Chemical Characterization, In Vitro Analysis of Functional Properties, and Volatile Profiling of Sixteen Nutraceuticals Marketed as “Superfood”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection and Pretreatment of the Samples
2.2. Chemicals, Reagents, and Laboratory Equipment
2.3. Determination of Proximate Composition
2.4. Amino Acid Analysis
2.5. Determination of Antioxidant Parameters
2.5.1. Preparation of Extracts
2.5.2. Total Phenolic Content and In Vitro Antioxidant Capacity
2.5.3. Relative Antioxidant Capacity Index
2.6. Determination of In Vitro Antimicrobial Activity
2.6.1. Preparation of Extracts
2.6.2. Agar Diffusion
2.7. Determination of the Volatile Composition
2.7.1. Sampling
2.7.2. GC-MS Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition
3.2. Amino Acid Composition
Amino Acid (mg/g) | Barley Grass | Wheat Grass | Spinach | Beetroot | Sea Buckthorn | Rosehip | Aronia | Acerola | Goji Berry | Lucuma | Spirulina | Chlorella | Duckweed | Moringa | Turmeric | Ginger |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ASP | 5.7 ± 0.4 | 15.7 ± 0.6 | 15.0 ± 0.2 | 4.3 ± 0.2 | 7.3 ± 0.1 | 4.1 ± 0.3 | 4.9 ± 0.2 | 7.3 ± 0.3 | 14.7 ± 0.7 | 7.0 ± 0.2 | 55.5 ± 4.2 | 38.1 ± 3.1 | 28.8 ± 0.5 | 15.7 ± 2.1 | 17.7 ± 0.1 | 10.6 ± 0.2 |
THR | 2.7 ± 0.4 | 7.1 ± 0.8 | 6.6 ± 0.3 | 2.0 ± 0.1 | 2.7 ± 0.0 | 1.4 ± 0.1 | 1.7 ± 0.1 | 1.3 ± 0.2 | 3.3 ± 0.3 | 1.8 ± 0.2 | 24.8 ± 1.7 | 23.0 ± 2.6 | 8.7 ± 0.6 | 6.7 ± 0.8 | 5.2 ± 0.2 | 2.7 ± 0.1 |
SER | 3.1 ± 0.2 | 8.3 ± 0.8 | 8.0 ± 0.1 | 3.3 ± 0.2 | 4.2 ± 0.1 | 2.0 ± 0.1 | 2.4 ± 0.2 | 1.9 ± 0.1 | 5.0 ± 0.4 | 2.1 ± 0.1 | 32.6 ± 0.8 | 18.4 ± 2.4 | 11.0 ± 0.3 | 8.3 ± 1.1 | 5.9 ± 0.2 | 3.1 ± 0.2 |
GLU | 8.6 ± 0.3 | 23.6 ± 0.6 | 20.2 ± 0.7 | 16.5 ± 1.2 | 13.1 ± 0.5 | 6.6 ± 0.4 | 12.9 ± 0.4 | 6.1 ± 0.3 | 17.7 ± 0.7 | 5.0 ± 0.4 | 84.5 ± 1.7 | 65.7 ± 6.5 | 31.3 ± 0.2 | 23.1 ± 3.6 | 16.0 ± 0.0 | 8.7 ± 0.3 |
PRO | 0.5 ± 0.0 | 5.0 ± 0.8 | 2.1 ± 0.0 | 0.9 ± 0.1 | 0.2 ± 0.0 | 1.0 ± 0.1 | 1.5 ± 0.1 | 0.9 ± 0.2 | 9.4 ± 0.6 | 1.5 ± 0.3 | 0.5 ± 0.0 | 18.0 ± 1.9 | 11.8 ± 1.3 | 7.6 ± 0.9 | 1.2 ± 0.1 | 1.1 ± 0.1 |
GLY | 4.2 ± 0.2 | 10.0 ± 1.2 | 12.2 ± 0.2 | 2.4 ± 0.1 | 5.3 ± 0.0 | 2.2 ± 0.2 | 3.7 ± 0.1 | 2.1 ± 0.1 | 3.6 ± 0.3 | 2.3 ± 0.0 | 29.7 ± 2.9 | 24.9 ± 3.7 | 12.0 ± 0.6 | 9.5 ± 1.1 | 5.7 ± 0.2 | 4.0 ± 0.4 |
ALA | 4.5 ± 0.1 | 10.6 ± 0.8 | 8.6 ± 0.2 | 3.8 ± 0.2 | 2.9 ± 0.0 | 1.6 ± 0.1 | 2.2 ± 0.1 | 2.3 ± 0.0 | 5.8 ± 0.6 | 2.9 ± 0.0 | 42.5 ± 1.4 | 40.1 ± 1.8 | 11.9 ± 0.3 | 9.8 ± 1.2 | 3.6 ± 0.1 | 2.5 ± 0.2 |
VAL | 3.2 ± 0.1 | 8.9 ± 0.4 | 6.6 ± 0.2 | 2.3 ± 0.2 | 3.6 ± 0.3 | 1.4 ± 0.2 | 1.9 ± 0.2 | 1.7 ± 0.2 | 3.2 ± 0.2 | 1.7 ± 0.2 | 30.6 ± 2.5 | 18.9 ± 2.0 | 10.9 ± 0.9 | 7.2 ± 0.8 | 4.5 ± 0.1 | 2.4 ± 0.2 |
CYS | 1.2 ± 0.1 | 1.3 ± 0.1 | 4.1 ± 0.1 | 0.7 ± 0.1 | 1.1 ± 0.0 | 0.6 ± 0.1 | 0.7 ± 0.1 | 0.4 ± 0.0 | 1.1 ± 0.1 | 0.6 ± 0.0 | 7.1 ± 0.3 | 7.0 ± 0.7 | 2.6 ± 0.3 | 2.1 ± 0.1 | 1.2 ± 0.2 | 1.2 ± 0.1 |
MET | 0.9 ± 0.0 | 1.9 ± 0.2 | 2.1 ± 0.1 | 0.2 ± 0.0 | 0.3 ± 0.0 | 0.1 ± 0.0 | 0.2 ± 0.0 | 0.4 ± 0.0 | 0.3 ± 0.0 | 0.2 ± 0.0 | 9.0 ± 0.6 | 4.4 ± 0.4 | 1.4 ± 0.2 | 2.1 ± 0.4 | 1.3 ± 0.1 | 1.0 ± 0.1 |
ILE | 1.7 ± 0.2 | 4.7 ± 0.1 | 3.7 ± 0.1 | 1.2 ± 0.1 | 2.0 ± 0.0 | 0.9 ± 0.0 | 1.1 ± 0.0 | 1.0 ± 0.1 | 2.0 ± 0.1 | 1.1 ± 0.1 | 20.2 ± 1.1 | 9.8 ± 0.9 | 6.5 ± 0.3 | 4.6 ± 0.8 | 2.9 ± 0.2 | 1.9 ± 0.2 |
LEU | 5.7 ± 0.4 | 15.7 ± 0.5 | 13.2 ± 0.3 | 2.5 ± 0.2 | 5.7 ± 0.0 | 2.6 ± 0.0 | 3.6 ± 0.0 | 2.8 ± 0.3 | 5.7 ± 0.2 | 2.9 ± 0.3 | 59.8 ± 3.7 | 40.8 ± 1.8 | 18.3 ± 0.2 | 15.1 ± 2.0 | 9.4 ± 0.7 | 4.8 ± 0.1 |
TYR | 1.6 ± 0.2 | 4.5 ± 0.3 | 5.3 ± 0.4 | 1.6 ± 0.2 | 2.6 ± 0.1 | 0.7 ± 0.1 | 0.8 ± 0.0 | 0.6 ± 0.1 | 1.5 ± 0.1 | 0.8 ± 0.0 | 24.6 ± 2.3 | 14.6 ± 1.6 | 5.8 ± 0.4 | 4.5 ± 0.3 | 2.8 ± 0.2 | 1.9 ± 0.1 |
PHE | 3.0 ± 0.1 | 8.0 ± 0.2 | 7.0 ± 0.3 | 1.4 ± 0.2 | 3.1 ± 0.0 | 1.4 ± 0.1 | 1.8 ± 0.0 | 1.4 ± 0.0 | 2.9 ± 0.3 | 1.6 ± 0.0 | 23.9 ± 1.8 | 16.3 ± 0.4 | 6.7 ± 1.2 | 6.2 ± 0.7 | 5.2 ± 0.2 | 5.0 ± 0.6 |
LYS | 3.0 ± 0.2 | 9.3 ± 0.5 | 8.4 ± 0.2 | 2.7 ± 0.2 | 4.3 ± 0.2 | 1.5 ± 0.1 | 2.1 ± 0.0 | 1.7 ± 0.2 | 2.9 ± 0.2 | 1.8 ± 0.2 | 29.0 ± 1.5 | 32.1 ± 2.1 | 9.1 ± 0.1 | 7.5 ± 0.6 | 3.4 ± 0.1 | 1.2 ± 0.1 |
HIS | 1.2 ± 0.1 | 3.4 ± 0.3 | 3.3 ± 0.2 | 1.2 ± 0.2 | 2.0 ± 0.1 | 0.8 ± 0.1 | 1.1 ± 0.1 | 0.7 ± 0.1 | 2.0 ± 0.0 | 1.1 ± 0.1 | 8.2 ± 1.2 | 6.7 ± 0.8 | 3.5 ± 0.1 | 2.7 ± 0.2 | 1.5 ± 0.0 | 0.8 ± 0.1 |
ARG | 3.1 ± 0.1 | 9.8 ± 0.8 | 8.7 ± 0.5 | 1.6 ± 0.1 | 5.5 ± 0.5 | 2.2 ± 0.1 | 3.8 ± 0.1 | 1.8 ± 0.3 | 8.0 ± 0.6 | 1.6 ± 0.0 | 43.8 ± 0.8 | 28.9 ± 0.3 | 12.8 ± 1.0 | 8.7 ± 0.7 | 5.0 ± 0.0 | 3.4 ± 0.5 |
TAA a (mg/g) | 54.1 | 147.8 | 135.2 | 48.5 | 65.8 | 31.0 | 46.4 | 34.4 | 89.0 | 36.0 | 526.4 | 407.5 | 190.2 | 141.7 | 92.5 | 56.1 |
EAA b (%) | 39.9 | 39.9 | 37.7 | 27.8 | 35.9 | 32.5 | 29.2 | 31.8 | 24.9 | 33.9 | 39.0 | 37.3 | 34.3 | 36.9 | 36.2 | 35.0 |
BCAA c (%) | 19.6 | 19.9 | 17.4 | 12.5 | 17.1 | 15.5 | 14.3 | 15.9 | 12.2 | 15.8 | 21.0 | 17.1 | 18.8 | 19.0 | 18.2 | 16.1 |
3.3. Total Phenolic Content and Antioxidant Capacity of the Samples
3.4. Antibacterial Potential of the Samples
3.5. Volatile Profile of the Samples
4. Conclusions and Suggestions for Future Research
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grand View Research. Superfood Market Size, Share & Trends Analysis Report by Type, by Application, by Region, and Segment Forecasts, 2024–2030. 2024. Available online: https://www.grandviewresearch.com/industry-analysis/superfood-market (accessed on 20 November 2024).
- Magrach, A.; Sanz, M.J. Environmental and social consequences of the increase in the demand for ‘superfoods’ world-wide. People Nat. 2020, 2, 267–278. [Google Scholar] [CrossRef]
- Jagdale, Y.D.; Mahale, S.V.; Zohra, B.; Nayik, G.A.; Dar, A.H.; Khan, K.A.; Abdi, G.; Karabagias, I.K. Nutritional profile and potential health benefits of super foods: A review. Sustainability 2021, 13, 9240. [Google Scholar] [CrossRef]
- Hassoun, A.; Boukid, F.; Pasqualone, A.; Bryant, C.J.; García, G.G.; Parra-López, C.; Jagtap, S.; Trollman, H.; Cropotova, J.; Barba, F.J. Emerging trends in the agri-food sector: Digitalisation and shift to plant-based diets. Curr. Res. Food Sci. 2022, 5, 2261–2269. [Google Scholar] [CrossRef]
- Kirsch, F.; Lohmann, M.; Böl, G.F. The Public’s Understanding of Superfoods. Sustainability 2022, 14, 3916. [Google Scholar] [CrossRef]
- Liu, H.; Meng-Lewis, Y.; Ibrahim, F.; Zhu, X. Superfoods, super healthy: Myth or reality? Examining consumers’ repurchase and WOM intention regarding superfoods: A theory of consumption values perspective. J. Bus. Res. 2021, 137, 69–88. [Google Scholar] [CrossRef]
- Franco Lucas, B.; Alberto Vieira Costa, J.; Brunner, T.A. How information on superfoods changes consumers’ attitudes: An explorative survey study. Foods 2022, 11, 1863. [Google Scholar] [CrossRef]
- Wiedenroth, C.F.; Otter, V. Who are the superfoodies? New healthy luxury food products and social media marketing potential in Germany. Foods 2021, 10, 2907. [Google Scholar] [CrossRef]
- Pećanin, Ž.; Vukasović, T. Factors influencing consumer purchase behaviour when buying superfoods. J. Inn. Bus. Man. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Teng, P.K.; Tai Wai, K.; Abdullah, S.I.N.W.; Ow, M.W.; Wong, K.K.S. Eating with a purpose: Development and motivators for consumption of superfood. Malays. J. Consum. Fam. Econ. 2020, 24, 207–242. [Google Scholar]
- Manjunath, P.; Fukey, L.N. Ancestral Perception Reintroduced: Assessing Consumption Patterns and Perceptions of Superfood to Bridge the Knowledge Gap among the Youth of India. In Emerging Trends in Smart Societies; Routledge: London, UK, 2024; pp. 337–340. [Google Scholar]
- Ueda, J.M.; Morales, P.; Fernández-Ruiz, V.; Ferreira, A.; Barros, L.; Carocho, M.; Heleno, S.A. Powdered Foods: Structure, Processing, and Challenges: A Review. Appl. Sci. 2023, 13, 12496. [Google Scholar] [CrossRef]
- Domínguez Díaz, L.; Fernández-Ruiz, V.; Cámara, M. The frontier between nutrition and pharma: The international regulatory framework of functional foods, food supplements and nutraceuticals. Crit. Rev. Food Sci. Nutr. 2020, 60, 1738–1746. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Laso, J.; Hoehn, D.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Ortego, C.; Palmer, P.F.; Bala, A.; Batlle-Bayer, L.; Balcells, M.; et al. A critical review of superfoods from a holistic nutritional and environmental approach. J. Clean. Prod. 2022, 379, 134491. [Google Scholar] [CrossRef]
- Kapoor, N.; Jamwal, V.L.; Shukla, M.R.; Gandhi, S.G. The rise of nutraceuticals: Overview and future. In Biotechnology Business—Concept to Delivery; Springer: Cham, Switzerland, 2020; pp. 67–92. [Google Scholar]
- Mohammadian, M.; Salami, M.; Moghadam, M.; Emam-Djomeh, Z.; Moosavi-Movahedi, A.A. Nutraceuticals and Superfoods. In Rationality and Scientific Lifestyle for Health; Springer: Berlin/Heidelberg, Germany, 2021; p. 75. [Google Scholar]
- Chambers, E.; Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 2013, 18, 4887–4905. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis volatile compounds: Chemical diversity and biological activity: A review. Chem. Cent. J. 2014, 8, 28. [Google Scholar] [CrossRef]
- AOAC 2001.11; Protein (Crude) in Animal Feed, Forage (Plant Tissue), Grain, and Oilseeds. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International, 21st ed. AOAC: Washington, DC, USA, 2019.
- Yeoh, H.H.; Wee, Y.C. Leaf protein contents and nitrogen-to-protein conversion factors for 90 plant species. Food Chem. 1994, 49, 245–250. [Google Scholar] [CrossRef]
- Fujihara, S.; Kasuga, A.; Aoyagi, Y. Nitrogen-to-protein conversion factors for common vegetables in Japan. J. Food Sci. 2001, 66, 412–415. [Google Scholar] [CrossRef]
- Izhaki, I.D.O. Influence of nonprotein nitrogen on estimation of protein from total nitrogen in fleshy fruits. J. Chem. Ecol. 1993, 19, 2605–2615. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; Pereira, L.O.D.S.; Marquez, U.M.L. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- AOAC 2003.06; Crude Fat in Feeds, Cereal Grains, and Forages. Official Methods of Analysis of the Association of Official Analytical Chemists: Official Methods of Analysis of AOAC International, 21st ed. AOAC: Washington, DC, USA, 2019.
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Demirata, B.; Özyürek, M.; Çelik, S.E.; Bektaşoğlu, B.; Berker, K.; Özyurt, D. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 2007, 12, 1496–1547. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem. Pharma. Bullet. 1988, 36, 2090–2097. [Google Scholar] [CrossRef]
- Sun, T.; Tanumihardjo, S.A. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 2007, 72, 159–165. [Google Scholar] [CrossRef]
- Talay, R.; Erdoğan, Ü.; Turan, M. Physico-chemical properties, mineral matter, organic acid, amino acid, and plant hormones content of goji berry (Lycium barbarum L.) grown in Turkey. Turk. J. Agric. Food Sci. Technol. 2021, 9, 1889–1894. [Google Scholar] [CrossRef]
- Gao, L.; Qin, Y.; Zhou, X.; Jin, W.; He, Z.; Li, X.; Wang, Q. Microalgae as future food: Rich nutrients, safety, production costs and environmental effects. Sci. Total Environ. 2024, 927, 172167. [Google Scholar] [CrossRef]
- Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on Nutrition and Health Claims Made on Foods. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32006R1924 (accessed on 20 November 2024).
- Yu, W.; Du, Y.; Li, S.; Wu, L.; Guo, X.; Qin, W.; Xinlan, K.; Gao, X.; Wang, Q.; Kuang, H. Sea buckthorn-Nutritional composition, Bioactivity, Safety, and Applications: A Review. J. Food Compos. Anal. 2024, 133, 106371. [Google Scholar] [CrossRef]
- El-Sayed, S.M. Use of spinach powder as functional ingredient in the manufacture of UF-Soft cheese. Heliyon 2020, 6, e03278. [Google Scholar] [CrossRef]
- Isitua, C.C.; Lozano, M.J.S.; Jaramillo, C.; Dutan, F. Phytochemical and nutritional properties of dried leaf powder of Moringa oleifera Lam. from Machala El Oro Province of Ecuador. Asian J. Plant Sci. Res. 2015, 5, 8–16. [Google Scholar]
- Ifie, I.; Olatunde, S.; Ogbon, O.; Umukoro, J.E. Processing techniques on phytochemical content, proximate composition, and toxic components in duckweed. Int. J. Veg. Sci. 2021, 27, 294–302. [Google Scholar] [CrossRef]
- Zhu, J.; Xiao, X.; Du, W.; Cai, Y.; Yang, Z.; Yin, Y.; Wakisaka, M.; Wang, J.; Zhou, Z.; Liu, D.; et al. Leveraging microalgae as a sustainable ingredient for meat analogues. Food Chem. 2024, 450, 139360. [Google Scholar] [CrossRef] [PubMed]
- FAO/WHO/UNU Expert Consultation. Protein and Amino Acid Requirements in Human Nutrition; WHO Technical Reports Series no. 935; WHO: Geneva, Switzerland, 2007. [Google Scholar]
- Krajcovicova-Kudlackova, M.; Babinska, K.; Valachovicova, M. Health benefits and risks of plant proteins. Bratislavske lekarske listy 2005, 106, 231. [Google Scholar]
- Judge, A.; Dodd, M.S. Metabolism. Essays Biochem. 2020, 64, 607–647. [Google Scholar] [CrossRef]
- Martemucci, G.; Portincasa, P.; Centonze, V.; Mariano, M.; Khalil, M.; D’Alessandro, A.G. Prevention of oxidative stress and diseases by antioxidant supplementation. Med. Chem. 2023, 19, 509–537. [Google Scholar] [CrossRef]
- Gutiérrez-del-Río, I.; López-Ibáñez, S.; Magadán-Corpas, P.; Fernández-Calleja, L.; Pérez-Valero, Á.; Tuñón-Granda, M.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants 2021, 10, 1264. [Google Scholar] [CrossRef]
- Šeregelj, V.; Tumbas Šaponjac, V.; Pezo, L.; Kojić, J.; Cvetković, B.; Ilic, N. Analysis of antioxidant potential of fruit and vegetable juices available in Serbian markets. Food Sci. Technol. Int. 2024, 30, 472–484. [Google Scholar] [CrossRef]
- Gorjanović, S.; Komes, D.; Pastor, F.T.; Belščak-Cvitanović, A.; Pezo, L.; Hečimović, I.; Sužnjević, D. Antioxidant capacity of teas and herbal infusions: Polarographic assessment. J. Agr. Food Chem. 2012, 60, 9573–9580. [Google Scholar] [CrossRef]
- Gorjanović, S.; Komes, D.; Laličić-Petronijević, J.; Pastor, F.T.; Belščak-Cvitanović, A.; Veljović, M.; Pezo, L.; Sužnjević, D.Ž. Antioxidant efficiency of polyphenols from coffee and coffee substitutes-electrochemical versus spectrophotometric approach. J. Food Sci Technol. 2017, 54, 2324–2331. [Google Scholar] [CrossRef]
- Lee, K.J.; Baek, D.Y.; Lee, G.A.; Cho, G.T.; So, Y.S.; Lee, J.R.; Ma, K.H.; Chung, J.W.; Hyun, D.Y. Phytochemicals and antioxidant activity of Korean black soybean (Glycine max L.) landraces. Antioxidants 2020, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Végh, R.; Sipiczki, G.; Csóka, M. Investigating the Antioxidant and Color Properties of Bee Pollens of Various Plant Sources. Chem. Biodivers. 2023, 20, e202300126. [Google Scholar] [CrossRef] [PubMed]
- Roidaki, A.; Kollia, E.; Panagopoulou, E.; Chiou, A.; Varzakas, T.; Markaki, P. Super foods and super herbs: Antioxidant and antifungal activity. Curr. Res. Nutr. Food Sci. J. 2016, 4, 138–145. [Google Scholar] [CrossRef]
- Vilvert, J.C.; de Freitas, S.T.; dos Santos, L.F.; Ribeiro, T.D.S.; Veloso, C.M. Phenolic compounds in acerola fruit and by-products: An overview on identification, quantification, influencing factors, and biological properties. J. Food Mes. Charact. 2024, 18, 216–239. [Google Scholar] [CrossRef]
- Oulahal, N.; Degraeve, P. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Front. Microbiol. 2022, 12, 753518. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R. Acerola, an untapped functional superfruit: A review on latest frontiers. J. Food Sci. Technol. 2018, 55, 3373–3384. [Google Scholar] [CrossRef]
- Mumtaz, S.; Mumtaz, S.; Ali, S.; Tahir, H.M.; Kazmi, S.A.R.; Mughal, T.A.; Younas, M. Evaluation of antibacterial activity of vitamin C against human bacterial pathogens. Braz. J. Biol. 2021, 83, e247165. [Google Scholar] [CrossRef]
- van den Berg, J.; Kuipers, S. The antibacterial action of Moringa oleifera: A systematic review. S. Afr. J. Bot. 2022, 151, 224–233. [Google Scholar] [CrossRef]
- Bolhassani, A.; Khavari, A.; Bathaie, S.Z. Saffron and natural carotenoids: Biochemical activities and anti-tumor effects. Biochim. Biophys. Acta 2014, 1845, 20–30. [Google Scholar] [CrossRef]
- Pepejal, I.M.; Fasa, P.M.; Spektrometri, K.G. Analysis of volatile compounds of spices grown in Banyumas District, Jawa Tengah, Indonesia using solid phase microextraction-gas chromatography mass spectrometry. Malays. J. Anal. Sci. 2019, 23, 963–979. [Google Scholar]
- Pang, X.; Cao, J.; Wang, D.; Qiu, J.; Kong, F. Identification of ginger (Zingiber officinale Roscoe) volatiles and localization of aroma-active constituents by GC–olfactometry. J. Agric. Food Chem. 2017, 65, 4140–4145. [Google Scholar] [CrossRef] [PubMed]
- Laelago Ersedo, T.; Teka, T.A.; Fikreyesus Forsido, S.; Dessalegn, E.; Adebo, J.A.; Tamiru, M.; Astatkie, T. Food flavor enhancement, preservation, and bio-functionality of ginger (Zingiber officinale): A review. Int. J. Food Prop. 2023, 26, 928–951. [Google Scholar] [CrossRef]
- Richardson, B. Identification and Characterization of Potent Odorants in Selected Beet Root (Beta vulgaris) Products. Doctoral Dissertation, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2013. [Google Scholar]
- Van Boekel, M.A.J.S. Formation of flavour compounds in the Maillard reaction. Biotechnol. Adv. 2006, 24, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Vignolini, P.; Ieri, F.; Heimler, D. Polyphenols and volatile compounds in commercial chokeberry (Aronia melanocarpa) products. Natur. Prod. Comm. 2016, 11, 1934578X1601100129. [Google Scholar] [CrossRef]
- Kraujalytė, V.; Leitner, E.; Venskutonis, P.R. Characterization of Aronia melanocarpa volatiles by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation/extraction (SDE), and gas chromatography-olfactometry (GC-O) methods. J. Agr. Food Chem. 2013, 61, 4728–4736. [Google Scholar] [CrossRef]
- Song, J.; Forney, C.F. Flavour volatile production and regulation in fruit. Can. J. Plant Sci. 2008, 88, 537–550. [Google Scholar] [CrossRef]
- Paraskevopoulou, A.; Kaloudis, T.; Hiskia, A.; Steinhaus, M.; Dimotikali, D.; Triantis, T.M. Volatile Profiling of Spirulina Food Supplements. Foods 2024, 13, 1257. [Google Scholar] [CrossRef]
- Olsen, M.L.; Olsen, K.; Jensen, P.E. Consumer acceptance of microalgae as a novel food-Where are we now? And how to get further. Physiol. Plant. 2024, 176, e14337. [Google Scholar] [CrossRef]
- Urlass, S.; Wu, Y.; Nguyen, T.T.; Winberg, P.; Turner, M.S.; Smyth, H. Unravelling the aroma and flavour of algae for future food applications. Trends Food Sci. Technol. 2023, 138, 370–381. [Google Scholar] [CrossRef]
Group | Raw Material | Brief Description * | Packing | Origin |
---|---|---|---|---|
cereal grasses | barley grass (Hordeum vulgare) | dried powder of the first leaves | 125 g | EU |
wheat grass (Triticum aestivum) | dried powder of the first leaves | 125 g | EU | |
vegetables | spinach (Spinacia oleracea) | dried powder of the leaves | 125 g | EU |
beetroot (Beta vulgaris) | dried powder of the root | 125 g | Italy | |
fruits | sea buckthorn (Hippophae rhamnoides) | dried powder of the fruit with peel and seeds | 200 g | Hungary |
rosehip (Rosa canina) | dried powder of the fruit with peel | 125 g | Romania | |
aronia (Aronia melanocarpa) | dried powder of fruit juice | 200 g | EU | |
acerola (Malpighia glabra) | dried powder of fruit juice | 100 g | Brazil | |
goji berry (Lycium barbarum) | dried powder of the fruit with peel and seeds | 60 g | China | |
lucuma (Pouteria lucuma) | dried powder of fruit juice | 125 g | Peru | |
microalgae | spirulina (Arthrospira platensis) | dried powder of the algae | 125 g | China |
chlorella (Chlorella vulgaris) | dried powder of the algae | 125 g | China | |
aquatic plant | duckweed (Lemna minor) | dried powder of the whole plant | 100 g | China |
herbs | moringa (Moringa oleifera) | dried powder of the leaves | 125 g | India |
turmeric (Curcuma longa) | dried powder of the root | 60 g | India | |
ginger (Zingiber officinale) | dried powder of the root | 60 g | Germany |
Sample | Moisture (g/100 g) | Crude Protein (g/100 g) | Total Carbohydrate (g/100 g) | Crude Fat (g/100 g) | Ash (g/100 g) |
---|---|---|---|---|---|
barley grass | 6.41 ± 0.29 ef | 6.61 ± 0.29 fg | 78.31 ± 0.42 cd | 2.38 ± 0.11 d | 6.29 ± 0.10 e |
wheat grass | 6.18 ± 0.33 f | 14.38 ± 0.24 d | 66.28 ± 0.32 e | 5.28 ± 0.29 c | 7.89 ± 0.05 d |
spinach | 6.36 ± 0.13 f | 15.31 ± 0.35 d | 58.86 ± 0.25 g | 2.86 ± 0.17 d | 16.61 ± 0.09 a |
beetroot | 6.49 ± 0.29 def | 5.91 ± 0.35 gh | 82.89 ± 0.50 ab | 0.25 ± 0.08 f | 4.47 ± 0.17 fg |
sea buckthorn | 4.23 ± 0.17 g | 5.87 ± 0.31 gh | 76.20 ± 0.32 d | 12.42 ± 0.32 a | 1.27 ± 0.11 i |
rosehip | 11.34 ± 0.12 bc | 3.07 ± 0.32 i | 80.05 ± 0.43 c | 1.28 ± 0.08 f | 4.26 ± 0.10 g |
aronia | 7.41 ± 0.07 cde | 5.25 ± 0.13 h | 80.84 ± 0.08 bc | 4.43 ± 0.11 c | 2.06 ± 0.03 gh |
acerola | 13.99 ± 0.15 a | 2.35 ± 0.15 i | 76.95 ± 0.31 d | 0.16 ± 0.01 f | 6.55 ± 0.27 de |
goji berry | 12.41 ± 0.46 ab | 9.33 ± 0.30 e | 65.03 ± 0.35 e | 7.07 ± 0.17 b | 6.16 ± 0.14 e |
lucuma | 10.32 ± 0.07 bc | 3.10 ± 0.41 i | 83.78 ± 0.14 a | 1.39 ± 0.26 ef | 1.42 ± 0.17 hi |
spirulina | 5.72 ± 0.30 f | 55.34 ± 1.55 a | 32.97 ± 0.92 i | 0.83 ± 0.14 f | 5.13 ± 0.10 ef |
chlorella | 6.34 ± 0.25 f | 45.50 ± 1.80 b | 41.55 ± 1.61 h | 2.94 ± 0.19 d | 3.68 ± 0.09 g |
duckweed | 7.73 ± 0.25 cde | 17.69 ± 0.39 c | 61.29 ± 0.32 f | 0.71 ± 0.11 f | 12.58 ± 0.03 b |
moringa | 9.90 ± 0.44 c | 14.73 ± 0.18 d | 59.61 ± 0.63 fg | 5.44 ± 0.28 c | 10.31 ± 0.10 c |
turmeric | 11.47 ± 0.77 abc | 8.64 ± 0.53 ef | 72.63 ± 1.56 de | 1.71 ± 0.08 e | 5.55 ± 0.24 ef |
ginger | 7.90 ± 0.20 cd | 7.38 ± 0.11 f | 79.28 ± 0.39 cd | 0.92 ± 0.06 f | 4.53 ± 0.10 fg |
Sample | TPC (mg GAE/g) | FRAP (mg AAE/g) | CUPRAC (mg TE/g) | TEAC (mg TE/g) | DPPH (mg TE/g) |
---|---|---|---|---|---|
barley grass | 8.17 ± 0.28 hi | 5.33 ± 0.28 f | 18.26 ± 1.39 hi | 2.55 ± 0.17 gh | 6.16 ± 0.04 g |
wheat grass | 7.43 ± 0.53 hi | 4.78 ± 0.18 f | 17.20 ± 1.81 hi | 2.59 ± 0.07 g | 5.05 ± 0.03 h |
spinach | 14.93 ± 0.72 g | 6.19 ± 0.21 f | 26.46 ± 0.68 g | 4.73 ± 0.13 ef | 7.75 ± 0.06 g |
beetroot | 3.92 ± 0.34 j | 3.79 ± 0.05 f | 9.13 ± 0.38 ij | 1.58 ± 0.05 h | 1.77 ± 0.02 i |
sea buckthorn | 18.74 ± 0.42 f | 10.09 ± 0.62 de | 38.52 ± 0.59 f | 7.96 ± 0.17 d | 19.82 ± 0.65 f |
rosehip | 55.23 ± 0.58 c | 42.61 ± 2.09 b | 143.03 ± 2.61 c | 27.31 ± 0.07 b | 94.39 ± 2.00 c |
aronia | 64.28 ± 0.89 b | 43.89 ± 2.25 b | 159.38 ± 1.73 b | 28.48 ± 0.42 b | 107.82 ± 0.18 b |
acerola | 164.82 ± 1.88 a | 166.66 ± 7.04 a | 300.43 ± 4.00 a | 79.32 ± 2.71 a | 289.41 ± 9.61 a |
goji berry | 25.33 ± 0.96 e | 7.17 ± 0.76 ef | 47.52 ± 1.61 e | 8.49 ± 0.37 d | 16.39 ± 1.58 fg |
lucuma | 2.28 ± 0.19 j | 0.74 ± 0.04 h | 5.36 ± 0.33 k | 0.89 ± 0.01 h | 1.93 ± 0.05 i |
spirulina | 5.04 ± 0.68 ij | 4.96 ± 0.23 f | 14.19 ± 0.98 ij | 1.53 ± 0.06 h | 1.17 ± 0.21 ij |
chlorella | 2.70 ± 0.34 j | 1.49 ± 0.10 g | 8.46 ± 1.23 jk | 0.82 ± 0.02 h | 0.10 ± 0.07 j |
duckweed | 21.98 ± 0.44 e | 14.52 ± 0.25 c | 39.17 ± 0.62 ef | 10.82 ± 0.35 e | 26.31 ± 1.08 e |
moringa | 32.05 ± 0.98 d | 12.22 ± 0.67 cd | 63.91 ± 1.80 d | 13.02 ± 0.27 c | 32.18 ± 0.43 d |
turmeric | 30.89 ± 0.60 d | 11.68 ± 0.26 d | 58.28 ± 1.80 d | 12.99 ± 0.78 c | 31.41 ± 1.41 de |
ginger | 10.19 ± 0.22 h | 10.08 ± 0.14 de | 22.38 ± 0.22 h | 4.27 ± 0.11 fh | 15.39 ± 0.29 fg |
Escherichia coli ATCC 8739 | Escherichia coli 0157:H7 | Listeria innocua | Enterococcus faecalis | Enterobacter cloacae | |
---|---|---|---|---|---|
barley grass | - | - | - | - | - |
wheat grass | - | - | - | - | - |
spinach | - | - | - | - | - |
beetroot | - | - | - | - | - |
sea buckthorn | - | - | - | - | - |
rosehip | ++ | + | + | - | - |
aronia | - | - | - | - | - |
acerola | +++ | ++ | ++ | ++ | ++ |
goji berry | - | + | + | - | - |
lucuma | ++ | - | - | - | - |
spirulina | - | - | - | - | - |
chlorella | - | - | - | - | - |
duckweed | - | - | - | - | - |
moringa | ++ | ++ | ++ | ++ | ++ |
turmeric | + | + | - | - | - |
ginger | - | + | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Végh, R.; Sipiczki, G.; Csóka, M.; Mednyánszky, Z.; Bujna, E.; Takács, K. Chemical Characterization, In Vitro Analysis of Functional Properties, and Volatile Profiling of Sixteen Nutraceuticals Marketed as “Superfood”. Appl. Sci. 2024, 14, 11069. https://doi.org/10.3390/app142311069
Végh R, Sipiczki G, Csóka M, Mednyánszky Z, Bujna E, Takács K. Chemical Characterization, In Vitro Analysis of Functional Properties, and Volatile Profiling of Sixteen Nutraceuticals Marketed as “Superfood”. Applied Sciences. 2024; 14(23):11069. https://doi.org/10.3390/app142311069
Chicago/Turabian StyleVégh, Rita, Gizella Sipiczki, Mariann Csóka, Zsuzsanna Mednyánszky, Erika Bujna, and Krisztina Takács. 2024. "Chemical Characterization, In Vitro Analysis of Functional Properties, and Volatile Profiling of Sixteen Nutraceuticals Marketed as “Superfood”" Applied Sciences 14, no. 23: 11069. https://doi.org/10.3390/app142311069
APA StyleVégh, R., Sipiczki, G., Csóka, M., Mednyánszky, Z., Bujna, E., & Takács, K. (2024). Chemical Characterization, In Vitro Analysis of Functional Properties, and Volatile Profiling of Sixteen Nutraceuticals Marketed as “Superfood”. Applied Sciences, 14(23), 11069. https://doi.org/10.3390/app142311069