Immobilization of Levocetirizine on Mesoporous Silica for Antiallergenic Gel Formulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Levocetirizine Dihydrohloride and Levocetirizine Base Immobilized on MSM
2.3. Scanning Electron Microscopy (SEM) Measurement
2.4. Low-Temperature Nitrogen Adsorption/Desorption
2.5. X-ray Photoelectron Spectroscopy (XPS) Measurement
2.6. X-ray Diffraction (XRD) Measurement
2.7. Differential Scanning Calorimetric (DSC) Measurement
2.8. Infrared Spectroscopic (IR) Measurements
2.9. Levocetirizine Releasing Study from Silica Containing Drug Delivery System
2.10. Preparation of Gel for In Vivo Experiment
2.11. Animal Experiment
2.12. Statistical Analysis
3. Results and Discussions
3.1. Surface Characterization of Pure Levocetirizine Samples
3.2. Immobilization of LevdC on Mesoporous Material
3.3. Immobilization of Levb on Mesoporous Material
3.4. In Vitro Levo Releasing
3.5. In Vivo Effectiveness of Gel Containing Levb Immobilized on Silica
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | atopic dermatitis |
BET | Brunauer–Emmett–Teller |
DCM | dichloromethane |
DDS | drug delivery system |
DR | Dubinin–Radushkevich |
DSC | differential scanning calorimetric |
gSyLev | gel containing levocetirizine base on Syloid mesoporous silica material |
IR | infrared spectroscopic |
Levo | levocetirizine |
Levb | levocetirizine base |
LevdC | levocetirizine dihydrochloride |
M | methanol |
MSM | mesoporous silica material |
NMRI | mouse model (Naval Medical Research Institute) |
SEM | scanning electron microscopy |
Sy | Syloid®72FP |
SSA | specific surface area |
SyLevdC | levocetirizine dihydrochloride on Syloid mesoporous silica material |
SyLevb | levocetirizine base on Syloid mesoporous silica material |
TG-DSC | thermogravimetric and differential scanning calorimetry |
US | ultrasound, ultrasonic |
Vtot | total pore volume |
Vm | mesopore volume |
W | water |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray diffraction |
References
- Vieira, R.J.; Torres, M.I.; Bognanni, A.; Gil-Mata, S.; Ferreira-da-Silva, R.; Lourenço-Silva, N.; Cardoso-Fernandes, A.; Ferreira, A.; Ferreira-Cardoso, H.; Teles, J.; et al. Protocol for the Systematic Reviews on the Desirable and Undesirable Effects of Pharmacological Treatments of Allergic Rhinitis Informing the ARIA 2024 Guidelines. Allergol. Sel. 2024, 8, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Renert-Yuval, Y.; Guttman-Yassky, E. What’s New in Atopic Dermatitis. Dermatol. Clin. 2019, 37, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Durham, S.R. Mechanisms of Allergen Immunotherapy for Inhaled Allergens and Predictive Biomarkers. J. Allergy Clin. Immunol. 2017, 140, 1485–1498. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, J.I.; Toth, D.; Bieber, T.; Alexis, A.F.; Elewski, B.E.; Pink, A.E.; Hijnen, D.; Jensen, T.N.; Bang, B.; Olsen, C.K.; et al. Tralokinumab plus Topical Corticosteroids for the Treatment of Moderate-to-Severe Atopic Dermatitis: Results from the Double-Blind, Randomized, Multicentre, Placebo-Controlled Phase III ECZTRA 3 Trial*. Br. J. Dermatol. 2021, 184, 450–463. [Google Scholar] [CrossRef]
- Choudhary, D.R.; Patel, V.A.; Chhalotiya, U.K.; Patel, H.V.; Kundawala, A.J. Formulation and Evaluation of Fast Dissolving Film of Levocetirizine Dihydrochloride Using Different Grades of Methocel Parameters Polymer Grades Methocel K3 Methocel E3 Methocel E5 Methocel E15. J. Pharm. Res. 2011, 4, 2919–2924. [Google Scholar]
- Tillement, J.P.; Testa, B.; Brée, F. Compared Pharmacological Characteristics in Humans of Racemic Cetirizine and Levocetirizine, Two Histamine H1-Receptor Antagonists. Biochem. Pharmacol. 2003, 66, 1123–1126. [Google Scholar] [CrossRef]
- Benedetti, M.S.; Plisnier, M.; Kaise, J.; Maier, L.; Baltes, E.; Arendt, C. McCracken, N. Absorption, Distribution, Metabolism and Excretion of [14C]Levocetirizine, the R Enantiomer of Cetirizine, in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2001, 57, 571–582. [Google Scholar] [CrossRef]
- Randall, K.L.; Hawkins, C.A. Antihistamines and Allergy. Aust. Prescr. 2018, 41, 42–45. [Google Scholar] [CrossRef]
- Uysal, Ü.; Tunçel, M. Validated Capillary Electrophoresis Study for the Determination of Cetirizine in Pharmaceutical Forms. J. Liq. Chromatogr. Relat. Technol. 2006, 29, 1781–1792. [Google Scholar] [CrossRef]
- Goindi, S.; Kumar, G.; Kumar, N.; Kaur, A. Development of Novel Elastic Vesicle-Based Topical Formulation of Cetirizine Dihydrochloride for Treatment of Atopic Dermatitis. AAPS PharmSciTech 2013, 14, 1284–1293. [Google Scholar] [CrossRef]
- Ciurlizza, C.; Fernández, F.; Calpena, A.C.; Lázaro, R.; Parra, A.; Clares, B. Semisolid Formulations Containing Cetirizine: Human Skin Permeation and Topical Antihistaminic Evaluation in a Rabbit Model. Arch. Dermatol. Res. 2014, 306, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Mangal, A.; Singh Bhadoriya, S.; Madoriya, N.; Dixit, P. Bioavailability and Bioactivity Enhancement of Herbal Drugs by “Nanotechnology”: A Review. J. Curr. Pharm. Res. 2011, 8, 1–7. [Google Scholar]
- Nohynek, G.J.; Dufour, E.K.; Roberts, M.S. Nanotechnology, Cosmetics and the Skin: Is There a Health Risk? Ski. Pharmacol. Physiol. 2008, 21, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Vandana, K.R.; Prasanna Raju, Y.; Harini Chowdary, V.; Sushma, M.; Vijay Kumar, N. An Overview on in Situ Micronization Technique—An Emerging Novel Concept in Advanced Drug Delivery. Saudi Pharm. J. 2014, 22, 283–289. [Google Scholar] [CrossRef]
- Vemula, V.R.; Lagishetty, V. Srikanth Lingala Solubility Enhancement Techniques. Int. J. Pharm. Sci. Rev. Res. 2010, 5, 41–51. [Google Scholar]
- Wanning, S.; Süverkrüp, R.; Lamprecht, A. Pharmaceutical Spray Freeze Drying. Int. J. Pharm. 2015, 488, 136–153. [Google Scholar] [CrossRef]
- David, A. Edwards; Justin Hanes; Giovanni Caponetti; Jeffrey Hrkach; Abdelaziz Ben-Jebria; Mary Lou Eskew; Jeffrey Mintzes; Daniel Deaver; Noah Lotan; Robert Langer Large Porous Particles for Pulmonary Drug Delivery. Science (1979) 1997, 276, 1868–1871. [Google Scholar]
- Poursina, N.; Vatanara, A.; Rouini, M.R.; Gilani, K.; Rouholamini Najafabadi, A. Systemic Delivery of Parathyroid Hormone Using Spray Freeze-Dried Inhalable Particles. Pharm. Dev. Technol. 2017, 22, 733–739. [Google Scholar] [CrossRef]
- Waters, L.J.; Hanrahan, J.P.; Tobin, J.M.; Finch, C.V.; Parkes, G.M.B.; Ahmad, S.A.; Mohammad, F.; Saleem, M. Enhancing the Dissolution of Phenylbutazone Using Syloid® Based Mesoporous Silicas for Oral Equine Applications. J. Pharm. Anal. 2018, 8, 181–186. [Google Scholar] [CrossRef]
- Sliwinska-Bartkowiak, M.; Dudziak, G.; Sikorski, R.; Gras, R.; Radhakrishnan, R.; Gubbins, K.E. Melting/Freezing Behavior of a Fluid Confined in Porous Glasses and MCM-41: Dielectric Spectroscopy and Molecular Simulation. J. Chem. Phys. 2001, 114, 950–962. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, T.; Wang, J.; Zheng, L.; Jiang, T.; Cheng, G.; Wang, S. Fabrication of Mesoporous Hydroxycarbonate Apatite for Oral Delivery of Poorly Water-Soluble Drug Carvedilol. J. Non. Cryst. Solids 2012, 358, 229–235. [Google Scholar] [CrossRef]
- Mai, W.X.; Meng, H. Mesoporous Silica Nanoparticles: A Multifunctional Nano Therapeutic System. Integr. Biol. 2013, 5, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Zaharudin, N.S.; Mohamed Isa, E.D.; Ahmad, H.; Abdul Rahman, M.B.; Jumbri, K. Functionalized Mesoporous Silica Nanoparticles Templated by Pyridinium Ionic Liquid for Hydrophilic and Hydrophobic Drug Release Application. J. Saudi Chem. Soc. 2020, 24, 289–302. [Google Scholar] [CrossRef]
- Szentmihályi, K.; Klébert, S.; May, Z.; Bódis, E.; Mohai, M.; Trif, L.; Feczkó, T.; Károly, Z. Immobilization of Metronidazole on Mesoporous Silica Materials. Pharmaceutics 2022, 14, 2332. [Google Scholar] [CrossRef]
- Basavaiah, K.; Raghu, M.S.; Vinay, K.B. Simple and Rapid Spectrophotometric Assay of Levocetirizine in Pharmaceuticals through Charge-Transfer Complexation Using Chloranilic Acid and 2,3-Dichloro-5,6-Dicyanoquinone as π-Acceptors. Bull. Chem. Soc. Ethiop. 2012, 26, 319–328. [Google Scholar] [CrossRef]
- Prabhu, S.L.; Shirwaikar, A.A.; Shirwaikar, A.; Kumar, C.D.; Kumar, G.A. Simultaneous UV Spectrophotometric Estimation of Ambroxol Hydrochloride and Levocetirizine Dihydrochloride. Indian J. Pharm. Sci. 2008, 70, 236. [Google Scholar]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Mohai, M. XPS MultiQuant: Multimodel XPS Quantification Software. Surf. Interface Anal. 2004, 36, 828–832. [Google Scholar] [CrossRef]
- Evans, S.; Pritchard, R.G.; Thomas, J.M. Relative Differential Subshell Photoionisation Cross-Sections (MgKα) from Lithium to Uranium. J. Electron Spectrosc. Relat. Phenom. 1978, 14, 341–358. [Google Scholar] [CrossRef]
- Reilman, R.F.; Msezane, A.; Manson, S.T. Relative Intensities in Photoelectron Spectroscopy of Atoms And Molecules. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 389–394. [Google Scholar] [CrossRef]
- Mohai, M.; Bertóti, I. Correction for surface contaminations in XPS: A practical approach. In ECASIA 95; Mathieu, H.J., Reihl, B., Briggs, D., Eds.; John Willey & Sons: Chichester, UK, 1996; pp. 675–678. [Google Scholar]
- Yu, M.; Ma, H.; Lei, M.; Li, N.; Tan, F. In Vitro/in Vivo Characterization of Nanoemulsion Formulation of Metronidazole with Improved Skin Targeting and Anti-Rosacea Properties. Eur. J. Pharm. Biopharm. 2014, 88, 92–103. [Google Scholar] [CrossRef] [PubMed]
- Zhuravlev, L.T. Concentration of Hydroxyl Groups on the Surface of Amorphous Silicas. Langmuir 1987, 3, 316–318. [Google Scholar] [CrossRef]
- Fisher, K.A.; Huddersman, K.D.; Taylor, M.J. Comparison of Micro- and Mesoporous Inorganic Materials in the Uptake and Release of the Drug Model Fluorescein and Its Analogues. Chem. A Eur. J. 2003, 9, 5873–5878. [Google Scholar] [CrossRef] [PubMed]
- Rosenholm, J.M.; Lindén, M. Towards Establishing Structure–Activity Relationships for Mesoporous Silica in Drug Delivery Applications. J. Control. Release 2008, 128, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://web.archive.org/web/20100704013154/http://macro.lsu.edu/HowTo/solvents/Dielectric%20Constant%20.htm (accessed on 25 September 2024).
- Maleki, A.; Kettiger, H.; Schoubben, A.; Rosenholm, J.M.; Ambrogi, V.; Hamidi, M. Mesoporous Silica Materials: From Physico-Chemical Properties to Enhanced Dissolution of Poorly Water-Soluble Drugs. J. Control. Release 2017, 262, 329–347. [Google Scholar] [CrossRef]
- Akhtar, S.; Hussain, S.; Mandal, S.K. Formulation Development And Characterization Of Effervescent Tablets Along With Levocetirizine Dihydrochloride. Asian J. Pharm. Clin. Res. 2020, 13, 124–130. [Google Scholar] [CrossRef]
- Yi, L.; Cui, L.; Cheng, L.; Móczó, J.; Pukánszky, B. Levocetirizine-Loaded Electrospun Fibers from Water-Soluble Polymers: Encapsulation and Drug Release. Molecules 2023, 28, 4188. [Google Scholar] [CrossRef]
- Djekic, L.; Primorac, M.; Filipic, S.; Agbaba, D. Investigation of Surfactant/Cosurfactant Synergism Impact on Ibuprofen Solubilization Capacity and Drug Release Characteristics of Nonionic Microemulsions. Int. J. Pharm. 2012, 433, 25–33. [Google Scholar] [CrossRef]
- Almawash, S.; Quadir, S.S.; Al Saqr, A.; Sharma, G.; Raza, K. Dual Delivery of Fluticasone Propionate and Levocetirizine Dihydrochloride for the Management of Atopic Dermatitis Using a Microemulsion-Based Topical Gel. ACS Omega 2022, 7, 7696–7705. [Google Scholar] [CrossRef]
- Yurtdaş Kirimlioğlu, G.; Öztürk, A.A. Levocetirizine Dihydrochloride-Loaded Chitosan Nanoparticles: Formulation and in Vitro Evaluation. Turk J. Pharm. Sci. 2020, 17, 27–35. [Google Scholar] [CrossRef]
- Mirankó, M.; Tóth, J.; Fodor-Kardos, A.; Móricz, K.; Szenes-Nagy, A.B.; Gácsi, A.; Spaits, T.; Gyenis, J.; Feczkó, T. Topical Formulation of Nano Spray-Dried Levocetirizine Dihydrochloride against Allergic Edema. Pharmaceutics 2022, 14, 2577. [Google Scholar] [CrossRef] [PubMed]
Samples | Mixing Time (h) | Solvent | Levocetirizine Form |
---|---|---|---|
SyLev1 | 2 | water | dihydrochloride |
SyLev2 | 24 | ||
SyLev3 | 2 | methanol | |
SyLev4 | 24 | ||
SyLev5 | 72 | ||
SyLev6 | 2 | dichloromethane | free base |
SyLev7 | 24 | ||
SyLev8 | 48 | ||
SyLev9 | 72 |
Samples | Specific Surface Area (m2 g−1) | Covered Area (%) |
---|---|---|
Syloid | 368 | – |
SyLev1 | 278 | 24.5 |
SyLev2 | 357 | 3.0 |
SyLev3 | 288 | 21.8 |
SyLev4 | 278 | 24.5 |
SyLev5 | 301 | 19.2 |
Samples | Vtot (cm3 g−1) | Covered Vtot (%) | Vm (cm3 g−1) | Covered Vm (%) | SSA (m2 g−1) | Covered SSA of Syloid (%) |
---|---|---|---|---|---|---|
Syloid | 1.1 | 1.1 | 368 | |||
SyLev6 | 0.76 | 30.9 | 0.75 | 31.8 | 247 | 32.9 |
SyLev7 | 0.74 | 32.7 | 0.70 | 36.4 | 235 | 36.1 |
SyLev8 | 0.44 | 60.0 | 0.39 | 64.5 | 127 | 65.5 |
SyLev9 | 0.62 | 43.6 | 0.60 | 45.5 | 190 | 48.4 |
Sample | O | N | C | Cl | Si | |
---|---|---|---|---|---|---|
Uncorrected | SyLev6 | 50.3 | 2.1 | 24.2 | 0.7 | 22.7 |
SyLev7 | 46.9 | 3.0 | 27.6 | 0.9 | 21.5 | |
SyLev8 | 44.0 | 2.5 | 30.6 | 1.2 | 21.7 | |
SyLev9 | 43.1 | 3.2 | 32.1 | 1.2 | 20.5 | |
Pure base | Theoretical | 11.1 | 7.4 | 77.8 | 3.7 | |
Measured | 12.6 | 9.6 | 74.5 | 3.3 | ||
Corrected | SyLev6 | 12.0 | 6.9 | 78.9 | 2.2 | SiO2.3 |
SyLev7 | 11.2 | 8.5 | 77.8 | 2.5 | SiO2.2 | |
SyLev8 | 11.9 | 6.4 | 78.8 | 3.0 | SiO2.1 | |
SyLev9 | 11.3 | 7.7 | 78.0 | 2.9 | SiO2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szentmihályi, K.; Klébert, S.; Móricz, K.; Szenes-Nagy, A.B.; May, Z.; Bódis, E.; Mohai, M.; Trif, L.; Mirankó, M.; Feczkó, T.; et al. Immobilization of Levocetirizine on Mesoporous Silica for Antiallergenic Gel Formulation. Appl. Sci. 2024, 14, 9605. https://doi.org/10.3390/app14209605
Szentmihályi K, Klébert S, Móricz K, Szenes-Nagy AB, May Z, Bódis E, Mohai M, Trif L, Mirankó M, Feczkó T, et al. Immobilization of Levocetirizine on Mesoporous Silica for Antiallergenic Gel Formulation. Applied Sciences. 2024; 14(20):9605. https://doi.org/10.3390/app14209605
Chicago/Turabian StyleSzentmihályi, Klára, Szilvia Klébert, Krisztina Móricz, Antal Balázs Szenes-Nagy, Zoltán May, Eszter Bódis, Miklós Mohai, László Trif, Mirella Mirankó, Tivadar Feczkó, and et al. 2024. "Immobilization of Levocetirizine on Mesoporous Silica for Antiallergenic Gel Formulation" Applied Sciences 14, no. 20: 9605. https://doi.org/10.3390/app14209605
APA StyleSzentmihályi, K., Klébert, S., Móricz, K., Szenes-Nagy, A. B., May, Z., Bódis, E., Mohai, M., Trif, L., Mirankó, M., Feczkó, T., & Károly, Z. (2024). Immobilization of Levocetirizine on Mesoporous Silica for Antiallergenic Gel Formulation. Applied Sciences, 14(20), 9605. https://doi.org/10.3390/app14209605