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Abstract: Bioavailability describes the properties that determine the passage of a compound through
biological barriers. In many cases, bioavailability depends on the lipophilicity of the compound. In
this study, the lipophilicity as well as other bioavailability properties of the mono- and bistriazole
derivatives of betulin are presented. The lipophilicity was determined using RP-TLC and theoretical
methods. The experimental lipophilicity of mono- and bistriazole derivatives is in the range from 4.39
to 7.85 and from 3.75 to 8.83, respectively. The lipophilicity of mono- and bistriazoles is similar, and
the logPTLC depends on the type of substituent at the triazole ring. The introduction of a substituent
with oxygen and nitrogen atoms decreases lipophilicity. Comparing the experimental and theoretical
lipophilicity shows that the milogP and XLOGP3 programs best reproduce the experimental values.
The in silico-determined pharmacokinetic parameters show that monotriazole derivatives could be
used as oral drugs while bistriazoles show low availability after oral administration. Triazoles could
be used as transdermal drugs. The analysis of in silico bioavailability parameters shows that the type
of substituent at the triazole ring influences the pharmacokinetic properties, while the number of
triazole rings slightly affects the bioavailability properties of the compound.

Keywords: betulin; triazole; lipophilicity

1. Introduction

Bioavailability describes the properties of a drug which determine its absorption,
distribution, metabolism, and elimination from an organism. One of the most important
properties which determine bioavailability is lipophilicity, which describes the ability
of a compound to cross the biological barrier. Often, with increased lipophilicity, the
biological activity of a compound increases due to better permeability through biological
membranes and a higher concentration of the compound inside the cell. However, too
high lipophilicity may reduce the absorption of the compound due to its absorption in
biological membranes [1–4]. A measure of lipophilicity is the partition coefficient between
non-polar and polar phases defined as P or logP. The precursor of the determination of the
P coefficient was Hansch, who designated the concentration of a compound in a composite
mixture with two phases. As a non-polar and polar phase he used n-octanol and water,
respectively. The method named “shake-flask” is laborious, time-consuming, and low-
precision. For this reason, liquid chromatographic methods are most popular, namely,
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thin-layer chromatography in a normal phase system (NP-TLC) and its variant, thin-
layer chromatography in a reversed phase system (RP-TLC). Thin-layer chromatography
methods have many advantages compared with the “shake-flask” method. The most
important is possibility of determined the lipophilicity of many compounds in the same
time, low time-consuming, high-precisions and high reproducibility [5–10].

Lipophilicity is connected to other parameters, like hydrophobicity (φ0), permeabil-
ity by Caco-2 membrane, skin, blood–brain barrier (BB), and penetration to the central
nervous system (CNS). The design of a new compound is often supported by computa-
tional methods which determine the lipophilicity and permeability parameters using in
silico methods [11,12]. However, most programs determining the logP parameter calculate
lipophilicity using atomic methods which do not include every structural parameter, such
as the spatial arrangement of atoms or the position of a heterocyclic atom in a ring. In the
literature, many examples of compounds described for which the theoretical lipophilicity
is very different from the experimental one. The obtained theoretical value could eliminate
the compounds from further research. For this reason, determining the correlation between
experimental and theoretical parameters is still an important problem [13–17].

In the past few decades, the isolation of compounds from plant material has at-
tracted considerable attention due to pharmacologically active compounds using in natural
medicine. In many cases, natural compounds have moderate biological activity and
bioavailability [18–21]. One of the first compounds isolated in pure form from plant ma-
terial was betulin (Figure 1). Betulin belongs to a pentacyclic triterpene alcohol with a
lupane skeleton. The chemical structure of betulin contains four six-member rings and one
five-member ring. Moreover, they have an isopropylidene group at the C19 position and
two hydroxyl groups at the C3 and C28 positions. The compound is characterized by a
broad spectrum of biological activity, like anticancer, antibacterial, antiviral, antifungal,
hepatoprotective, and anti-inflammatory properties. The used of betulin in treatment is
limited due to its low water solubility [22–28].
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Chemical modifications of its structure allow new semisynthetic compounds to be
obtained which have better biological properties. The replacement of one or two hydroxyl
groups by an ester, amide, or carbamate group influences the activity and solubility in
water of the obtained derivatives [29,30].

An interesting trend observed in chemical synthesis is the introduction of heterocyclic
moieties. The insertion of moiety with nitrogen, oxygen, or/and sulfur atoms affects bi-
ological activity because heteroatoms could create a hydrogen bond with the biological
target and increase water solubility [31,32]. An especially interesting moiety is the triazole
scaffold which consists of two carbon and three nitrogen atoms in a five-membered unsatu-
rated ring. The triazole ring is created between organic azide and alkyne derivatives in the
reaction of 1,3-dipolar cycloaddition [33–35]. The triazole ring is found in many clinically
used drugs, like Fluconazole, Bittertanol, Cyproconazole, Trazodone, Triazolam, Ribavirin,
Isavuconazole, and Cefatrizine [35–40]. In the literature, the triazole moiety is often used
as a linker between two compounds showing high biological activity, which allows hybrids
with new biological properties to be obtained. In many cases, the modification of natural
compounds by introducing a triazole substituent affects biological activities, like anticancer,
antibacterial, antifungal, antiviral, antimalarial, and antioxidant [41–45].
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In our scientist group, we deal with the modification of the betulin skeleton by intro-
ducing various substituents at the C3, C28, and C30 positions [46,47]. One of the important
research directions was the introduction of the triazole moiety to the betulin scaffold. The
obtained compounds exhibited anticancer, antibacterial, and antiviral activity [13,48–50].
Continuing research on the biological potential of triazole derivatives of betulin, we de-
cided to designate the bioavailability parameters of mono- and bistriazole derivatives
of propynoylbetulin. Lipophilicity was determined using experimental and theoretical
methods. Moreover, the correlation between these two values was studied. The research
was supplemented by in silico-determined bioavailability parameters.

2. Materials and Methods
2.1. General Method

Reversed phase thin-layer chromatography (RP-TLC) was carried out on silica gel
RP-18 F254S plates (Merck, Darmstadt, Germany) using a different mixture of acetone and
(tris-hydroxymethyl)aminomethane (Tris) as an eluent. The concentration of acetone in the
mobile phase changed from 60% to 90%. The chromatographic spots were visualized using
UV light (λ = 254 nm) and by spraying with a solution of 10% sulfuric acid for the reference
compounds and compounds 1–18, respectively.

2.2. Data Set

Propynoilbetulin 1–2 and their triazole derivatives 3–18 were synthesised using the
methods found in the literature [48,51]. In the first stage, betulin was converted to deriva-
tives 1–2 in the presence of propiolic acid, N,N′-dicyclohexylcarbodiimide (DCC), and
4-dimethylaminopyridine (DMAP) at room temperature. After purification using column
chromatography, 28-propynoilbetulin 1 and 3,28-dipropynoilbetulin 2 were obtained with
52% and 15% yields, respectively. Next, compounds 1–2 were treated with organic azide
in the presence of copper iodide and toluene at reflux. The crude products were purified
using column chromatography. Triazole derivatives 3–18 obtained with 48-78% yield. The
molecular structure of derivatives 1–18 is presented in Figure 2.
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2.3. Assessment of Experimental and Calculated Lipophilicity

The experimental lipophilicity was determined using the RP-TLC method. As a
stationary phase, un-polar silicone oil placed on the silica gel layer was used, and as a
mobile phase, the mixture of (tris-hydroxymethyl)aminomethane (0.2 M, pH = 7.4) with
acetone was used. The concentration of acetone in the mobile phase was in the range from
60% to 90% in 5% increments.

A total of 2 µL of the ethanolic solutions of compounds 1–18 (1 mg/mL) and reference
compounds was marked on the chromatographic plates. After visualization, the retardation
factor (Rf) value for each compound was designated. The RM parameter was calculated
using Equation (1) below.

RM = log
(

1
Rf

− 1
)

, (1)

The relative lipophilicity parameter (RM0) was obtained by the extrapolation of linear
regression between RM and acetone concentration (C) to the zero value of the organic
solvent (Equation (2)).

RM = RM0 + bC, (2)

The RM0 and the slope of the regression plot (b) were used to calculated the hydropho-
bic index (φ0) according to Equation (3).

φ0 = −RM0

b
, (3)
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The experimental lipophilicity study was supplemented by theoretical lipophilicity,
which was determined using vcclab (2005) [52] and molinspiration (v2022.09) [53] software.

2.4. Assessment of Bioavailability Parameters

The Lipinski and Veber parameters, such as molecular weight (M), topological polar
surface (TPSA), the number of acceptors (HAs) and donors (HDs) of the hydrogen bond,
and the number of rotatable bonds (RTs) were determined using SwissADMET (2022) plat-
form [54]. Moreover, the absorption and neurotoxicity parameters, like Caco-2 permability
(logPapp), human intestinal absorption (HIA), skin permeability (logKp), blood–brain bar-
rier permeability (logBB), and central nervous system (logPS) permeability were designated
using pkCSM (2015) software [55].

3. Results

In the first step of the research, the experimental lipophilicity was determined by using
the RP-TLC method. As a mobile phase, the mixture of acetone and Tris buffer was used.
The concentration of acetone in the mobile phase was in the range from 60% to 90%. The
obtained Rf values for each compound 1–18 were converted to RM and RM0 parameters
using Equations (1) and (2), and are presented in Table 1.

Table 1. The experimental values of lipophilicity and hydrophobicity parameters.

Compound RM0 b r logPTLC φ0 Compound RM0 b r logPTLC φ0

1 5.78 −0.06 0.995 6.68 90.17 2 8.09 −0.09 0.992 9.20 90.09
3 6.15 −0.07 0.997 7.09 86.86 11 7.05 −0.08 0.992 8.07 86.29
4 6.31 −0.07 0.994 7.26 86.68 12 7.15 −0.08 0.993 8.17 86.04
5 6.29 −0.07 0.993 7.24 85.12 13 6.57 −0.08 0.995 7.54 83.38
6 6.85 −0.08 0.988 7.85 87.15 14 7.75 −0.09 0.994 8.83 87.18
7 3.67 −0.05 0.988 4.39 73.11 15 3.08 −0.05 0.950 3.75 59.69
8 4.56 −0.06 0.992 5.36 78.76 16 5.68 −0.08 0.998 6.58 70.65
9 4.44 −0.05 0.994 5.23 81.92 17 4.35 −0.06 0.990 5.13 75.65

10 5.57 −0.07 0.994 6.46 85.04 18 6.59 −0.08 0.987 7.57 82.89

The experimental values of RM0 and slope b were used to determine the hydrophobicity
index according to Equation (3), and are presented in Table 1.

The RM0 parameter was converted to the lipophilicity parameter (logPTLC) using the
calibration curve. As reference compounds, 4-bromoacetophenone (A), benzophenone (B),
anthracene (C), dibenzyl (D), 9-phenylanthracene (E), and dichlorodiphenyltrichloroethane
(DDT) (F) were used whose lipophilicity (logPlit) in the literature is in the rage from 2.43 to
6.38 [13,14].

The experimental lipophilicity of the reference compounds was determined similarly
to the tested compounds 1–18 (Table 2). The calibration curve (Equation (4)) was obtained
by linear regression between the experimental RM0 parameter and lipophilicity (logPlit) in
the literature.

LogPTLC = 1.0878 RM0 + 0.3972 (r = 0.988; SD = 0.263), (4)

Table 2. The LogPlit and LogPTLC values for reference compounds A–F.

Compound LogPlit RM0 b r LogPTLC

A 2.43 1.87 −0.02 0.985 2.43
B 3.18 2.42 −0.02 0.981 3.03
C 4.45 4.08 −0.03 0.992 4.84
D 4.79 4.11 −0.05 0.970 4.87
E 6.01 4.87 −0.04 0.972 5.69
F 6.38 5.50 −0.06 0.985 6.38
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According to Equation (4), the experimental lipophilicity (logPTLC) of the reference
compounds was calculated (Table 2). As seen in Table S1, the experimental results correlate
well with the ones in the literature.

In the next step, the experimental lipophilicity was compared with the calculated
lipophilicity which was determined using the ALOGPs, miLogP, XLOGP2, AClogP, and
XLOGP3 programs. The results are shown in Table 3.

Table 3. The calculated lipophilicity of compounds 3–18.

Compound ALOGPs AClogP miLogP XLOGP2 XLOGP3

3 6.60 6.97 8.70 9.87 10.21
4 6.60 7.02 8.77 10.30 10.31
5 6.42 6.78 8.56 9.59 9.93
6 6.67 9.11 8.90 10.29 10.85
7 4.11 3.51 5.08 6.11 6.39
8 5.01 4.21 6.58 6.71 7.72
9 5.38 5.26 7.05 7.81 8.22

10 5.77 5.29 7.65 8.29 9.00
11 7.39 8.09 9.35 11.93 12.14
12 7.45 8.21 9.43 12.25 12.34
13 7.40 7.72 9.21 11.37 11.58
14 7.56 8.38 9.56 12.77 13.42
15 2.87 1.17 3.00 4.40 4.49
16 4.69 2.59 6.00 5.61 7.17
17 5.19 4.69 6.93 7.81 8.16
18 6.10 4.74 8.12 8.76 9.73

Lipophilicity is connected with other bioavailability parameters such as molecular
mass (M), topological polar surface (TPSA), the number of acceptors (HAs) and donors
(HDs) of the hydrogen bond, and the number of rotatable bonds (RTs). The research was
supplemented with in silico-determined parameters responsible for the drug’s permeation
of the biological barrier, like Caco-2 cell (logPapp), human intestinal absorption (HIA), skin
permeability (logKp), blood–brain barrier permeability (logBB), and central nervous system
(logPS) penetration [56–58]. The results obtained using pkCSM software are presented in
Table 4.

Table 4. The ADME parameters of compounds 3–18.

Compound M TPSA HA HD RT logPapp HIA logKp logBB logPS

3 627.90 77.24 5 1 7 0.737 100 −2.730 −0.522 −1.288
4 648.89 77.24 6 1 7 0.808 100 −2.732 −0.741 −2.240
5 652.91 101.03 6 1 7 0.485 100 −2.733 −0.689 −1.355
6 659.95 102.54 5 1 8 0.660 99 −2.731 −0.699 −1.251
7 699.92 167.39 5 10 7 0.342 60 −2.735 −1.853 −3.671
8 761.00 152.87 9 3 8 0.250 99 −2.736 −1.314 −3.001
9 595.86 97.47 6 2 8 0.627 100 −2.780 −0.714 −2.606
10 623.87 103.54 7 1 9 0.658 100 −2.762 −0.928 −2.677
11 813.08 114.02 8 0 12 0.528 100 −2.735 −1.406 −2.289
12 849.06 114.02 10 0 12 0.484 100 −2.735 −1.845 −2.536
13 863.10 161.60 10 0 12 0.001 100 −2.735 −1.742 −2.402
14 877.21 164.62 8 0 14 0.529 100 −2.735 −1.764 −2.193
15 957.13 294.34 20 8 10 0.097 11 −2.735 −3.534 −5.467
16 1079.31 252.65 18 12 4 0.605 88 −2.735 −2.454 −4.070
17 748.99 154.48 10 2 14 0.071 100 −2.736 −1.815 −3.280
18 805.01 166.62 12 0 16 0.089 91 −2.735 −2.220 −3.420
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4. Discussion

The use of new synthesised compounds in therapy depends on their biological activity
and bioavailability. One of the most important properties of compounds is their lipophilic-
ity which determines drug transport across the biological barrier. The determination of
lipophilicity offers the opportunity to assess the availability and toxicity of a potential
drug [1].

The propynoyl derivatives of betulin 1 and 2 are characterized by high lipophilicity
which is equal to 6.68 and 9.20, respectively. Compounds 3–18 create two groups, the first of
which includes the monotriazole derivatives of 1 and the second consists of the bistriazole
derivatives of 2. In the group of monotriazole compounds 3–10, the lowest logPTLC value
is shown by derivative 7 with the deoxy-β-D-glucopyranosyl substituent at the triazole
ring. Derivatives of the benzyl group (3–5) exhibit comparable lipophilicity which is in
the range from 7.09 to 7.24. The introduction of the phenyltiomethyl group at the triazole
ring, compound 6, increases lipophilicity. Comparing the logPTLC value of compounds
1 and 8–10 shows that the introduction of a substituent with oxygen and nitrogen atoms
decreases lipophilicity.

The transformation of 3,28-dipropynoylbetulin 2 to bistriazole derivatives 11–18 de-
creases lipophilicity. Similar to the first group, in the group of bistriazole derivatives, the
lowest value of lipophilicity is shown by compound 15 with the deoxy-β-D-glucopyranosyl
substituent. In these groups of compounds (11–18), similar correlations were observed as
for 3–10. Comparing the lipophilicity of mono- and bistriazole compounds containing the
same substituents at the triazole ring, bistriazole derivatives had higher log PTLC values.
The exceptions were the compounds with a β-D-glucopyranosyl substituent (7 and 15) and
a hydroxypropyl substituent (9 and 17), of which derivatives with one triazole ring (7 and
9) had higher lipophilicity.

The hydrophobicity index describes the water solubility of a compound; if the φ0 value
is lower, then water solubility is better [59]. Comparing the φ0 value of triazole derivatives
3–18 and compounds 1–2 shows that the introduction of a triazole ring increases water
solubility. The hydrophobicity index is in the range from 73.11 to 86.86 and from 59.69 to
86.29 for mono- 3–10 and bistriazoles 11–18, respectively. The results show that mono- and
bistriazole derivatives have comparable solubility in water.

Before determining the experimental lipophilicity, it is necessary to synthesize and
purify the tested compound. The experimental method is not useful during the computer
design of new active compounds. For this reason, the experimental lipophilicity is replaced
by theoretical methods which use a different algorithm [60–62].

The calculated lipophilicity for triazole compounds 3–18 was determined using theo-
retical methods used in software that is available online [52,53]. The obtained values were
in the range from 1.17 to 13.42 (Table 3). For all programs, the theoretical lipophilicity
depends on the type of substituent at the triazole ring. A relationship was observed, namely,
that monotriazoles 3–10 have lower lipophilicity than bistriazoles 11–18. The exceptions
are compounds 7 and 15 containing the deoxy-β-D-glucopyranosyl substituent. Bistriazole
derivative 15 has lower lipophilicity due to the larger number of hydroxyl groups which
reduces the logP parameter. Comparing the experimental and theoretical lipophilicity
shows that logP values obtained using the AClogP and ALOGPs programs are lower than
the experimental one (Figure 3). For other programs, the calculated lipophilicity is higher
than the experimental logPTLC.
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Due to the fact that different programs use different calculating algorithms, an im-
portant aspect of the research is to determine the correlation between the experimental
and theoretical lipophilicity (Table 5). The correlation equation shows that the ALOGPs
and XLOGP3 programs best reproduce the experimental lipophilicity, and the correlation
cofactor is equal to 0.928 and 0.937, respectively (Table 5).

Table 5. Correlation equation for the experimental (logPTLC) and theoretical (logPcalc) values of
lipophilicity for derivatives 3–18.

Program Correlation Equation r SD

ALOGPs logPTLC = 0.928 LogPcalc + 0.580 0.928 0.670
ACLOGP logPTLC = 0.841 LogPcalc + 3.907 0.840 0.827

milogP logPTLC = 0.916 LogPcalc + 0.979 0.916 0.682
XLOGP2 logPTLC = 0.889 LogPcalc + 1.926 0.889 0.675
XLOGP3 logPTLC = 0.937 LogPcalc + 1.157 0.937 0.565

The lipophilicity values obtained by the correlation equation are presented in Table S1.
The obtained values show that the experimental lipophilicity could be predicted using the
milogP and XLOGP3 programs. The relationship between the lipophilicity and structure of
the tested compounds 3–18 was analysed using the similarity analysis (Figure 4).

The cluster analysis shows that the compounds are localized in two main clusters. The
derivatives localized in the first cluster have one or more hydroxyl groups as the substituent
connected with the triazole ring. The second cluster is divided into three subclusters. In the
first and third subcluster, mono- (3–6) and bistriazoles (11–14) are localized which contain a
substituent with a phenyl ring. The second subcluster contains derivatives 10 and 18 which
contain an ethylacetyle substituent at the triazole ring. The measure of similarity of two
compounds is the Euclidean distance (ED). If the ED distance is similar, it means that the
compounds exhibit similar features [63–66]. As seen in Table S2, the derivatives in different
subclusters have the same ED distance, which means that the compounds show high
similarity. The analysis of Euclidean distance shows that lipophilicity strongly depends on
the type of substituent connected with the triazole ring. Moreover, the replacement of a
hydroxyl group at the C3 position of betulin by a triazole substituent slightly affects the
logP parameter.
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Lipophilicity is connected with other parameters which determine bioavailability. The
first rules defining oral availability were described by Lipinski and Veber [67–69]. Accord-
ing to Lipinski’s rule, lipophilicity should be less than 5. Only the experimental lipophilicity
of derivatives 7 and 15 meets this condition. However, the logPTLC of compounds 8, 9,
and 17 is slightly greater than 5 (Table 1). Almost all derivatives meet the criteria that the
number of donors (HDs) and acceptors (HAs) of the hydrogen bond are less than 5 and 10,
respectively. Only compounds 15–16 do not meet both rules. The molecular weight (M) of
derivatives 3–18 is higher than 500, which means that none of tested compounds meets
the mass criterion. Veber’s rules connect good oral bioavailability with topological polar
surface (TPSA) and the number of rotatable bonds (RTs). Most of the tested monotriazoles
3–10 meet the Veber criteria, except for compounds 7–8 for which the TPSA value is more
than 140 Å. None of the bistriazole derivatives 11–18 meets the Veber criteria. In summary,
monotriazole derivatives 3–10 show moderate oral availability, and bistriazole derivatives
11–18 are characterized by low oral availability.

Multilinear regression (MLR) was used to determine the correlation equation between
the experimental lipophilicity and the calculated parameters. The best correlation was
obtained for the relationship between experimental lipophilicity, molecular mass (M), and
topological polar surface (TPSA) (Equation (5)), for which the correlation cofactor is equal
to 0.860. The lipophilicity (logPcalc) values calculated using Equation (5) are presented in
Table S1.

logPcalc = 1.31M − 1.50 TPSA + 1.120
(r = 0.860; SD = 1.465; VIP = 2.13; F = 18.45),

(5)

Comparing the lipophilicity obtained by different methods shows that Equation (5)
reproduces the experimental lipophilicity better than the theoretical methods.

The physicochemical parameters were used to determine the in silico pharmacokinetic
properties determining the absorption of the compound [70]. The intestinal mucosa absorp-
tion was described using Caco-2 permeability (logPapp) and human intestinal absorption
(HIA) [56,57]. The logPapp values calculated for mono- and bistriazoles are in the range
from 0.342 to 0.808 and from 0.001 to 0.605, respectively (Table 4). The tested compounds
show moderate Caco-2 permeability, because the logPaap values are lower than 0.9. Most
monotriazoles (3–10) were characterized by better Caco-2 permeability than bistriazoles
(11–18). The higher HIA index shows that most derivatives could be absorbed from the
gastrointestinal system into the bloodstream, except from triazole 15 which could be poorly
absorbed. The tested derivatives 3–18 could be used as transdermal drugs because the
calculated logKp for all compounds is lower than −2.5 [55]. The neurotoxicity of com-
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pounds depends on the passage through the blood–brain barrier and the penetration of
the central nervous system (CNS), which was determined by logBB and logPS parameters,
respectively [58]. The in silico values of logBB and logPS were determined using pkCSM
software [55]. The logBB value for the tested compounds is in the range from −2.220 to
−0.522, which means that triazole was poorly distributed to the brain (Table 4). Comparing
the logBB parameter of mono- (3–10) and bistriazoles (11–18) shows that the introduction of
triazole substituent at C3 position of betulin scaffold reduces passage through blood–brain
barrier. Most monotriazoles could penetrate the central nervous system because the logPS
value is higher than −3, except for triazoles with a sugar moiety (7 and 8), which were
unable to penetrate the central nervous system. In the series of bistriazoles (11–18), only
compounds with a phenyl substituent in the triazole moiety (11–14) could penetrate the
CNS. Based on the obtained results, it can be concluded that the introduction of a phenyl
substituent to the triazole ring increases the neurotoxicity of the obtained compounds.

The ADME in silico-determined parameters were compared with the experimental
lipophilicity (logPTLC) using similarity analysis (Figure 5).
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compounds 3–18.

As seen on Figure 5, compounds are localized in two main clusters. The first cluster
includes bistriazoles with a sugar moiety (15–16). The second cluster is divided into three
subclusters which contain bistriazoles 11–14, compounds 7–8 and 17–18, and monotriazoles
3–6 and 9–10, respectively. The analysis of the Euclidean distance between subclusters
shows that the type of substituent at the triazole ring influences the ADME (adsorption,
distribution, metabolite, and extraction) properties, while the number of triazole rings
slightly affects the bioavailability properties of the compound.

5. Conclusions

This research shows that triazole derivatives of betulin are characterized by high
values of lipophilicity (logPTLC) which is in the range from 3.75 to 8.83. Mono- and bis-
triazoles have similar logPTLC values. The lowest values were obtained for compounds
with a hydroxyl group as the triazole substituent (7, 9, 15, and 17). This research shows
that lipophilicity depends on the type of substituent at the triazole moiety. The introduc-
tion of a triazole ring influences the water solubility of the compound. Comparing the
hydrophobicity index of propynoyl betulin and its triazole derivatives shows that triazole
compounds have better solubility. Moreover, bistriazoles have slightly better water solubil-
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ity than monotriazoles. The experimental lipophilicity was compared with the lipophilicity
determined using computer programs. The milogP and XLOGP3 programs best reproduce
the experimental lipophilicity.

The bioavailability of compounds was determined using in silico-calculated Lipinski
and Veber parameters. The analysis of parameters shows that monotriazoles 3–10 could
be used as orally administered drugs while bistriazoles 11–18 have low absorption after
oral administration. The molecular weight and topological polar surface could be used to
determine lipophilicity, and the obtained logPcalc better reproduces the experimental value
than the theoretical logP.

The last part of the study was the determination of in silico pharmacokinetic parame-
ters responsible for the permeability of the gastrointestinal system, skin, and blood–brain
barrier. The parameters determining the absorption from the gastrointestinal system (log-
Papp and HIA index) show that monotriazole derivatives (3–10) were characterized by
better Caco-2 membrane penetration than bistriazoles (11–18). Triazoles could be used as
transdermal drugs because the logKp is lower than −2.5. The tested compounds were
poorly distributed in the central nervous system. The similarity analysis showed that the
ADME parameters depend on the type of substituent in the triazole moiety. Mono- and
bistriazoles have similar properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app14051695/s1, Table S1: The theoretical value of lipophilicity
of compounds 3–18. Table S2: The similarity parameter (ED) for the theoretical and experimental
lipophilicity for compounds 3–18.
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6. Pyka-Pająk, A.; Parys, W.; Dołowy, M. Comparison of the utility of RP-TLC technique and different computational methods

to assess the lipophilicity of selected antiparasitic, antihypertensive, and anti-inflammatory drugs. Molecules 2019, 24, 3187.
[CrossRef]

7. Sangster, J. Octanol-Water Partition Coefficients: Fundamentals and Physical Chemistry; Wiley&Sons: Chichester, UK, 1997; pp. 57–64.
8. Cimpan, G. Lipophilicity determination of organic substances by reversed-phase TLC. In Encyclopedia of Chromatography, 2nd ed.;

Taylor & Francis Group: Boca Raton, FL, USA, 2005; pp. 999–1001.
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