Effect of Processing Methods on Amino Acid and Fatty Acid Composition of Parkia biglobosa Seeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Method for the Preparation of Deffated and Protein Isolate Samples
2.3. Amino Acid Analysis
2.4. Determination of the Quality Parameters
2.5. Determination of the Predicted Protein Efficiency Ratio (P-PER)
2.6. Biological Values
2.7. Essential Amino Acid Index (EAAI)
Determination of Other Protein Quality Parameters
2.8. Fatty Acid Determination
2.9. Data Analysis
3. Results
3.1. Amino Acid Compositions of Fermented, Defatted, and Protein Isolates of Parkia biglobosa Seeds
3.2. Nutritional Quality of the Fermented, Defatted, and Protein Isolates
3.3. Amino Acid Scoring Pattern
3.4. Essential Amino Acid Scores Based on the Preschool Child Requirement
3.5. Essential Amino Acid Scores (EAAS) Based on the Provisional Scoring Pattern
3.6. Fatty Acid Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boukid, F.; Rosell, C.M.; Rosene, S.; Bover-Cid, S.; Castellari, M. Non-animal proteins as cutting edge ingredients to reformulate animal free foodstuffs: Present status and future perspectives. Crit. Rev. Food Sci. Nutr. 2021, 62, 6390–6420. [Google Scholar] [CrossRef] [PubMed]
- Langyan, S.; Yadava, P.; Khan, F.N.; Dar, Z.A.; Singh, R.; Kumar, A. Sustanining protein Nutrition through plant-based foods. Front. Nutr. 2022, 8, 772573. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F. Animal and plant sources and cardiometabolic health. Adv. Nutr. 2019, 10, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Marin-Valencia, I.; Good, L.B.; Ma, Q.; Malloy, C.R.; Patel, M.S.; Pascual, J.M. Cortical metabolism in pyruvate dehydrogenase deficiency revealed by ex vivo multiplet 13C NMR of the adult mouse brain. Neurochem. Int. 2012, 100, 239–244. [Google Scholar] [CrossRef]
- Lemaitre, R.N.; King, I.B. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 2022, 33, 76–82. [Google Scholar] [CrossRef]
- Semba, R.D.; Ramsing, R.; Rahman, N.; Kraemer, K.; Bloem, M.W. Legumes as a sustainable source of protein in human diets. Glob. Food Secur. 2021, 28, 100520. [Google Scholar] [CrossRef]
- Elhardallou, S.B.; Farh, S.E.; Gobouri, A.A. Production, Storage and Evaluation of Homemade and Processed Diet, Based on Wheat, Legumes, Sesame and Dates, for Under-Five Children. Food Nutr. Sci. 2015, 6, 605–611. [Google Scholar] [CrossRef]
- Roos, E.; Carlsson, G.; Ferawati, F.; Hefni, M.; Stephan, A.; Tidaker, P.; Witthoft, C. Less meat, more legumes: Prospects and challenges in the transition toward sustainable diets in Sweden. Renew. Agric. Food Syst. 2019, 35, 192–205. [Google Scholar] [CrossRef]
- Clemente, A.; Olias, R. Beneficial effect of legumes in gut heakth. Curr. Opin. Food Sci. 2017, 14, 32–36. [Google Scholar] [CrossRef]
- Abdelatief, S.H.E. Chemical and Biological Properties of Local Cowpea Seed Protein Grown in Gizan Region. Int. Sci. Index. 2011, 5, 563–569. [Google Scholar] [CrossRef]
- Sacande, M.; Clethero, C. Parkia Biglobosa (Jacq) G. Don. Millennium Seed Bank Project Kew; Seed Leaflet no 124; Forest and landscape Denmark: Horsholm, Denmark, 2007. [Google Scholar] [CrossRef]
- Ajaiyeoba, E.O. Phytochemical and antibacterial properties of Parkia biglobosa and Parkia bicolor leaf extracts. Afr. J. Biomed. Res. 2002, 5, 125–129. [Google Scholar] [CrossRef]
- Ogunyinka, B.I.; Oyinloye, B.E.; Adenowo, A.F.; Kappo, A.P. Potentials of some plant-derived foods in the management of diabetes and associated Complications. Afr. J. Tradit. Complement. Altern. Med. 2015, 12, 12–20. [Google Scholar] [CrossRef]
- Okoye, T.C.; Uzor, P.F.; Onyeto, C.A.; Okereke, E.K. 18-Safe Africa Medicinal Plant for Clinical Studies. Toxicol. Surv. Afr. Med. Plants 2014, 5, 535–555. [Google Scholar] [CrossRef]
- Almeida Sa, A.G.; Laurindo, J.B.; Carciofi, B.A.M. Influence of Emerging Technologies on the Utilization of Plant Proteins. Front. Nutr. 2022, 9, 809058. [Google Scholar] [CrossRef]
- Nkosi, C.Z.; Opoku, A.R.; Terblanche, S.E. Effects of pumpkin seed (Cucurbita pepo) protein isolate on the activity levels of certain plasma enzymes in CCI4 –induced liver injury in low-protein fed rats. Phytother. Res. 2005, 19, 341–345. [Google Scholar] [CrossRef]
- FAO/WHO. Protein Quality Evaluation Report of Joint FAO/WHO Expert Consultative FAO Food and Nutrient; FAO: Rome, Italy, 1991. [Google Scholar]
- FAO/WHO. Energy and Protein Requirements; Technical Report Series, No. 522; WHO: Geneva, Switzerland, 1973. [Google Scholar]
- Paul, A.A.; Southgate, D.A.T.; Russel, J. First Supplement to McCance and Widdowson’s Composition of Foods; Her Majesty’s Stationery Office: London, UK, 1976. [Google Scholar]
- FAO/WHO/UNU. Energy and Protein Requirement; WHO Technical Report Series No. 724; WHO: Geneva, Switzerland, 1985. [Google Scholar]
- Alsmeyer, R.H.; Cunningham, A.E.; Happich, M.L. Equations to predict PER from amino acid analysis. Food Technol. 1974, 28, 34–38. [Google Scholar]
- Oser, B.L. An integrated essential amino acid index for predicting the biological value of proteins. In Protein and Amino Acid Nutrition; Albanese, A.A., Ed.; Academic Press: New York, NY, USA, 1959; pp. 295–311. [Google Scholar]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M. Protein in quality assessment of marcoalgae produced in an integrated multi-trophic aquaculture system. Foods 2020, 9, 1382. [Google Scholar] [CrossRef]
- Adhikari, S.; Schop, M.; Boer, I.J.M.; Huppertz, t. Protein quality in perspective: A review of protein quality metrics and their applications. Nutrients 2022, 14, 947. [Google Scholar] [CrossRef]
- Ijarotimi, O.S.; Keshinro, O.O. Determination of amino acid, fatty acid, mineral, functional and cooking properties of germinated and fermented popcorn (Zea mays everta) flour. Eur. J. Food Res. Rev. 2011, 1, 102–122. Available online: https://journalejnfs.com/index.php/EJNFS/article/view/250 (accessed on 24 September 2024).
- Yagoub, A.A.; Abdalla, A.A. Effect of domestic processing methods on chemical, invitro digestibility of protein and starch and functional properties of bambara groundnut (Voandzeia subterranea) seed. Res. J. Agric. Biol. Sci. 2007, 3, 24–34. [Google Scholar]
- Audu, S.S.; Aremu, M.O.; Lajide, L. Influence of traditional processing methods on the nutritional composition of black turtle bean (Phaseolus vulgaris L.) grown in Nigeria. Int. Food Res. J. 2013, 20, 3211–3322. [Google Scholar]
- Olaofe, O.; Famurewa, J.A.; Ekuagbere, A.O. Chemical and functional properties of kidney bean seed (Phaseolus vulgaris L.) flour. Int. J. Chem. Sci. 2010, 3, 51–69. [Google Scholar]
- Adeyeye, E.O. Proximate, Minerals and Amino Acids Composition of Acanthurus monronviae and Latjanus goreensis Fish Muscle. Biomed. Res. 2014, 1, 1–21. [Google Scholar]
- Aremu, M.O.; Osinfade, B.G.; Basu, S.K.; Ablaku, B.E. Development and nutritional quality evaluation of Kersting’s groundnut-ogi for African weaning diet. Am. J. Food Technol. 2011, 6, 1021–1033. [Google Scholar] [CrossRef]
- Meldrum, B.S. Glutamate as a neurotransmitter in the brain. Review of physiology and pathology. J. Nutr. 2000, 130, 10075–10155. [Google Scholar] [CrossRef]
- Augustin, H.; Grosjean, Y.; Chen, K.; Sheng, Q.; Featherstone, D.E. Nonvesicular release of Glutamate by glial Xct transporters suppresses glutamate receptor clustering in vivo. J. Neurosci. 2007, 27, 111–123. [Google Scholar] [CrossRef]
- Grabowska, A.; Nowicki, M.; Kwinta, J. Glutamate dehydrogenase of the germinating triticate seeds: Gene expression, activity and distribution and kinetic characteristics. Acta Physiol. Plant. 2011, 33, 1981–1990. [Google Scholar] [CrossRef]
- Chen, P.E.; Geballe, M.T.; Stansfeld, P.J.; Johnston, A.R.; Yuan, H.; Jacob, A.L.; Snyder, J.P.; Traynelis, S.F.; Wyile, D.J. Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site directed mutagenesis and molecular modeling. Mol. Pharmacol. 2005, 67, 1470–1484. [Google Scholar] [CrossRef]
- Smriga, Y.; Kameishi, U.; Torii, K. Dietary L-lysine deficiency increases stress induced anxiety and fecal excretion in rats. J. Nutr. 2002, 132, 3744–3746. [Google Scholar] [CrossRef]
- WHO/FAO/UNU. World Health Organization/Food and Agriculture Organization of the United Nations University. Protein and Amino Acid Requirements in Human Nutrition; Report of a joint WHO/FAO/UNU expert consultation; WHO technical report series; No. 935; The World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Olaofe, O.; Adeyeye, E.I.; Ojugbo, S. Comparative study of proximate, amino acids and fatty acids of Moringa Oleifera tree. Elixir Appl. Chem. 2013, 54, 12543–12554. [Google Scholar]
- Etzel, M.R. Manufacture and use of dairy protein fractions. J. Nutr. 2004, 134, 996–1002. [Google Scholar] [CrossRef]
- Omeire, G. Amino acid profile of raw and extruded blends of African yam bean (Sphenostylis stenocarpa) and cassava flour. Am. J. Food Nutr. 2012, 2, 65–68. [Google Scholar] [CrossRef]
- Piatti, P.M.; Monti, L.D.; Valsecchi, G.; Magni, F.; Setola, E.; Marchesi, F.; Galli-Kienle, M.; Pozza, G.; Alberti, K.G.M. Long-term oral L-arginine administration improves peripheral and hepatic insulin sensitivity in type 2 diabetic patients. Diabetes Care 2000, 24, 875–880. [Google Scholar] [CrossRef]
- Adeyeye, E. Comparability of the amino acid composition of aril and seed of Blighia sapida Fruit. Afr. J. Food Agric. Nutr. Dev. 2011, 11, 4810–4827. [Google Scholar] [CrossRef]
- Aremu, M.O.; Olaofe, O.; Akintayo, E.T. Compositional evaluation of cowpea (Vigna unguiculata) and scarlet runner bean (Phaseolus coccineus) varieties grown in Nigeria. J. Food Agric. Environ. 2006, 4, 39–43. [Google Scholar]
- Audu, S.S.; Aremu, M.O. Nutritional composition of raw and processed pinto bean (Phaseolus vulgaris L.) grown in Nigeria. J. Food Agric. Environ. 2011, 9, 72–80. [Google Scholar]
- Adeyeye, E.I.; Afolabi, E.O. Amino acid composition of three different types of land snails consumed in Nigeria. Food Chem. 2004, 85, 535–539. [Google Scholar] [CrossRef]
- Adeyeye, E.I.; Adamu, A.S. Chemical composition and food properties of Gymnarchus niloticus (Trunk fish). Biosci. Biotechol. Res. Asia 2005, 3, 265–272. [Google Scholar]
- Adeyeye, E.I. Amino acids composition of fermented African locust bean (Parkia biglobosa) seeds. J. Appl. Environ. Sci. 2006, 2, 154–158. [Google Scholar]
- Nielsen, S.S. Introduction to the Chemical Analysis of Foods; CBS Publishers and Distributors: New Delhi, India, 2002; pp. 235–247. [Google Scholar]
- Adeyeye, E.I.; Aremu, M.O. Comparative evaluation of the amino acid profile of the brain and eyes of guinea fowl (Numida meleagris) hen. Open Nutraceuticals J. 2010, 3, 220–226. [Google Scholar] [CrossRef]
- Aremu, M.O.; Atolaiye, B.O.; Pennap, G.R.I.; Ashika, B.T. Proximate and amino acid composition of mesquite bean (Prosopis africana) protein concentrate. Indian J. Bot. Res. 2007, 3, 97–102. [Google Scholar]
- Ijarotimi, O.S.; Keshinro, O.O. Comparison between the amino acid, fatty acid, mineral and nutritional quality of raw, germinated and fermented African locust bean (Parkia biglobosa) flour. Acta Sci. Pol. Technol. Aliment. 2012, 11, 151–165. [Google Scholar] [PubMed]
- Bowen, K.J.; Kris-Etherton, P.M.; Shearer, G.C.; Sheila, G.W.; Reddivari, L.; Jones, P.J.H. Oleic acid-derived oleoylethanolamide: A nutritional science perspective. Prog. Lipid Res. 2017, 67, 1–15. [Google Scholar] [CrossRef]
- Duan, Y.; Gong, K.; Xu, S.; Meng, X.; Han, J. Regulation of cholesterol homeostasis in health and diseases: From mechanisms to targeted therapeutics. Sig. Transduct. Target. Ther. 2022, 7, 265. [Google Scholar] [CrossRef]
Non-Essential Amino Acids | ||||||
Amino acids | FPB | DPB | PI | Mean | SD | CV% |
Alanine | 2.94 b | 4.32 a | 4.81 a | 4.02 | 0.97 | 24.13 |
Aspartic acid | 6.90 b | 9.41 a | 10.40 a | 8.90 | 1.80 | 20.22 |
Serine | 2.78 b | 3.71 a | 3.88 a | 3.46 | 0.59 | 17.05 |
Glutamic acid | 11.0 b | 16.06 a | 17.27 a | 14.78 | 3.33 | 22.53 |
Total | 23.62 b | 34.49 a | 35.37 a | 31.16 | 6.54 | 20.98 |
Conditionally essential amino acids | ||||||
Proline | 3.22 b | 4.84 a | 4.86 a | 4.17 | 0.84 | 20.14 |
Glycine | 3.38 b | 3.69 b | 4.81 a | 3.96 | 0.75 | 18.94 |
Arginine | 3.49 b | 4.43 a | 4.59 a | 4.17 | 0.59 | 14.15 |
Cystine | 0.19 c | 0.25 b | 0.50 a | 0.31 | 0.16 | 51.61 |
Tyrosine | 4.46 c | 5.01 b | 6.02 a | 5.16 | 0.79 | 15.31 |
Total | 14.74 b | 19.41 a | 19.59 a | 31.16 | 6.54 | 20.98 |
Essential amino acids | ||||||
Lysine | 5.36 b | 5.75 b | 8.44 a | 6.52 | 1.68 | 25.77 |
Threonine | 2.31 b | 2.86 b | 3.44 a | 2.87 | 0.57 | 19.86 |
Valine | 4.68 c | 5.89 b | 6.57 a | 5.71 | 0.96 | 16.81 |
Methionine | 0.50 c | 0.69 b | 0.83 a | 0.67 | 0.17 | 25.37 |
Isoleucine | 2.97 b | 4.35 a | 4.37 a | 3.90 | 0.80 | 20.51 |
Leucine | 5.75 c | 7.10 b | 8.11 a | 6.99 | 1.18 | 16.88 |
Phenylalanine | 4.81 c | 5.31 b | 6.16 a | 5.43 | 0.68 | 12.52 |
Histidine | 1.98 c | 2.26 b | 3.69 a | 2.64 | 0.92 | 34.85 |
Trptophan | ND | ND | ND | ND | ND | ND |
Total | 28.36c | 34.93b | 40.89a | 34.73 | 6.27 | 18.05 |
Amino Acids | FPB | DPB | PI | Mean | SD | CV% |
---|---|---|---|---|---|---|
Total amino acid (TAA) | 66.72 b | 89.89 a | 94.79 a | 83.64 | 14.82 | 17.7 |
Total non-essential amino acid (TNEAA) | 34.87 b | 50.53 a | 49.31 a | 44.90 | 8.71 | 19.4 |
Total essential amino acid (TEAA) with His | 31.85 c | 39.36 b | 45.21 a | 38.74 | 6.60 | 17.0 |
Total essential amino acid (TEAA) with no His | 29.87 b | 37.10 a | 41.31 a | 36.09 | 5.77 | 15.9 |
% TNEAA | 44.77 b | 56.21 a | 52.29 a | 51.09 | 5.81 | 11.4 |
% TEAA with His | 47.74 a | 43.79 a | 47.71 a | 46.41 | 2.27 | 4.9 |
% TEAA with no His | 44.76 a | 41.27 a | 43.80 a | 43.28 | 1.80 | 4.2 |
Total neutral amino acid (TNAA) | 37.99 b | 50.77 a | 51.21 a | 46.66 | 7.51 | 16.1 |
% TNAA | 53.94 a | 54.30 a | 56.48 a | 55.91 | 1.41 | 2.52 |
Total acidic amino acid (TAAA) | 17.90 c | 26.68 b | 20.46 a | 24.21 | 5.51 | 22.8 |
% TAAA | 26.82 b | 29.68 a | 28.06 a | 28.19 | 1.43 | 5.1 |
Total basic amino acid (TBAA) | 10.83 b | 12.44 a | 13.84 a | 12.37 | 1.51 | 12.2 |
% TBAA | 14.68 b | 13.84 b | 16.23 a | 14.92 | 1.21 | 8.11 |
Total sulphur amino acid (TSAA) | 0.94 c | 1.33 b | 0.69 a | 0.99 | 0.32 | 32.3 |
% TSAA | 1.03 a | 1.48 a | 1.00 a | 1.17 | 0.27 | 15.8 |
% Cys/TSAA | 27.54 a | 37.59 b | 26.60 a | 30.58 | 6.09 | 19.9 |
Total aromatic amino acid (TArAA) | 9.27 b | 10.32 b | 12.18 a | 10.59 | 1.47 | 13.9 |
% TArAA | 13.89 a | 11.48 b | 12.91 a | 12.76 | 1.21 | 9.48 |
P-PER1 | 1.67 a | 2.23 b | 2.58b | 2.16 | 0.46 | 21.30 |
Leu/Ile ratio | 1.94 a | 1.63 a | 1.86a | 1.81 | 0.16 | 8.84 |
Leu/Ile ratio (difference) | 2.78 b | 2.75 b | 3.74a | 3.09 | 0.56 | 14.36 |
% Leu/Ile (difference) | ||||||
EAAI | 73.06 c | 78.95 b | 82.15 a | 78.05 | 4.61 | 5.91 |
BV | 67.94 c | 74.46 b | 77.84 c | 73.38 | 5.02 | 6.84 |
P-PER2 | 1.79 c | 2.40 b | 2.73 a | 2.41 | 0.48 | 20.80 |
NI | 28.06 c | 36.79 b | 48.80 a | 38.88 | 10.41 | 26.83 |
Protein | 38.4 c | 46.6 b | 59.4 a | 48.13 | 10.58 | 21.98 |
Amino Acids | Hen Eggs | FPB | DPB | PI | Mean | SD | CV% |
---|---|---|---|---|---|---|---|
His | 2.40 | 1.98 c | 2.26 b | 3.69 a | 1.10 | 0.38 | 34.6 |
Ser | 7.90 | 2.78 b | 3.88 a | 3.71 a | 0.44 | 0.08 | 18.2 |
Arg | 6.10 | 3.49 b | 4.43 a | 4.59 a | 0.68 | 0.09 | 13.2 |
Gly | 3.00 | 3.38 a | 4.81 b | 3.69 a | 1.36 | 0.21 | 15.4 |
Asp | 10.7 | 6.90 b | 9.41 a | 10.40 a | 0.97 | 0.83 | 20.5 |
Glu | 12.0 | 11.0 b | 17.27 a | 16.06 a | 1.23 | 0.27 | 22.0 |
Thre | 5.10 | 2.31 c | 3.44 b | 2.86 a | 0.56 | 0.11 | 19.6 |
Ala | 5.40 | 2.94 b | 4.81 a | 4.32 a | 0.74 | 0.18 | 24.3 |
Pro | 3.80 | 3.22 b | 4.84 a | 4.46 a | 1.10 | 0.22 | 20.0 |
Cys | 1.80 | 0.19 c | 0.50 b | 0.25 a | 0.18 | 0.09 | 50.0 |
Lys | 6.20 | 5.36 b | 5.75 b | 8.44 a | 1.05 | 0.27 | 25.7 |
Met | 3.20 | 0.50 b | 0.83 a | 0.69 a | 0.09 | 0.02 | 22.2 |
Val | 7.50 | 4.68 c | 5.89 b | 6.57 a | 0.83 | 0.05 | 6.0 |
Ile | 5.60 | 2.97 b | 4.35 a | 4.37 a | 0.70 | 0.14 | 20.0 |
Leu | 8.30 | 5.75 b | 7.10 a | 8.11 a | 0.84 | 0.15 | 17.9 |
Phe | 5.10 | 4.81 c | 5.31 b | 6.16 a | 1.06 | 0.13 | 12.3 |
Tyr | 4.00 | 4.46 c | 5.01 b | 6.02 a | 1.61 | 0.25 | 15.5 |
Amino Acids | Preschool | FPB | DPB | PI | Mean | SD | CV% |
---|---|---|---|---|---|---|---|
Leu | 6.60 | 0.87 b | 1.23 a | 1.08 a | 1.06 | 0.18 | 17.0 |
Ile | 2.80 | 1.06 b | 1.56 a | 1.55 a | 1.39 | 0.28 | 20.1 |
Met + Cys | 2.50 | 0.28 c | 0.38 b | 0.53 a | 0.40 | 0.13 | 32.5 |
Phe + Tyr | 6.30 | 1.47 c | 1.93 b | 1.64 a | 1.68 | 0.23 | 13.7 |
Thr | 3.40 | 0.68 c | 0.84 b | 1.01 a | 0.17 | 0.16 | 94.1 |
Val | 3.50 | 1.34 c | 1.88 b | 1.68 a | 1.63 | 0.27 | 16.7 |
His | 1.90 | 1.04 c | 1.94 b | 1.19 a | 1.39 | 0.48 | 34.5 |
Trp | 1.10 | ND | ND | ND | ND | ND | ND |
Lys | 5.80 | 0.92 a | 1.46 b | 0.99 a | 1.12 | 0.29 | 25.9 |
Amino Acids | Scoring Value | FPB | DPB | PI | Mean | SD | CV% |
---|---|---|---|---|---|---|---|
Ile | 4.00 | 0.57 b | 1.09 a | 1.09 a | 0.92 | 0.30 | 32.6 |
Leu | 7.00 | 0.82 c | 1.01 b | 1.16 a | 0.99 | 0.17 | 17.2 |
Lys | 5.50 | 0.97 c | 1.05 b | 1.53 a | 1.18 | 0.30 | 25.4 |
Met + Cys (TSAA) | 3.50 | 0.20 b | 0.27 b | 0.38 a | 0.28 | 0.09 | 32.1 |
Phe + Tyr | 6.00 | 1.55 c | 1.72 b | 2.03 a | 1.77 | 0.24 | 13.6 |
Thr | 4.00 | 0.58 b | 0.86 a | 0.72 a | 0.77 | 0.14 | 18.2 |
Val | 5.00 | 0.94 c | 1.18 b | 1.31 a | 1.14 | 0.19 | 16.7 |
Trp | 1.00 | ND | ND | ND | ND | ND | ND |
FPB | DPB | PI | Mean | SD | CV% | ||
---|---|---|---|---|---|---|---|
Fatty Acids | |||||||
Lauric acid | C12.0 | 0.01 b | 0.00 b | 0.11 a | 0.04 | 0.068 | 170 |
Mystic acids | C14.0 | 0.02 b | 0.02 b | 0.09 a | 0.043 | 0.040 | 93 |
Palmitic acid | C16 | 9.5 c | 8.76 b | 14.64 a | 10.97 | 3.202 | 29.2 |
Palmitoleic acid | C16.1 | 0.05 c | 0.03 b | 0.28 a | 0.12 | 0.139 | 115.8 |
Stearic acid | C18.0 | 15.1 b | 14.41 a | 14.78 a | 14.76 | 0.345 | 2.3 |
Oleic acid | C18.1 | 13.67 b | 13.41 b | 14.05 a | 13.71 | 0.322 | 2.3 |
Linoleic acid | C18.2 | 42.29 b | 41.94 b | 26.7 a | 36.98 | 8.902 | 24 |
Linolenic acid | C18.3 | 0.78 b | 0.71 b | 0.18 a | 0.56 | 0.328 | 58.6 |
Arachidic acid | C20.0 | 11.33 b | 12.05 b | 9.37 a | 10.92 | 1.387 | 12.7 |
Behenic acid | C22.0 | 0.08 b | 0.03 b | 0.27 a | 0.13 | 0.127 | 97.7 |
Lignocenic acid | C24.0 | 0.05 b | 0.04 b | 0.39 a | 0.16 | 0.199 | 124.4 |
Saturated Fatty Acid (SFA) | |||||||
Myristic acid | C14.0 | 0.02 a | 0.02 a | 0.09 b | 0.043 | 0.040 | 93 |
Palmitic acid | C16.0 | 9.5 b | 8.76 b | 14.64 a | 10.97 | 3.202 | 29.2 |
Stearic acid | C18.0 | 15.1 b | 14.41 a | 14.78 a | 14.76 | 0.345 | 2.3 |
Behenic acid | C22.0 | 0.08 b | 0.03 b | 0.27 a | 0.13 | 0.127 | 97.7 |
Total | 24.7 a | 23.22 a | 29.78 a | 25.9 | 3.44 | 13.3 | |
Polyunsaturated Fatty Acid (PUFA) | |||||||
Linoleic acid | C18.2 | 42.29 b | 41.94 b | 26.7 a | 36.98 | 8.902 | 24.1 |
Linolenic acid | C18.3 | 0.78 b | 0.71 b | 0.18 a | 0.56 | 0.328 | 58.6 |
Arachidonic acid | C20.4 | 0.03 b | 0.03 b | 0.25 a | 0.10 | 0.13 | 1.3 |
Docohexanoic acid | C22.6 | ||||||
Total | 43.1 b | 42.68 b | 27.13 a | 36.64 | 9.10 | 24.8 | |
Monosaturated Fatty Acid (MUFA) | |||||||
Palmitoleic acid | C16.1 | 0.05 a | 0.03 b | 0.28 a | 0.12 | 0.139 | 115.8 |
Oleic acid | C18.1 | 13.67 b | 13.41 b | 14.05 a | 13.71 | 0.322 | 2.3 |
Total | 13.72 b | 13.44 b | 14.33 a | 13.83 | 0.46 | 3.3 | |
P:S | 1.74 b | 1.84 b | 0.91 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osunsanmi, F.O.; Ogunyinka, B.I.; Oyinloye, B.E.; Opoku, A.R.; Kappo, A.P. Effect of Processing Methods on Amino Acid and Fatty Acid Composition of Parkia biglobosa Seeds. Appl. Sci. 2024, 14, 10106. https://doi.org/10.3390/app142210106
Osunsanmi FO, Ogunyinka BI, Oyinloye BE, Opoku AR, Kappo AP. Effect of Processing Methods on Amino Acid and Fatty Acid Composition of Parkia biglobosa Seeds. Applied Sciences. 2024; 14(22):10106. https://doi.org/10.3390/app142210106
Chicago/Turabian StyleOsunsanmi, Foluso Oluwagbemiga, Bolajoko Idiat Ogunyinka, Babatunji Emmanuel Oyinloye, Andrew Rowland Opoku, and Abidemi Paul Kappo. 2024. "Effect of Processing Methods on Amino Acid and Fatty Acid Composition of Parkia biglobosa Seeds" Applied Sciences 14, no. 22: 10106. https://doi.org/10.3390/app142210106
APA StyleOsunsanmi, F. O., Ogunyinka, B. I., Oyinloye, B. E., Opoku, A. R., & Kappo, A. P. (2024). Effect of Processing Methods on Amino Acid and Fatty Acid Composition of Parkia biglobosa Seeds. Applied Sciences, 14(22), 10106. https://doi.org/10.3390/app142210106