrossRef]
- Rizvi, S.; Raza, S.T.; Ahmed, F.; Ahmad, A.; Abbas, S.; Mahdi, F. The Role of Vitamin E in Human Health and Some Diseases. Sultan Qaboos Univ. Med. J. 2014, 14, e157–e165. [Google Scholar]
- Iyer, R.; Tomar, S.K. Folate: A Functional Food Constituent. J. Food Sci. 2009, 74, R114–R122. [Google Scholar] [CrossRef]
- Dwivedi, S.; Mishra, A.K.; Priya, S. Potential Health Benefits of Kiwifruits: The King of Fruits. J. Sci. Technol. 2020, 5, 126–131. [Google Scholar] [CrossRef]
- Kim, Y.-M.; Abas, F.; Park, Y.-S.; Park, Y.-K.; Ham, K.-S.; Kang, S.-G.; Lubinska-Szczygeł, M.; Ezra, A.; Gorinstein, S. Bioactivities of Phenolic Compounds from Kiwifruit and Persimmon. Molecules 2021, 26, 4405. [Google Scholar] [CrossRef]
- Khiralla, G.; Ali, H.M. Bioavailability and antioxidant potentials of fresh and pasteurized kiwi juice before and after in vitro gastrointestinal digestion. J. Food Sci. Technol. 2020, 57, 4277–4285. [Google Scholar] [CrossRef]
- Zhu, C.; Chou, O.; Lee, F.Y.; Wang, Z.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Characterization of Phenolics in Rejected Kiwifruit and Their Antioxidant Potential. Processes 2021, 9, 781. [Google Scholar] [CrossRef]
- Dawes, H.M.; Keene, J.B. Phenolic composition of kiwifruit juice. J. Agric. Food Chem. 1999, 47, 2398–2403. [Google Scholar] [CrossRef]
- Montefiori, M.; McGhie, T.K.; Costa, G.; Ferguson, A.R. Pigments in the Fruit of Red-Fleshed Kiwifruit (Actinidia chinensis and Actinidia deliciosa). J. Agric. Food Chem. 2005, 53, 9526–9530. [Google Scholar] [CrossRef]
- McGhie, T.K.; Ainge, G.D. Color in Fruit of the Genus Actinidia: Carotenoid and Chlorophyll Compositions. J. Agric. Food Chem. 2002, 50, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Man, Y.; Lei, R.; Lu, X.; Wang, Y. Metabolomics Study of Flavonoids and Anthocyanin-Related Gene Analysis in Kiwifruit (Actinidia chinensis) and Kiwiberry (Actinidia arguta). Plant Mol. Biol. Rep. 2020, 38, 353–369. [Google Scholar] [CrossRef]
- Satpal, D.; Kaur, J.; Bhadariya, V.; Sharma, K. Actinidia deliciosa (Kiwi fruit): A comprehensive review on the nutritional composition, health benefits, traditional utilization, and commercialization. J. Food Process. Preserv. 2021, 45, e15588. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/168153/nutrients (accessed on 9 January 2024).
- D’evoli, L.; Moscatello, S.; Lucarini, M.; Aguzzi, A.; Gabrielli, P.; Proietti, S.; Battistelli, A.; Famiani, F.; Böhm, V.; Lombardi-Boccia, G. Nutritional traits and antioxidant capacity of kiwifruit (Actinidia deliciosa Planch., cv. Hayward) grown in Italy. J. Food Compos. Anal. 2015, 37, 25–29. [Google Scholar] [CrossRef]
- Sanz, V.; López-Hortas, L.; Torres, M.D.; Domínguez, H. Trends in kiwifruit and byproducts valorization. Trends Food Sci. Technol. 2021, 107, 401–414. [Google Scholar] [CrossRef]
- Ragab, S.S.; Khader, S.A.; Abd Elhamed, E.K. Nutritional and Chemical, Studies on Kiwi (Actinidia deliciosa) Fruits. J. Home Econ. 2019, 29, 19–30. [Google Scholar]
- Ilie, G.-I.; Milea, Ș.-A.; Râpeanu, G.; Cîrciumaru, A.; Stănciuc, N. Sustainable Design of Innovative Kiwi Byproducts-Based Ingredients Containing Probiotics. Foods 2022, 11, 2334. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Wen, I.; Wibisono, R.; Melton, L.D.; Wadhwa, S. Evaluation of the extraction efficiency for polyphenol extracts from by-products of green kiwifruit juicing. Int. J. Food Sci. Technol. 2009, 44, 2644–2652. [Google Scholar] [CrossRef]
- Deng, J.; Liu, Q.; Zhang, Q.; Zhang, C.; Liu, D.; Fan, D.; Yang, H. Comparative study on composition, physicochemical and antioxidant characteristics of different varieties of kiwifruit seed oil in China. Food Chem. 2018, 264, 411–418. [Google Scholar] [CrossRef]
- All About Kiwi Seeds—Zespri Philippines. Available online: https://www.zespri.com/en-PH/blogdetail/all-about-kiwi-seeds (accessed on 3 January 2024).
- Przybylska, S.; Tokarczyk, G. Lycopene in the Prevention of Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 1957. [Google Scholar] [CrossRef]
- Soquetta, M.B.; Stefanello, F.S.; Huerta, K.d.M.; Monteiro, S.S.; da Rosa, C.S.; Terra, N.N. Characterization of physiochemical and microbiological properties, and bioactive compounds, of flour made from the skin and bagasse of kiwi fruit (Actinidia deliciosa). Food Chem. 2016, 199, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Martin-Cabrejas, M.A.; Esteban, R.M.; Lopez-Andreu, F.J.; Waldron, K.; Selvendran, R.R. Dietary Fiber Content of Pear and Kiwi Pomaces. J. Agric. Food Chem. 1995, 43, 662–666. [Google Scholar] [CrossRef]
- Kheirkhah, H.; Baroutian, S.; Quek, S.Y. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food Bioprod. Process. 2019, 115, 143–153. [Google Scholar] [CrossRef]
- Gomes, S.; Miranda, R.; Santos, L. Sustainable Cosmetics: Valorisation of Kiwi (Actinidia deliciosa) By-Products by Their Incorporation into a Moisturising Cream. Sustainability 2023, 15, 14059. [Google Scholar] [CrossRef]
- Tyagi, S. Kiwifruit: Health benefits and medicinal importance. RastriyaKrishi 2015, 10, 98–100. [Google Scholar]
- Chamorro, F.; Carpena, M.; Nuñez-Estevez, B.; Prieto, M.A.; Simal-Gandara, J. Valorization of Kiwi by-Products for the Recovery of Bioactive Compounds: Circular Economy Model. Proceedings 2021, 70, 9. [Google Scholar] [CrossRef]
- Casanola-Martin, G.M.; Le-Thi-Thu, H.; Marrero-Ponce, Y.; Castillo-Garit, J.A.; Torrens, F.; Rescigno, A.; Abad, C.; Khan, M.T.H. Tyrosinase enzyme: 1. An overview on a pharmacological target. Curr. Top. Med. Chem. 2014, 14, 1494–1501. [Google Scholar] [CrossRef]
- Baldwin, K.M. Chapter 1—Structural and Functional Organization of Skeletal Muscle. In Exercise Medicine; Bove, A.A., Lowenthal, D.T., Eds.; Academic Press: Cambridge, MA, USA, 1983; pp. 3–18. [Google Scholar] [CrossRef]
- Iwasawa, H.; Morita, E.; Yui, S.; Yamazaki, M. Anti-oxidant effects of kiwi fruit in vitro and in vivo. Biol. Pharm. Bull. 2011, 34, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Collins, B.H.; Horská, A.; Hotten, P.M.; Riddoch, C.; Collins, A.R. Kiwifruit Protects Against Oxidative DNA Damage in Human Cells and In Vitro. Nutr. Cancer 2001, 39, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, J.; Gao, N.; Gong, E.S.; Xin, G.; Liu, C.; Si, X.; Sun, X.; Li, B. Assessment of the phytochemical profile and antioxidant activities of eight kiwi berry (Actinidia arguta (Siebold & Zuccarini) Miquel) varieties in China. Food Sci. Nutr. 2021, 9, 5616–5625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, B.; Gao, N.; Li, H.; Cui, X.; Jiang, H.; Tang, S.; Jin, C.; Tian, J. Preventive effect of kiwi berry (Actinidia arguta) on loperamide-induced constipation. Food Sci. Hum. Wellness 2024, 13, 1410–1421. [Google Scholar] [CrossRef]
- Fang, Z.; Song, M.; Lai, K.; Cui, M.; Yin, M.; Liu, K. Kiwi-derived extracellular vesicles for oral delivery of sorafenib. Eur. J. Pharm. Sci. 2023, 191, 106604. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yi, X.; Wei, Q.; Li, M.; Cai, X.; Lv, Y.; Weng, L.; Mao, Y.; Fan, W.; Zhao, M.; et al. Edible and cation-free kiwi fruit derived vesicles mediated EGFR-targeted siRNA delivery to inhibit multidrug resistant lung cancer. J. Nanobiotechnol. 2023, 21, 41. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.N.; Kim, J.I. Daraesoon (shoot of hardy kiwi) mitigates hyperglycemia in db/db mice by alleviating insulin resistance and inflammation. Nutr. Res. Pract. 2024, 18, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Goya-Jorge, E.; Bondue, P.; Gonza, I.; Laforêt, F.; Antoine, C.; Boutaleb, S.; Douny, C.; Scippo, M.-L.; de Ribaucourt, J.C.; Crahay, F.; et al. Butyrogenic, bifidogenic and slight anti-inflammatory effects of a green kiwifruit powder (Kiwi FFG®) in a human gastrointestinal model simulating mild constipation. Food Res. Int. 2023, 173, 113348. [Google Scholar] [CrossRef]
- Naoom, A.Y.; Kang, W.; Ghanem, N.F.; Abdel-Daim, M.M.; El-Demerdash, F.M. Actinidia deliciosa as a complemental therapy against nephropathy and oxidative stress in diabetic rats. Food Sci. Hum. Wellness 2023, 12, 1981–1990. [Google Scholar] [CrossRef]
- Lv, J.-M.; Ismail, B.B.; Ye, X.-Q.; Zhang, X.-Y.; Gu, Y.; Chen, J.-C. Ultrasonic-assisted nanoencapsulation of kiwi leaves proanthocyanidins in liposome delivery system for enhanced biostability and bioavailability. Food Chem. 2023, 416, 135794. [Google Scholar] [CrossRef]
- Cairone, F.; Garzoli, S.; Menghini, L.; Simonetti, G.; Casadei, M.A.; Di Muzio, L.; Cesa, S. Valorization of Kiwi Peels: Fractionation, Bioactives Analyses and Hypotheses on Complete Peels Recycle. Foods 2022, 11, 589. [Google Scholar] [CrossRef] [PubMed]
- Atchudan, R.; Kishore, S.C.; Gangadaran, P.; Edison, T.N.J.I.; Perumal, S.; Rajendran, R.L.; Alagan, M.; Al-Rashed, S.; Ahn, B.-C.; Lee, Y.R. Tunable fluorescent carbon dots from biowaste as fluorescence ink and imaging human normal and cancer cells. Environ. Res. 2022, 204, 112365. [Google Scholar] [CrossRef] [PubMed]
- Ciacci, C.; Russo, I.; Bucci, C.; Iovino, P.; Pellegrini, L.; Giangrieco, I.; Tamburrini, M.; A Ciardiello, M. The kiwi fruit peptide kissper displays anti-inflammatory and anti-oxidant effects in in-vitro and ex-vivo human intestinal models. Clin. Exp. Immunol. 2014, 175, 476–484. [Google Scholar] [CrossRef]
- Sgroi, F.; Sciortino, C.; Baviera-Puig, A.; Modica, F. Analyzing consumer trends in functional foods: A cluster analysis approach. J. Agric. Food Res. 2024, 15, 101041. [Google Scholar] [CrossRef]
- Conroy, D.M.; Gan, C.; Errmann, A.; Young, J. Fortifying wellbeing: How Chinese consumers and doctors navigate the role of functional foods. Appetite 2021, 164, 105296. [Google Scholar] [CrossRef] [PubMed]
- Al-Muzafar, H.M.; Amin, K.A. Efficacy of functional foods mixture in improving hypercholesterolemia, inflammatory and endothelial dysfunction biomarkers-induced by high cholesterol diet. Lipids Health Dis. 2017, 16, 194. [Google Scholar] [CrossRef] [PubMed]
- Mahony, L.O.; Shea, E.O.; O’Connor, E.M.; Tierney, A.; Harkin, M.; Harrington, J.; Kennelly, S.; Arendt, E.; O’Toole, P.W.; Timmons, S. A qualitative study of older adults’ and healthcare professionals’ perspectives on the potential of functional food products to support healthy ageing. J. Funct. Foods 2023, 107, 105689. [Google Scholar] [CrossRef]
- Nystrand, B.T.; Olsen, S.O. Relationships between functional food consumption and individual traits and values: A segmentation approach. J. Funct. Foods 2021, 86, 104736. [Google Scholar] [CrossRef]
- Almeida, D.; Pinto, D.; Santos, J.; Vinha, A.F.; Palmeira, J.; Ferreira, H.N.; Rodrigues, F.; Oliveira, M.B.P. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem. 2018, 259, 113–121. [Google Scholar] [CrossRef]
- Marangi, F.; Pinto, D.; de Francisco, L.; Alves, R.C.; Puga, H.; Sut, S.; Dall’Acqua, S.; Rodrigues, F.; Oliveira, M.B.P. Hardy kiwi leaves extracted by multi-frequency multimode modulated technology: A sustainable and promising by-product for industry. Food Res. Int. 2018, 112, 184–191. [Google Scholar] [CrossRef]
- Sun, X.; Jia, P.; Bu, T.; Zhang, H.; Dong, M.; Wang, J.; Wang, X.; Zhe, T.; Liu, Y.; Wang, L. Conversional fluorescent kiwi peel phenolic extracts: Sensing of Hg2+ and Cu2+, imaging of HeLa cells and their antioxidant activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 244, 118857. [Google Scholar] [CrossRef] [PubMed]
- Aires, A.; Carvalho, R. Kiwi fruit residues from industry processing: Study for a maximum phenolic recovery yield. J. Food Sci. Technol. 2020, 57, 4265–4276. [Google Scholar] [CrossRef] [PubMed]
- Peng, M.; Gao, Z.; Liao, Y.; Guo, J.; Shan, Y. Development of Functional Kiwifruit Jelly with chenpi (FKJ) by 3D Food Printing Technology and Its Anti-Obesity and Antioxidant Potentials. Foods 2022, 11, 1894. [Google Scholar] [CrossRef]
- Lan, T.; Wang, J.; Lei, Y.; Lei, J.; Sun, X.; Ma, T. A new source of starchy flour: Physicochemical and nutritional properties of starchy kiwifruit flour. Food Chem. 2024, 435, 137627. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Gao, Z.; Zhang, Z.; Bi, P.; Guo, J. Enhancing antioxidant activity and fragrant profile of low-ethanol kiwi wine via sequential culture of indigenous Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Food Biosci. 2023, 51, 102210. [Google Scholar] [CrossRef]
- Serra, A.; Conte, G.; Corrales-Retana, L.; Casarosa, L.; Ciucci, F.; Mele, M. Nutraceutical and Technological Properties of Buffalo and Sheep Cheese Produced by the Addition of Kiwi Juice as a Coagulant. Foods 2020, 9, 637. [Google Scholar] [CrossRef]
- Sun-Waterhouse, D.; Chen, J.; Chuah, C.; Wibisono, R.; Melton, L.D.; Laing, W.; Ferguson, L.R.; A Skinner, M. Kiwifruit-based polyphenols and related antioxidants for functional foods: Kiwifruit extract-enhanced gluten-free bread. Int. J. Food Sci. Nutr. 2009, 60, 251–264. [Google Scholar] [CrossRef] [PubMed]
- Kalra, E.K. Nutraceutical-definition and introduction. AAPS Pharm. Sci. 2003, 5, 27–28. [Google Scholar] [CrossRef]
- Boots, A.W.; Drent, M.; de Boer, V.C.; Bast, A.; Haenen, G.R. Quercetin reduces markers of oxidative stress and inflammation in sarcoidosis. Clin. Nutr. 2011, 30, 506–512. [Google Scholar] [CrossRef]
- Leyva-Soto, A.; Chavez-Santoscoy, R.A.; Porras, O.; Hidalgo-Ledesma, M.; Serrano-Medina, A.; Ramírez-Rodríguez, A.A.; Castillo-Martinez, N.A. Epicatechin and quercetin exhibit in vitro antioxidant effect, improve biochemical parameters related to metabolic syndrome, and decrease cellular genotoxicity in humans. Food Res. Int. 2021, 142, 110101. [Google Scholar] [CrossRef]
- Li, R.; Wang, M.; Tian, J.; Liu, M.; Li, G.; Zhou, X. Exploration of kiwi root on non-small cell lung cancer based on network pharmacology and molecular docking. Medicine 2024, 103, e36852. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Han, S.H.; Kim, J.; Lee, H.J.; Lee, J.G.; Lee, E.J. Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food Chem. 2016, 190, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Messinger, L.; Zabel, S.; Rosychuck, R.; Griffin, C.; Cronin, P.O.; Belofsky, G.; Lindemann, J.; Stull, D. A randomized, double-blind, placebo-controlled study to evaluate the effect of EFF1001, an Actinidia arguta (hardy kiwi) preparation, on CADESI score and pruritus in dogs with mild to moderate atopic dermatitis. Vet. Dermatol. 2010, 21, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Mechchate, H.; Es-safi, I.; Haddad, H.; Bekkari, H.; Grafov, A.; Bousta, D. Combination of Catechin, Epicatechin, and Rutin: Optimization of a novel complete antidiabetic formulation using a mixture design approach. J. Nutr. Biochem. 2021, 88, 108520. [Google Scholar] [CrossRef]
- Ramirez-Sanchez, I.; De los Santos, S.; Gonzalez-Basurto, S.; Canto, P.; Mendoza-Lorenzo, P.; Palma-Flores, C.; Ceballos-Reyes, G.; Villarreal, F.; Zentella-Dehesa, A.; Coral-Vazquez, R. (-)-Epicatechin improves mitochondrial-related protein levels and ame-liorates oxidative stress in dystrophic δ-sarcoglycan null mouse striated muscle. FEBS J. 2014, 281, 5567–5580. [Google Scholar] [CrossRef] [PubMed]
- Dhingra, D.; Jangra, A. Antiepileptic activity of ellagic acid, a naturally occurring polyphenolic compound, in mice. J. Funct. Foods 2014, 10, 364–369. [Google Scholar] [CrossRef]
- Conner, T.S.; Fletcher, B.D.; Haszard, J.J.; Pullar, J.M.; Spencer, E.; Mainvil, L.A.; Vissers, M.C.M. KiwiC for Vitality: Results of a Placebo-Controlled Trial Testing the Effects of Kiwifruit or Vitamin C Tablets on Vitality in Adults with Low Vitamin C Levels. Nutrients 2020, 12, 2898. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, B.D.; Haszard, J.J.; Vissers, M.C.M.; Conner, T.S. Smartphone survey data reveal the timecourse of changes in mood outcomes following vitamin C or kiwifruit intervention in adults with low vitamin C. Br. J. Nutr. 2024, 131, 1384–1396. [Google Scholar] [CrossRef] [PubMed]
- Akila, P.; Vennila, L. Chlorogenic acid a dietary polyphenol attenuates isoproterenol induced myocardial oxidative stress in rat myocardium: An in vivo study. Biomed. Pharmacother. 2016, 84, 208–214. [Google Scholar] [CrossRef]
- Amini, L.; Chekini, R.; Nateghi, M.R.; Haghani, H.; Jamialahmadi, T.; Sathyapalan, T.; Sahebkar, A. The Effect of Combined Vitamin C and Vitamin E Supplementation on Oxidative Stress Markers in Women with Endometriosis: A Randomized, Triple-Blind Placebo-Controlled Clinical Trial. Pain Res. Manag. 2021, 2021, 5529741. [Google Scholar] [CrossRef]
- Thongchumnum, W.; Vallibhakara, S.A.-O.; Sophonsritsuk, A.; Vallibhakara, O. Effect of Vitamin E Supplementation on Chronic Insomnia Disorder in Postmenopausal Women: A Prospective, Double-Blinded Randomized Controlled Trial. Nutrients 2023, 15, 1187. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.M.; Gomes, S.M.; Santos, L. A Novel Approach in Skin Care: By-Product Extracts as Natural UV Filters and an Alternative to Synthetic Ones. Molecules 2023, 28, 2037. [Google Scholar] [CrossRef] [PubMed]
- Dulińska-Molak, I.; Pasikowska, M.; Debowska, R.; Święszkowski, W.; Rogiewicz, K.; Eris, I. Determining the effectiveness of vitamin C in skin care by atomic force microscope. Microsc. Res. Tech. 2019, 82, 1430–1437. [Google Scholar] [CrossRef]
- Nizioł-Łukaszewska, Z. Extracts of Cherry and Sweet Cherry Fruit as Active Ingredients of Body Wash Formulations. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 100–107. [Google Scholar] [CrossRef]
- Sheng, X.; Fan, L.; He, C.; Zhang, K.; Mo, X. Vitamin E- Loaded Silk Fibroin Nanofibrous Mats Fabricated by Green Process for Skin Care Application. Int. J. Biol. Macromol. 2013, 56, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Zhao, Z.; Chen, S.; Lin, W.; Wang, Q.; Shen, N.; Qin, Y.; Xiao, Y.; Chen, H.; Chen, H.; et al. Dragon fruit-kiwi fermented beverage: In vitro digestion, untargeted metabolome analysis and anti-aging activity in Caenorhabditis elegans. Front. Nutr. 2023, 9, 1052818. [Google Scholar] [CrossRef] [PubMed]
- Deters, A.M.; Schröder, K.R.; Hensel, A. Kiwi fruit (Actinidia chinensis L.) polysaccharides exert stimulating effects on cell proliferation via enhanced growth factor receptors, energy production, and collagen synthesis of human keratinocytes, fibroblasts, and skin equivalents. J. Cell. Physiol. 2005, 202, 717–722. [Google Scholar] [CrossRef]
- Shin, S.; Cho, S.H.; Park, D.; Jung, E. Anti-skin aging properties of protocatechuic acid in vitro and in vivo. J. Cosmet. Dermatol. 2020, 19, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Saija, A.; Tomaino, A.; Cascio, R.L.; Trombetta, D.; Proteggente, A.; De Pasquale, A.; Uccella, N.; Bonina, F. Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J. Sci. Food Agric. 1999, 79, 476–480. [Google Scholar] [CrossRef]
- Maini, S.; Fahlman, B.M.; Krol, E.S. Flavonols Protect Against UV Radiation-Induced Thymine Dimer Formation in an Artificial Skin Mimic. J. Pharm. Pharm. Sci. 2015, 18, 600. [Google Scholar] [CrossRef]
- Zhu, X.; Li, N.; Wang, Y.; Ding, L.; Chen, H.; Yu, Y.; Shi, X. Protective effects of quercetin on UVB irradiation-induced cytotoxicity through ROS clearance in keratinocyte cells. Oncol. Rep. 2017, 37, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Lee, S.-N.; Kim, K.; Joo, D.H.; Shin, S.; Lee, J.; Lee, H.K.; Kim, J.; Kwon, S.B.; Kim, M.J.; et al. Biological effects of rutin on skin aging. Int. J. Mol. Med. 2016, 38, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Manosroi, A.; Jantrawut, P.; Akihisa, T.; Manosroi, W.; Manosroi, J. In vitro and in vivo skin anti-aging evaluation of gel containing niosomes loaded with a semi-purified fraction containing gallic acid from Terminalia chebula galls. Pharm. Biol. 2011, 49, 1190–1203. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.W.; Lai, L.S. Multiple-physiological benefits of bird’s nest fern (Asplenium australasicum) frond extract for dermatological applications. Nat. Prod. Res. 2019, 33, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Bayat, G.; Fallah-Darrehchi, M.; Zahedi, P.; Moghaddam, A.B.; Ghaffari-Bohlouli, P.; Jafari, H. Kiwi extract-incorporated poly(ε-caprolactone)/cellulose acetate blend nanofibers for healing acceleration of burn wounds. J. Biomater. Sci. Polym. Ed. 2023, 34, 72–88. [Google Scholar] [CrossRef] [PubMed]
- Hafezi, F.; Rad, H.E.; Naghibzadeh, B.; Nouhi, A.; Naghibzadeh, G. Actinidia deliciosa (kiwi fruit), a new drug for enzymatic debridement of acute burn wounds. Burns 2010, 36, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Kooshiar, H.; Abbaspour, H.; Al Shariati, S.M.M.; Rakhshandeh, H.; Rad, A.K.; Esmaily, H.; Nia, B.V. Topical effectiveness of kiwifruit versus fibrinolysin ointment on removal of necrotic tissue of full-thickness burns in male rats: Effectiveness of kiwi on debridement of burns. Dermatol. Ther. 2012, 25, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, I.; Lashkarbolouki, T.; Khorshidi, M.; Ghorbanian, M.T. Effect of Wound Dressing with Fresh Kiwifruit on healing of Cutaneous Wound in Rats. Zahedan J. Res. Med. Sci. 2015, 17. [Google Scholar] [CrossRef]
- Bagdas, D.; Etoz, B.C.; Gul, Z.; Ziyanok, S.; Inan, S.; Turacozen, O.; Gul, N.Y.; Topal, A.; Cinkilic, N.; Tas, S.; et al. In vivo systemic chlorogenic acid therapy under diabetic conditions: Wound healing effects and cytotoxicity/genotoxicity profile. Food Chem. Toxicol. 2015, 81, 54–61. [Google Scholar] [CrossRef]
- Starr, N.J.; Hamid, K.A.; Wibawa, J.; Marlow, I.; Bell, M.; Pérez-García, L.; Barrett, D.A.; Scurr, D.J. Enhanced vitamin C skin permeation from supramolecular hydrogels, illustrated using in situ ToF-SIMS 3D chemical profiling. Int. J. Pharm. 2019, 563, 21–29. [Google Scholar] [CrossRef]
- Mercurio, D.G.; Wagemaker, T.A.; Alves, V.M.; Benevenuto, C.G.; Gaspar, L.R.; Campos, P.M. In vivo photoprotective effects of cosmetic formulations containing UV filters, vitamins, Ginkgo biloba and red algae extracts. J. Photochem. Photobiol. B 2015, 153, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.R.; Camargo, F.B., Jr.; Gianeti, M.D.; Campos, P.M. Evaluation of dermatological effects of cosmetic formulations containing Saccharomyces cerevisiae extract and vitamins. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2008, 46, 3493–3500. [Google Scholar] [CrossRef]
- Moula, A.G.; Al Mamun, M.A.; Khan, M.H.; Hosen, M.D.; Siddiquee, M.A. Impact of vitamin E in improving comfort, moisture management and mechanical properties of flame-retardant treated cotton fabric. Heliyon 2024, 10, e23834. [Google Scholar] [CrossRef]
- Jiang, R.-T.; Ding, Z.-X.; Liu, Z.-H.; Zhao, X.; Tu, Y.-D.; Guo, B.-B.; He, Q.-Y.; Zhou, Z.-G.; Zheng, Z.-P.; Sun, Z. Protective effects of microalgal carotenoids against glycosylation-induced collagen degradation in skin. J. Funct. Foods 2024, 113, 106014. [Google Scholar] [CrossRef]
- Meinke, M.; Friedrich, A.; Tscherch, K.; Haag, S.; Darvin, M.; Vollert, H.; Groth, N.; Lademann, J.; Rohn, S. Influence of dietary carotenoids on radical scavenging capacity of the skin and skin lipids. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Pharm. Verfahrenstechnik e.V 2013, 84, 365–373. [Google Scholar] [CrossRef]
- Meinke, M.C.; Darvin, M.E.; Vollert, H.; Lademann, J. Bioavailability of natural carotenoids in human skin compared to blood. Eur. J. Pharm. Biopharm. 2010, 76, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Mathew-Steiner, S.S.; Roy, S.; Sen, C.K. Collagen in Wound Healing. Bioengineering 2021, 8, 63. [Google Scholar] [CrossRef] [PubMed]
- Menter, J.M.; Patta, A.M.; Sayre, R.M.; Dowdy, J.; Willis, I. Effect of UV irradiation on type I collagen fibril formation in neutral collagen solutions. Photodermatol. Photoimmunol. Photomed. 2001, 17, 114–120. [Google Scholar] [CrossRef]
- Jariashvili, K.; Madhan, B.; Brodsky, B.; Kuchava, A.; Namicheishvili, L.; Metreveli, N. Uv damage of collagen: Insights from model collagen peptides. Biopolymers 2012, 97, 189–198. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.; Trost, A.; Richter, K. Oxidative Stress in Aging Human Skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef]
- García-Villegas, A.; Fernández-Ochoa, Á.; Alañón, M.E.; Rojas-García, A.; Arráez-Román, D.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A. Bioactive Compounds and Potential Health Benefits through Cosmetic Applications of Cherry Stem Extract. Int. J. Mol. Sci. 2024, 25, 3723. [Google Scholar] [CrossRef] [PubMed]
- García-Villegas, A.; Fernández-Ochoa, Á.; Rojas-García, A.; Alañón, M.E.; Arráez-Román, D.; Cádiz-Gurrea, M.d.l.L.; Segura-Carretero, A. The Potential of Mangifera indica L. Peel Extract to Be Revalued in Cosmetic Applications. Antioxidants 2023, 12, 1892. [Google Scholar] [CrossRef] [PubMed]
- ASilva, M.; Costa, P.C.; Delerue-Matos, C.; Latocha, P.; Rodrigues, F. Extraordinary Composition of Actinidia arguta By-Products as Skin Ingredients a New Challenge for Cosmetic and Medical Skincare Industries. Trends Food Sci. Technol. 2021, 116, 842–853. [Google Scholar]
- Teixeira, A.P.; Coutinho, B.; Cancela, J.; Cullen, L.; Brito, M. Valorisation of Kiwifruit Residues and their Application in an Anti-ageing Facial Cream. UPorto J. Eng. 2022, 8, 68–85. [Google Scholar] [CrossRef]
- Silva, A.M.; Pinto, D.; Moreira, M.M.; Costa, P.C.; Delerue-Matos, C.; Rodrigues, F. Valorization of Kiwiberry Leaves Recovered by Ultrasound-Assisted Extraction for Skin Application: A Response Surface Methodology Approach. Antioxidants 2022, 11, 763. [Google Scholar] [CrossRef]
- Bringheli, I.; Brindisi, G.; Morelli, R.; Marchetti, L.; Cela, L.; Gravina, A.; Pastore, F.; Semeraro, A.; Cinicola, B.; Capponi, M.; et al. Kiwifruit’s allergy in children: What do we know? Nutrients 2023, 15, 3030. [Google Scholar] [CrossRef]
Bioactives | Molecular Formula | Molecular Weight | log Kow |
---|---|---|---|
Vitamins | |||
Ascorbic acid | C6H8O6 | 176.13 | −1.880 |
Alpha tocopherol | C29H50O2 | 430.72 | 12.179 |
Beta tocopherol | C28H48O2 | 416.69 | 11.631 |
Gamma tocopherol | C28H48O2 | 416.69 | 11.631 |
Delta tocopherol | C27H46O2 | 402.67 | 11.084 |
Alpha tocotrienol | C29H44O2 | 424.67 | 11.923 |
Beta tocotrienol | C28H42O2 | 410.65 | 11.375 |
Gamma tocotrienol | C28H42O2 | 410.65 | 11.375 |
Delta tocotrienol | C27H40O2 | 396.62 | 10.828 |
Folic acid | C19H19N7O6 | 441.41 | −1.950 |
Carotenoids | |||
Beta-carotene | C40H56 | 536.89 | 17.623 |
Lutein | C40H56O2 | 568.89 | 14.823 |
Violaxanthin | C40H56O4 | 600.89 | 11.976 |
9′-cis neoxanthin | C40H56O4 | 600.89 | 11.940 |
Phenolic compounds | |||
Polyphenols | |||
Neochlorogenic acid | C16H18O9 | 354.32 | −1.014 |
Flavan-3-ols | |||
Kaempferol | C15H10O6 | 286.24 | 1.959 |
Epicatechin | C15H14O6 | 290.27 | 1.175 |
Catechin | C15H14O6 | 290.27 | 1.175 |
Flavonoids | |||
Luteolin | C15H10O6 | 286.24 | 2.364 |
Procyanidins | C30H26O12 | 578.53 | 1.882 |
3, 4-dihydroxybenzoic acid | C7H6O4 | 154.12 | 0.914 |
Catechol | C6H6O2 | 110.11 | 1.033 |
Pyrogallol | C6H6O3 | 126.11 | 0.974 |
Quercetin | C15H10O7 | 302.24 | 1.479 |
Phenolic acids | |||
Syringic acid | C9H10O5 | 198.18 | 1.044 |
Ferulic acid | C10H10O4 | 194.19 | 1.415 |
Ellagic acid | C14H6O8 | 302.2 | −2.046 |
Gallic acid | C7H6O5 | 170.12 | 0.855 |
Caffeic acid | C9H8O4 | 180.16 | 1.110 |
P-coumaric acid | C9H8O3 | 164.16 | 1.590 |
Chlorogenic acid | C16H18O9 | 354.32 | −1.014 |
Protocatechuic acid | C7H6O4 | 154.12 | 0.914 |
P-hydroxybenzoic acid | C7H6O3 | 138.12 | 1.394 |
Cryptochlorogenic acid | C16H18O9 | 354.32 | −1.014 |
Flavonol glycosides | |||
Quercetin 3-rutinoside | C27H30O16 | 610.53 | −1.109 |
Kaempferol 3-rutinoside | C27H30O15 | 594.53 | −0.629 |
Fatty acids | |||
Alpha-linolenic acid | C18H30O2 | 278.44 | 7.299 |
Linoleic acid | C18H32O2 | 280.45 | 7.514 |
Proximate (g/100 g) | Nutritional Value | Reference |
---|---|---|
Water | 81.07–83.49 | [32] |
Energy (kcal/KJ) | 61/255 | [32] |
Total Fat | 0.5–0.52 | [32] |
Sugar | 8.99–9 | [32] |
Fiber | 3 | [32] |
Total carbohydrate | 14.66–14.7 (15) | [32] |
Total protein | 1.1–1.14 | [32] |
Nutrients (g/100 g) | ||
Vitamin C | 92.7 | [32] |
Vitamin E | 1.46 | [32] |
Folate | 25 | [32] |
Pigments (μg/100 g) | ||
Beta-carotene | 52, 170 | [29,32] |
Lutein | 122, 160 | [29,32] |
Violaxanthin | nd, 110 | [29,32] |
9′-cis neoxanthin | nd, 120 | [29,32] |
Total carotenoids | nd, 590 | [29,32] |
Chlorophyll a | nd, 550 | [29,32] |
Chlorophyll b | nd, 440 | [29,32] |
Total chlorophylls | nd, 990 | [29,32] |
Minerals (mg/100 g) | ||
Calcium | 34 | [30,32] |
Iron | 0.31 | [30,32] |
Magnesium | 17 | [30,32] |
Phosphorus | 34 | [30,32] |
Potassium | 312 | [30,32] |
Sodium | 3 | [30,32] |
Zinc | 0.14 | [30,32] |
Copper | 013 | [30,32] |
Manganese | 0.098 | [30,32] |
Selenium | 0.2 | [30,32] |
Phenolics | Juice = mg/L Whole fruit = mg/100 g | |
Total phenolics | 180–220 mg/100 g, 96 mg/100 g, 700 mg/L (for juice) and 78–103 mg/g (fresh weight) | [27,33,34] |
Protocatechuic acid | 0.24 (mg/L), 2634.27 (mg/kg) | [27,35] |
Catechin | nd, 411.24 (mg/kg) | [27,35] |
Chlorogenic acid | 0.71(mg/L), 243.10 (mg/kg) | [27,35] |
Caffeic acid | 0.09 (mg/L), 8.14 (mg/kg) | [27,35] |
Epicatechin | 2.62 (mg/L), nd | [27,35] |
P-coumaric | 0.06 (mg/L), nd | [27,35] |
Quercetin 3-rutinoside | 0.41 (mg/L) | [27] |
Quercetin 3-glucoside | 0.20 (mg/L) | [27] |
Kaempferol 3-rutinoside | 0.20 (mg/L) | [27] |
Quercetin 3-rhamnoside | 0.45 (mg/L) | [27] |
Kaempferol 3-rhamnoside | 0.05 (mg/L) | [27] |
Functional Food | Bio-Functional Ingredients | Amount | Aims | Results | References |
---|---|---|---|---|---|
(Kiwi pomace and/or its Bioactives) | |||||
Functional kiwi fruit jelly (FKJ) | Kiwi fruit juice | 35% |
|
| [71] |
Wine | Fermented kiwi fruit juice | A glass of wine for sensory assessment |
|
| [73] |
Starchy kiwi fruit flour (SKF) | Kiwi fruit pulp | 66.63–80.42% |
|
| [72] |
Protein bars | Powder from kiwi fruit pomace and peel | 6% |
|
| [36] |
Cheese | Kiwi fruit pulp | 80 mg of powder rich in actinidin |
|
| [74] |
Flour | Skin and bagasse from two varieties (Bruno and Monty) | Extracts of 5 g each |
|
| [41] |
Bioactive Compounds | Potential Functional Cosmetic Product | Activity | References |
---|---|---|---|
Phenolic compounds |
|
| [96,97,98,99] |
| [96,100,101,102] | ||
| [44,103,104,105,106] | ||
| [44,103,104,105,106] | ||
Vitamin C |
|
| [107] |
| [108,109] | ||
| [108,109] | ||
| [108,109] | ||
Vitamin E |
|
| [110] |
| [110] | ||
| [110] | ||
| [110] | ||
| [111] | ||
Vitamin C and vitamin E |
|
| [109] |
Carotenoids |
|
| [112] |
| [112] | ||
| [112] | ||
| [113,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moysidou, A.M.; Cheimpeloglou, K.; Koutra, S.I.; Finos, M.A.; Ofrydopoulou, A.; Tsoupras, A. A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties. Appl. Sci. 2024, 14, 5990. https://doi.org/10.3390/app14145990
Moysidou AM, Cheimpeloglou K, Koutra SI, Finos MA, Ofrydopoulou A, Tsoupras A. A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties. Applied Sciences. 2024; 14(14):5990. https://doi.org/10.3390/app14145990
Chicago/Turabian StyleMoysidou, Anastasia Maria, Konstantina Cheimpeloglou, Spyridoula Ioanna Koutra, Marios Argyrios Finos, Anna Ofrydopoulou, and Alexandros Tsoupras. 2024. "A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties" Applied Sciences 14, no. 14: 5990. https://doi.org/10.3390/app14145990
APA StyleMoysidou, A. M., Cheimpeloglou, K., Koutra, S. I., Finos, M. A., Ofrydopoulou, A., & Tsoupras, A. (2024). A Comprehensive Review on the Antioxidant and Anti-Inflammatory Bioactives of Kiwi and Its By-Products for Functional Foods and Cosmetics with Health-Promoting Properties. Applied Sciences, 14(14), 5990. https://doi.org/10.3390/app14145990