Simultaneous HPLC of Metformin, Glipizide and Gliclazide, and Metformin Uptake and Protection of HEI-OC1 from Hyperglycaemia
Abstract
:1. Introduction
2. Materials, Chemicals, Methods and Cell Line
2.1. Instrumentation and Mobile Phase Used
2.2. Preparation of Stock Solutions of Individual Analytes
2.3. Preparation of Working Solutions of Individual Analytes and the Ternary Mixture
2.4. Method Development and Validation
2.4.1. Method Development, Wavelength Selection and Optimisation
2.4.2. Analytical Method Validation
2.4.3. Chromatographic System Suitability
2.4.4. Intra-Day Precision (Repeatability) and Intermediate Precision (Inter-Day Precision)
2.4.5. Analytical Method Linearity and Calibration Curve
2.4.6. Detection and Quantification Limits of the Analytical Method
2.4.7. Method Robustness
2.4.8. Method Selectivity, Specificity, Accuracy and Recovery from Market Tablets
2.4.9. Quantification of Metformin Uptake by the House Ear Institute-Organ of Corti HEI-OC1 Cell Line
- Mi is the Initial metformin added to treat HEI-OC1 cells (µg/mL)
- Md is the metformin detected in DMEM dried vials (µg/mL)
2.4.10. Cell Viability Assay
3. Results and Discussion
3.1. Method Development and Optimisation
3.2. Method Validation
3.2.1. Chromatographic System Suitability
3.2.2. Intra-Day Precision (Repeatability) and Intermediate Precision (Inter-Day Precision)
3.2.3. Analytical Method Linearity and Calibration Curve
3.2.4. Detection and Quantification Limits of the Analytical Method
3.2.5. Method Robustness
3.2.6. Method Selectivity, Specificity, Accuracy/Trueness and Recovery from Market Tablets
3.2.7. Quantification of Metformin Uptake by HEI-OC1
3.2.8. Cell Viability Results
4. Statistical Analysis
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quianzon, C.C.; Cheikh, I.E. History of current non-insulin medications for diabetes mellitus. J. Community Hosp. Intern. Med. Perspect 2012, 2, 19081. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Kim, J.-R.; Choi, H.C. Gliclazide, a KATP channel blocker, inhibits vascular smooth muscle cell proliferation through the CaMKKβ–AMPK pathway. Vascul. Pharmacol. 2018, 102, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Li, B.; Yang, Y.; Yang, Y.; Li, J.; Zhou, Q.; Wen, Y.; Zeng, C.; Zheng, L.; Zhang, Q. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis. Sci. Rep. 2016, 6, 27819. [Google Scholar] [CrossRef] [PubMed]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Role of metformin in various pathologies: State-of-the-art microcapsules for improving its pharmacokinetics. Ther. Deliv. 2020, 11, 733–753. [Google Scholar] [CrossRef] [PubMed]
- Tandon, S.; Sarkar, S. Glipizide ameliorates human poly (Q) mediated neurotoxicity by upregulating insulin signalling in Drosophila disease models. Biochem. Biophys. Res. Commun. 2023, 645, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.; Zhou, Q.; Li, B.; Yang, Y.; Cao, L.; Ye, Y.; Li, J.; Ding, Y.; Wang, H.; Wang, J. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget 2014, 5, 9966–9979. [Google Scholar] [CrossRef]
- Mao, G.; Zheng, S.; Li, J.; Liu, X.; Zhou, Q.; Cao, J.; Zhang, Q.; Zheng, L.; Wang, L.; Qi, C. Glipizide combined with ANP suppresses breast cancer growth and metastasis by inhibiting angiogenesis through VEGF/VEGFR2 signaling. Anticancer Agents Med. Chem. 2022, 22, 1735–1741. [Google Scholar] [CrossRef]
- Nazim, U.M.; Moon, J.-H.; Lee, Y.-J.; Seol, J.-W.; Kim, Y.J.; Park, S.-Y. Glipizide sensitizes lung cancer cells to TRAIL-induced apoptosis via Akt/mTOR/autophagy pathways. Oncotarget 2017, 8, 100021–100033. [Google Scholar] [CrossRef]
- Alp, H.; Varol, S.; Celik, M.M.; Altas, M.; Evliyaoglu, O.; Tokgoz, O.; Tanrıverdi, M.H.; Uzar, E. Protective effects of beta glucan and gliclazide on brain tissue and sciatic nerve of diabetic rats induced by streptozosin. J. Diabetes Res. 2012, 2012, 230342. [Google Scholar] [CrossRef]
- Wu, Y.-B.; Shi, L.-L.; Wu, Y.-J.; Xu, W.-H.; Wang, L.; Ren, M.-S. Protective effect of gliclazide on diabetic peripheral neuropathy through Drp-1 mediated-oxidative stress and apoptosis. Neurosci. Lett. 2012, 523, 45–49. [Google Scholar] [CrossRef]
- Jennings, P.E. Vascular benefits of gliclazide beyond glycemic control. Metabolism 2000, 49, 17–20. [Google Scholar] [CrossRef]
- Mamputu, J.-C. Gliclazide decreases vascular smooth muscle cell dysfunction induced by cell-mediated oxidized low-density lipoprotein. Metab. Clin. Exp. 2001, 50, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Hou, K.; Wang, Y.; Chen, Y.; Zheng, X.; Qi, J.; Yang, B.; Tang, S.; Han, X.; Shi, D. Identification of prognostic signature and gliclazide as candidate drugs in lung adenocarcinoma. Front. Oncol. 2021, 11, 665276. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Y.; Zhang, D.; Wang, H.; Cui, X.; Zhang, C.; Xin, Y. Gliclazide Reduces Colitis-Associated Colorectal Cancer Formation by Deceasing Colonic Inflammation and Regulating AMPK-NF-κB Signaling Pathway. Dig. Dis. Sci. 2024, 69, 453–462. [Google Scholar] [CrossRef]
- Umapathi, P.; Ayyappan, J.; Quine, S.D. Quantitative determination of metformin hydrochloride in tablet formulation containing croscarmellose sodium as disintegrant by HPLC and UV spectrophotometry. Trop. J. Pharm. Res. 2012, 11, 107–116. [Google Scholar] [CrossRef]
- Dhawan, S.; Singla, A. Performance liquid chromatographic analysis of glipizide: Application to in vitro and in vivo studies. J. Chromatogr. Sci. 2003, 41, 295–300. [Google Scholar] [CrossRef]
- Foroutan, S.; Zarghi, A.; Shafaati, A.; Khoddam, A. Application of monolithic column in quantification of gliclazide in human plasma by liquid chromatography. J. Pharm. Biomed. Anal. 2006, 42, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Development and validation of a new analytical HPLC method for simultaneous determination of the antidiabetic drugs, metformin and gliclazide. J. Food Drug Anal. 2019, 27, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Advanced and multifaceted stability profiling of the first-line antidiabetic drugs metformin, gliclazide and glipizide under various controlled stress conditions. Saudi Pharm. J. 2020, 28, 362–368. [Google Scholar] [CrossRef]
- Lakshmi, K.; Rajesh, T. Development and validation of RP-HPLC method for simultaneous determination of glipizide, rosiglitazone, pioglitazone, glibenclamide and glimepiride in pharmaceutical dosage forms and human plasma. J. Iran. Chem. Soc. 2011, 8, 31–37. [Google Scholar] [CrossRef]
- Sultana, N.; Naveed, S.; Arayne, M. Development and validation of a simple and efficient RPLC method for analysis of captopril, metformin, pioglitazone and glibenclamide in API, formulations and human serum. Pharm. Anal. Acta. 2013, 4, 2. [Google Scholar] [CrossRef]
- Sultana, N.; Saeed Arayne, M.; Ali, S.N.; Zuberi, M.H. Simultaneous determination of glipizide and glimepride by Rp-Hplc in dosage formulations and in human serum. Med. Chem. Res. 2012, 21, 2443–2448. [Google Scholar] [CrossRef]
- Cruz-Angeles, J.; Martínez, L.M.; Videa, M.; Rodríguez-Rodríguez, J.; Martínez-Jiménez, C. Development and Validation of a Rapid Analytical Method for the Simultaneous Quantification of Metabolic Syndrome Drugs by HPLC-DAD Chromatography. Sci. Pharm. 2021, 89, 8. [Google Scholar] [CrossRef]
- Elkady, E.F.; El-Zaher, A.A.; Elwy, H.H.; Saleh, M.A. Validated liquid chromatographic method for simultaneous determination of metformin, pioglitazone, sitagliptin, repaglinide, glibenclamide and gliclazide-application for counterfeit drug analysis. J. Anal. Bioanal. Tech. 2015, S13, 1–8. [Google Scholar] [CrossRef]
- El-Wasseef, D.R. Simultaneous determination of metformin, nateglinide and gliclazide in pharmaceutical preparations using micellar liquid chromatography. Int. J. Biomed. Sci. 2012, 8, 144–151. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3614865/ (accessed on 15 September 2024). [CrossRef]
- AbuRuz, S.; Millership, J.; McElnay, J. The development and validation of liquid chromatography method for the simultaneous determination of metformin and glipizide, gliclazide, glibenclamide or glimperide in plasma. J. Chromatogr. B. 2005, 817, 277–286. [Google Scholar] [CrossRef]
- Kolte, B.; Raut, B.; Deo, A.; Bagool, M.; Shinde, D. Simultaneous determination of metformin in its multicomponent dosage forms with glipizide and gliclazide using micellar liquid chromatography. J. Liq. Chromatogr. Relat. Technol. 2003, 26, 1117–1133. [Google Scholar] [CrossRef]
- Sebaiy, M.M.; El-Adl, S.M.; Baraka, M.M.; Hassan, A.A. Rapid RP-HPLC method for simultaneous estimation of some antidiabetics; Metformin, Gliclazide and Glimepiride in Tablets. Egypt. J. Chem. 2019, 62, 429–440. [Google Scholar] [CrossRef]
- Troja, E.; Deda, L.; Boçari, G. Ion-pair HPLC method for the quantification of metformin in human urine. J. Appl. Bioanal. 2016, 2, 16–24. [Google Scholar] [CrossRef]
- AbuRuz, S.; Millership, J.; McElnay, J. Determination of metformin in plasma using a new ion pair solid phase extraction technique and ion pair liquid chromatography. J. Chromatogr. B. 2003, 798, 203–209. [Google Scholar] [CrossRef]
- Bandarkar, F.; Khattab, I. Simultaneous estimation of glibenclamide, gliclazide, and metformin hydrochloride from bulk and commercial products using a validated ultra fast liquid chromatography technique. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 1814–1830. [Google Scholar] [CrossRef]
- Pani, N.R.; Acharya, S.; Patra, S. Development and validation of RP-HPLC method for quantification of glipizide in biological macromolecules. Int. J. Biol. Macromol. 2014, 65, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Porwal, P.K.; Talele, G.S. Development of validated HPLC-UV method for simultaneous determination of metformin, amlodipine, glibenclamide and atorvastatin in human plasma and application to protein binding studies. Bull. Fac. Pharm. Cairo Univ. 2017, 55, 129–139. [Google Scholar] [CrossRef]
- Cecchi, T. Ion pairing chromatography. Crit. Rev. Anal. Chem. 2008, 38, 161–213. [Google Scholar] [CrossRef] [PubMed]
- Ståhlberg, J. Chromatography: Liquid|ion pair liquid chromatography. Encycl. Sep. Sci. 2000. Available online: https://www.sciencedirect.com/topics/chemistry/ion-pair-chromatography (accessed on 15 September 2024).
- Ståhlberg, J. Retention models for ions in chromatography. J. Chromatogr. A. 1999, 855, 3–55. [Google Scholar] [CrossRef]
- Troja, E.; Deda, L.; Boçari, G. Ion-pair HPLC method for the quantification of metformin in human plasma and its application to a pharmacokinetic study. Br. J. Pharm. Res. 2016, 9, 1–9. [Google Scholar] [CrossRef]
- Vasudevan, M.; Ravi, J.; Ravisankar, S.; Suresh, B. Ion-pair liquid chromatography technique for the estimation of metformin in its multicomponent dosage forms. J. Pharm. Biomed. Anal. 2001, 25, 77–84. [Google Scholar] [CrossRef]
- Rao, B.U.; Nikalje, A.P. Determination of gliclazide in a tablet dosage form in the presence of metformin hydrochloride by ion pair reversed phase liquid chromatographic technique. Afr. J. Pharm. Pharmacol. 2011, 5, 1331–1337. [Google Scholar] [CrossRef]
- Brocks, D.; Gabr, R.Q.; Padwal, R.S. Determination of metformin in human plasma and urine by high-performance liquid chromatography using small sample volume and conventional octadecyl silane column. J. Pharm. Pharm. Sci. 2010, 13, 486–494. [Google Scholar] [CrossRef]
- El-Gindy, A.; Nassar, M.W.; El-Abasawy, N.M.; Attia, K.A.-S.; Al-Shabrawi, M. Optimization and validation of an RP-HPLC method for direct determination of metformin hydrochloride in human urine and in a dosage form. J. AOAC. Int. 2010, 93, 1821–1828. [Google Scholar] [CrossRef]
- Guideline, I.H.T. Validation of analytical procedures: Text and methodology. Q2 (R1) 2005, 1, 5. [Google Scholar]
- Jung, H.H.; Chang, J.; Yang, J.Y.; Choi, J.; Im, G.J.; Chae, S.W. Protective role of antidiabetic drug metformin against gentamicin induced apoptosis in auditory cell line. Hear. Res. 2011, 282, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Oishi, N.; Kendall, A.; Schacht, J. Metformin protects against gentamicin-induced hair cell death in vitro but not ototoxicity in vivo. Neurosci. Lett. 2014, 583, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Glutz, A.; Leitmeyer, K.; Setz, C.; Brand, Y.; Bodmer, D. Metformin protects auditory hair cells from gentamicin-induced toxicity in vitro. Audiol. Neurotol. 2015, 20, 360–369. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, S.H.; Chang, J.W.; Song, J.-J.; Jung, H.H.; Im, G.J. Protective effect of metformin on gentamicin-induced vestibulotoxicity in rat primary cell culture. Clin. Exp. Otorhinolaryngol. 2014, 7, 286–294. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, T.; Zhan, T.; Cheng, G.; Zhang, W.; Jia, H.; Yang, H. Metformin alleviates cisplatin-induced ototoxicity by autophagy induction possibly via the AMPK/FOXO3a pathway. J. Neurophysiol. 2021, 125, 1202–1212. [Google Scholar] [CrossRef]
- Chang, J.; Jung, H.H.; Yang, J.Y.; Lee, S.; Choi, J.; Im, G.J.; Chae, S.W. Protective effect of metformin against cisplatin-induced ototoxicity in an auditory cell line. J. Assoc. Res. Otolaryngol. 2014, 15, 149–158. [Google Scholar] [CrossRef]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Diabetes-induced cellular changes in the inner ear. Diabet. Epidemiol. Manag. 2023, 13, 100183. [Google Scholar] [CrossRef]
- Gedawy, A.; Al-Salami, H.; Dass, C.R. Biochemical changes to the inner ear contributing to diabetes-induced hearing loss: Possible pharmacological targets for therapy. J. Pharm. Pharmacol. 2024, 76, 295–306. [Google Scholar] [CrossRef]
- Schönherr, D.; Wollatz, U.; Haznar-Garbacz, D.; Hanke, U.; Box, K.; Taylor, R.; Ruiz, R.; Beato, S.; Becker, D.; Weitschies, W. Characterisation of selected active agents regarding pKa values, solubility concentrations and pH profiles by SiriusT3. Eur. J. Pharm. Biopharm. 2015, 92, 155–170. [Google Scholar] [CrossRef]
- Tahara, K.; Yonemoto, A.; Yoshiyama, Y.; Nakamura, T.; Aizawa, M.; Fujita, Y.; Nishikawa, T. Determination of antihyperglycemic biguanides in serum and urine using an ion-pair solid-phase extraction technique followed by HPLC-UV on a pentafluorophenylpropyl column and on an octadecyl column. Biomed. Chromatogr. 2006, 20, 1200–1205. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, P.; Harisudhan, T.; Choudhury, H.; Mullangi, R.; Srinivas, N.R. Simultaneous estimation of six anti-diabetic drugs—Glibenclamide, gliclazide, glipizide, pioglitazone, repaglinide and rosiglitazone: Development of a novel HPLC method for use in the analysis of pharmaceutical formulations and its application to human plasma assay. Biomed. Chromatogr. 2006, 20, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Kolte, B.; Raut, B.; Deo, A.; Bagool, M.; Shinde, D. Simultaneous determination of metformin in combination with rosiglitazone by reversed-phase liquid chromatography. J. Chromatogr. Sci. 2004, 42, 70–73. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Ji, Q.; Li, X.; Ming, J.; Zhang, N.; Zha, D.; Lin, Y. Asiaticoside protects cochlear hair cells from high glucose-induced oxidative stress via suppressing AGEs/RAGE/NF-κB pathway. Biomed. Pharmacother. 2017, 86, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Huo, Z.; Gu, J.; He, T. Apelin-13 reduces high glucose-induced mitochondrial dysfunction in cochlear hair cells by inhibiting endoplasmic reticulum stress. Exp. Ther. Med. 2024, 27, 226. [Google Scholar] [CrossRef]
- Xing, Y.; Ming, J.; Liu, T.; Zhang, N.; Zha, D.; Lin, Y. Decreased expression of TRPV4 channels in HEI-OC1 cells induced by high glucose is associated with hearing impairment. Yonsei Med. J. 2018, 59, 1131–1137. [Google Scholar] [CrossRef]
- Carnagarin, R.; Dharmarajan, A.M.; Dass, C.R. PEDF attenuates insulin-dependent molecular pathways of glucose homeostasis in skeletal myocytes. Mol. Cell Endocrinol. 2016, 422, 115–124. [Google Scholar] [CrossRef]
- Rao, C.V. Biguanides. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 452–455. [Google Scholar]
- Mujica-Mota, M.A.; Salehi, P.; Devic, S.; Daniel, S.J. Safety and otoprotection of metformin in radiation-induced sensorineural hearing loss in the guinea pig. Otolaryngol. Head Neck Surg. 2014, 150, 859–865. [Google Scholar] [CrossRef]
- Kimura, N.; Okuda, M.; Inui, K.-i. Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm. Res. 2005, 22, 255–259. [Google Scholar] [CrossRef]
- Kimura, N.; Masuda, S.; Tanihara, Y.; Ueo, H.; Okuda, M.; Katsura, T.; Inui, K.-i. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet. 2005, 20, 379–386. [Google Scholar] [CrossRef]
- Wang, D.-S.; Jonker, J.W.; Kato, Y.; Kusuhara, H.; Schinkel, A.H.; Sugiyama, Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 2002, 302, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-S.; Kusuhara, H.; Kato, Y.; Jonker, J.W.; Schinkel, A.H.; Sugiyama, Y. Involvement of organic cation transporter 1 in the lactic acidosis caused by metformin. Mol. Pharmacol. 2003, 63, 844–848. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.W.; Bedwell, D.W.; Zamek-Gliszczynski, M.J. Ablation of both organic cation transporter (OCT) 1 and OCT2 alters metformin pharmacokinetics but has no effect on tissue drug exposure and pharmacodynamics. Drug Metab. Dispos. 2012, 40, 1170–1177. [Google Scholar] [CrossRef] [PubMed]
- Ciarimboli, G.; Deuster, D.; Knief, A.; Sperling, M.; Holtkamp, M.; Edemir, B.; Pavenstädt, H.; Lanvers-Kaminsky, C.; am Zehnhoff-Dinnesen, A.; Schinkel, A.H. Organic cation transporter 2 mediates cisplatin-induced oto-and nephrotoxicity and is a target for protective interventions. Am. J. Pathol. 2010, 176, 1169–1180. [Google Scholar] [CrossRef]
- Kros, C.J.; Steyger, P.S. Aminoglycoside-and cisplatin-induced ototoxicity: Mechanisms and otoprotective strategies. Cold Spring Harb. Perspect. Med. 2019, 9, 1–18. [Google Scholar] [CrossRef]
- More, S.S.; Akil, O.; Ianculescu, A.G.; Geier, E.G.; Lustig, L.R.; Giacomini, K.M. Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J. Neurosci. 2010, 30, 9500–9509. [Google Scholar] [CrossRef]
- Föller, M.; Jaumann, M.; Dettling, J.; Saxena, A.; Pakladok, T.; Munoz, C.; Ruth, P.; Sopjani, M.; Seebohm, G.; Rüttiger, L. AMP-activated protein kinase in BK-channel regulation and protection against hearing loss following acoustic overstimulation. FASEB J. 2012, 26, 4243–4253. [Google Scholar] [CrossRef]
- Sivitz, W.I.; Yorek, M.A. Mitochondrial dysfunction in diabetes: From molecular mechanisms to functional significance and therapeutic opportunities. Antioxid. Redox Signal. 2010, 12, 537–577. [Google Scholar] [CrossRef]
- Belosludtsev, K.N.; Belosludtseva, N.V.; Dubinin, M.V. Diabetes mellitus, mitochondrial dysfunction and Ca2+-dependent permeability transition pore. Int. J. Mol. Sci. 2020, 21, 6559. [Google Scholar] [CrossRef]
- Choi, S.W.; Ho, C.K. Antioxidant properties of drugs used in Type 2 diabetes management: Could they contribute to, confound or conceal effects of antioxidant therapy? Redox Rep. 2018, 23, 1–24. [Google Scholar] [CrossRef]
- Bulterijs, S. Metformin as a geroprotector. Rejuvenation Res. 2011, 14, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Matsui, T.; Takeuchi, M.; Yamagishi, S. Metformin inhibits advanced glycation end products (AGEs)-induced renal tubular cell injury by suppressing reactive oxygen species generation via reducing receptor for AGEs (RAGE) expression. Horm. Metab. Res. 2012, 44, 891–895. [Google Scholar] [CrossRef] [PubMed]
Instrument | Shimadzu HPLC (Kyoto, Japan) equipped with SIL-20AC HT Autosampler and operated through LabSolutions software (Version 5.124) for chromatographic peak recording and integration. |
Column | Alltech Apollo C18 (150 mm × 4.6 mm, 5 µm), fitted with Phenomenex SecurityGuard cartridge. |
Mobile phase | Reservoir A: (20 mM potassium dihydrogen orthophosphate: acetonitrile, 60:40, containing 0.03% SDS), pH adjusted to 5.5 and filtered through a suitable 0.45 µm chromatographic membrane filter. Reservoir B: pure acetonitrile. Working mobile phase ratio for optimised chromatographic run: (Reservoir A: Reservoir B, 70:30). |
Flow rate | 1 mL/min pumped with a LC-20AT quaternary pump with inline degasser. |
Chromatographic mode | Isocratic elution. |
Run time | 5 min. |
Injection volume | 20 µL. |
Detection mode | Ultraviolet (UV), SPD-20A 5R UV detector (Shimadzu, Kyoto, Japan). |
Detection wavelength | 233 nm. |
Analyte(s) of Interest | Detection Method | Column | Mobile Phase | Detection Wavelength | Retention Time (min) | Method Sensitivity | Reference |
---|---|---|---|---|---|---|---|
Metformin/glipizide/gliclazide in bulk and in dosage form | Isocratic ion pair RP HPLC/UV | Alltech Apollo C18 (150 × 4.6 mm 5 µm). | Reservoir A: (20 mM KH2PO4:ACN, 60:40, pH = 5.5), 0.3% SDS. Reservoir B: 100% ACN | 233 nm | Mt = 1.67 | LOD (Mt) = 59 ng/mL LOQ (Mt) = 179 ng/mL | Current method |
Gp = 2.89 | LOD (Gp) = 169 ng/mL LOQ (Gp) = 513 ng/mL | ||||||
Gc = 4.32 | LOD (Gc) = 151 ng/mL LOQ (Gc) = 458 ng/mL | ||||||
Metformin in human urine | Isocratic ion pair RP HPLC/UV | Superspher 100 C18 (250 × 4 mm, 5 µm). | (10 mM NaH2PO4:ACN, 70:30, pH = 6), 0.3% SDS | 236 nm | 6.4 | LOD = 12 µg/mL LOQ = 35 µg/mL | [29] |
Metformin in serum and urine | Isocratic RP HPLC/UV | Discovery HS F5 (150 × 4.6 mm 5 µm). | 10 mM CH3COONH4:ACN, 25:75, pH = 6.8) | 233 nm | 12 | LOQ (serum) = 0.05 µg/mL LOQ (urine) = 2 µg/mL | [52] |
Metformin in plasma and urine | Isocratic ion pair RP HPLC/UV | Alltima C18 C18 (250 × 4.6 mm, 5 µm). | (KH2PO4:ACN, 66:34, pH = 6.5), 3 mM SDS | 236 nm | 9.5 | LOQ (plasma) = 7.8 ng/mL LOQ (urine) = 1.6 µg/mL | [40] |
Metformin in bulk | Isocratic ion pair RP HPLC/UV | Zorbax XDB C18 (150 × 4.6 mm, 5 µm). | (10 mM Na2HPO4:ACN, 66:34, pH = 7.1), 5 mM SDS | 226 nm | 5.0 | LOD = 0.023 µg/mL LOQ = 0.069 µg/mL | [54] |
Metformin in urine and in dosage form | Isocratic ion pair RP HPLC/UV | Ultra octylsilyl (C8) (250 × 4.6 mm, 5 µm). | (33 mM NaH2PO4:ACN, 93:7, pH = 3), 6.38 mM hexane sulfonic acid sodium salt | 231 nm | 9 | LOD = 0.003 g/mL LOQ = 0.01 g/mL | [41] |
Metformin in human plasma | Isocratic ion pair RP HPLC/UV | LiChrocart 100 C18 (125 × 4 mm, 5 µm). | (10 mM NaH2PO4:ACN, 67.5:32.5, pH = 6), 0.3% SDS | 236 nm | 4.1 | LOD = 18 ng/mL LOQ = 50 ng/mL | [37] |
Metformin/gliclazide in dosage form | Isocratic ion pair RP HPLC/UV | Inertsil C18 (150 × 4.6 mm, 5 µm). | (H2O:ACN, 65:35, pH = 7), containing camphor sulfonic acid | 225 nm | Mt = 2.14 | LOD (Mt) = 10 ng/mL LOQ (Mt) = 25 ng/mL | [38] |
Metformin/glipizide in dosage form | Gc = 8.33 | LOD (Gc) = 25 ng/mL LOQ (Gc) = 100 ng/mL | |||||
Gp = 10.03 | LOD (Gp) = 25 ng/mL LOQ (Gp) = 100 ng/mL | ||||||
Metformin/gliclazide in dosage form | Isocratic micellar liquid chromatography | Nucleosil C18 (150 × 4.6 mm, 5 µm). | (10% n-propanol, 0.3% triethylamine, 0.12 M SDS, pH = 5.6) | 254 nm | Mt = 4.8 | LOD (Mt) = 0.047 µg /mL LOQ (Mt) = 0.143 µg /mL | [25] |
Gc = 8.99 | LOD (Gc) = 0.036 µg /mL LOQ (Gc) = 0.109 µg /mL | ||||||
Glipizide/gliclazide in dosage form and human plasma | Gradient RP HPLC/UV | Inertsil C18 ODS 3V (250 × 4.6 mm, 5 µm). | Ternary mobile phase composed of Reservoir A (50 mM HCOOH, pH 3.0), reservoir B (H2O:ACN, 5:95) and reservoir C (H2O:MeOH, 10:90) | 260 nm | Gp = 14.8 | LOQ (Gp) = 0.1 µg /mL | [53] |
Gc = 17.6 | LOQ (Gp) = 0.1 µg /mL | ||||||
Glipizide/gliclazide in rabbit plasma | Isocratic RP HPLC/UV | Hypersil ODS C18 (250 × 4.6 mm, 5 µm). | (10 mM KH2PO4:MeOH, 25:75, pH = 3.5) | 230 nm | Gp = 7.32 | - | [32] |
Gc = 9.02 | |||||||
Glipizide in dosage form and human plasma | Isocratic RP HPLC/UV | Gemini C18 (150 × 4.6 mm, 5 µm). | 0.05% Triethylamine:ACN:MeOH, 55:15:30, pH = 3.5 | 248 nm | 4.51 | - | [20] |
Glipizide in dosage form and human serum | Isocratic RP HPLC/UV | Nucleosil C18 (250 × 4.6 mm, 10 µm). | H2O:ACN, 20:80, pH = 3.5) | 230 nm | 3.13 | LOD = 20 ng/mL LOQ = 70 ng/mL | [22] |
Gliclazide in bulk | Isocratic RP HPLC/UV | Hypersil GOLD C18 (150 × 4.6 mm, 5 µm). | 20 mM KH2PO4:ACN, 50:50, pH = 3) | 230 nm | 5.4 | LOD = 0.039 µg /mL LOQ = 0.117 µg /mL | [23] |
Metformin in human plasma | Gradient HPLC/UV on phenyl column | Water’s Novapack Phenyl (150 × 4.6 mm, 5 µm). | 0.1% H3PO4:ACN, pH = 3 | 227 nm | 3.66 | - | [33] |
Metformin in formulation and human serum | Isocratic RP HPLC/UV | Hypersil ODS C18 150 × 4.6 mm, 5 µm | H2O:MeOH, 30:70, pH = 3 | 230 nm | 2.4 | LOD = 0.4 µg /mL LOQ = 1.5 µg /mL | [21] |
Gliclazide in presence of metformin in dosage form | Isocratic ion pair RP HPLC/UV | Micro bondapak C18 300 × 3.9 mm, 10 µm | 30 mM TBHS:ACN, 40:60, pH = 6 | 225 nm | Mt = 2.57 | LOD (Gc) = 0.08 µg /mL LOQ (Gc) = 0.1 µg /mL | [39] |
Gc = 5.13 | |||||||
Metformin/gliclazide in dosage form | Isocratic micellar liquid chromatography | Zorbax XDB C18 150 × 4.6 mm, 5 µm | 2.5 mM Na2HPO4:IPA, 95:5, pH = 7.2), 50 mM SDS | 226 nm | Mt = 12 | - | [27] |
Metformin/glipizide in dosage form | Gc = 7 | ||||||
Gp = 3 | |||||||
Metformin/gliclazide in bulk and in dosage form | Isocratic RP HPLC/UV | XR-ODS C18 (100 × 3 mm, 2.2 µm) | H2O: ACN:TFA:TEA, 46:54:0.1:0.1 | 230 nm | Mt = 0.98 | LOD (Mt) = 25 ng /mL LOQ (Mt) = 35 ng /mL | [31] |
Gc = 4.1 | LOD (Gc) = 10 ng /mL LOQ (Gc) = 20 ng /mL | ||||||
Metformin/gliclazide in dosage form | Isocratic RP HPLC/UV | BDS Hypersil C8 (2.5 × 4.6 mm, 5 µm | 25 mM KH2PO4:MeOH, 30:70, pH = 3.2) | 235 nm | Mt = 3.06 | LOD (Mt) = 0.05 µg /mL LOQ (Mt) = 0.17 µg /mL | [28] |
Gc = 4.33 | LOD (Gc) = 1.21 µg /mL LOQ (Gc) = 4.05 µg /mL | ||||||
Metformin/gliclazide in dosage form | Gradient ion pair RP HPLC/UV | Kromasil 100-C18, (300 × 4 mm,10 µm) | (50 mM KH2PO4:ACN, pH = 3.55), 10 mM SOS | 220 nm | Mt = 2.24 | LOD (Mt) = 0.001 µg /mL LOQ (Mt) = 0.002 µg /mL | [24] |
Gc = 7.41 | LOD (Gc) = 0.004 µg /mL LOQ (Gc) = 0.012 µg /mL | ||||||
Metformin/gliclazide in bulk and in dosage form | Isocratic HPLC/UV on Cyano column | Alltima CN (250 × 4.6 mm, 5 µm) | (20 mM HCOONH4:ACN, 45:55, pH = 3.5) | 227 nm | Gc = 4.11 | LOD (Gc) = 0.97 µg /mL LOQ (Gc) = 2.95 µg /mL | [18] |
Mt = 6.96 | LOD (Mt) = 0.8 µg /mL LOQ (Mt) = 2.45 µg |
System Suitability Parameter | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Retention Time | Tailing Factor | Theoretical Plates | Resolution Between Mt and Gp Peaks | Resolution Between Gp and Gc Peaks | |||||||
Mt | Gp | Gc | Mt | Gp | Gc | Mt | Gp | Gc | |||
1 | 1.671 | 2.892 | 4.323 | 1.200 | 1.052 | 1.052 | 1448 | 2785 | 3657 | 6.183 | 5.665 |
2 | 1.675 | 2.890 | 4.318 | 1.197 | 1.055 | 1.055 | 1432 | 2790 | 3647 | 6.138 | 5.655 |
3 | 1.678 | 2.893 | 4.321 | 1.199 | 1.055 | 1.058 | 1434 | 2785 | 3642 | 6.131 | 5.649 |
4 | 1.676 | 2.895 | 4.328 | 1.200 | 1.055 | 1.059 | 1431 | 2783 | 3622 | 6.142 | 5.653 |
5 | 1.676 | 2.899 | 4.339 | 1.200 | 1.057 | 1.061 | 1429 | 2778 | 3612 | 6.157 | 5.660 |
6 | 1.673 | 2.900 | 4.342 | 1.204 | 1.056 | 1.061 | 1422 | 2772 | 3609 | 6.167 | 5.664 |
Mean | 1.675 | 2.895 | 4.329 | 1.200 | 1.055 | 1.058 | 1432.667 | 2782.167 | 3631.500 | 6.153 | 5.658 |
SD | 0.002 | 0.004 | 0.010 | 0.002 | 0.002 | 0.004 | 8.571 | 6.306 | 19.887 | 0.020 | 0.006 |
% RSD | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.003 | 0.006 | 0.002 | 0.005 | 0.003 | 0.001 |
Day 1 | Day 2 | Day 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Mt | Gp | Gc | Mt | Gp | Gc | Mt | Gp | Gc | |
1 | 2,524,316 | 1,498,721 | 1,224,836 | 2,538,229 | 1,516,208 | 1,242,575 | 2,537,781 | 1,503,571 | 1,210,330 |
2 | 2,522,351 | 1,492,431 | 1,229,109 | 2,533,455 | 1,512,581 | 1,233,285 | 2,536,367 | 1,500,636 | 1,209,836 |
3 | 2,528,793 | 1,501,196 | 1,226,464 | 2,539,516 | 1,513,522 | 1,224,957 | 2,534,351 | 1,504,932 | 1,211,956 |
4 | 2,526,275 | 1,497,532 | 1,222,251 | 2,532,284 | 1,510,925 | 1,223,146 | 2,530,360 | 1,500,344 | 1,202,551 |
5 | 2,525,035 | 1,500,292 | 1,226,690 | 2,536,583 | 1,513,716 | 1,222,057 | 2,534,389 | 1,497,937 | 1,206,360 |
6 | 2,522,528 | 1,496,113 | 1,225,867 | 2,536,419 | 1,513,320 | 1,224,946 | 2,530,408 | 1494224 | 1,202,892 |
Mean | 2,524,883.000 | 1,497,714.167 | 1,225,869.500 | 2,536,081.000 | 1,513,378.667 | 1,228,494.333 | 2,533,942.667 | 1,500,274.000 | 1,207,320.833 |
SD | 2430.120 | 3171.462 | 2266.393 | 2760.162 | 1720.445 | 7954.407 | 3043.206 | 3866.967 | 4003.873 |
% RSD | 0.001 | 0.002 | 0.002 | 0.001 | 0.001 | 0.006 | 0.001 | 0.003 | 0.003 |
Retention Time | Tailing Factor | Theoretical Plates | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mt | Gp | Gc | Mt | Gp | Gc | Mt | Gp | Gc | Resolution Between Mt and Gp Peaks | Resolution Between Gp and Gc Peaks | |
Condition 1: Mobile phase composition A:B ratio at 75:25 | 1.694 | 3.145 | 4.867 | 1.208 | 1.083 | 1.117 | 1477 | 2903 | 3690 | 7.078 | 6.216 |
1.691 | 3.148 | 4.862 | 1.203 | 1.081 | 1.12 | 1475 | 2915 | 3716 | 7.119 | 6.209 | |
1.692 | 3.147 | 4.86 | 1.202 | 1.081 | 1.124 | 1480 | 2916 | 3697 | 7.114 | 6.198 | |
Mean | 1.692 | 3.147 | 4.863 | 1.204 | 1.082 | 1.120 | 1477.333 | 2911.333 | 3701.000 | 7.104 | 6.208 |
SD | 0.002 | 0.002 | 0.004 | 0.003 | 0.001 | 0.004 | 2.517 | 7.234 | 13.454 | 0.022 | 0.009 |
% RSD | 0.001 | 0.000 | 0.001 | 0.003 | 0.001 | 0.003 | 0.002 | 0.002 | 0.004 | 0.003 | 0.001 |
Condition 2: Mobile phase composition, A:B ratio at 65:35 | 1.667 | 2.647 | 3.804 | 1.202 | 1.076 | 1.086 | 1410 | 2611 | 3419 | 5.095 | 4.95 |
1.665 | 2.648 | 3.805 | 1.205 | 1.075 | 1.096 | 1414 | 2620 | 3458 | 5.123 | 4.967 | |
1.671 | 2.651 | 3.807 | 1.204 | 1.075 | 1.089 | 1421 | 2632 | 3452 | 5.106 | 4.961 | |
Mean | 1.668 | 2.649 | 3.805 | 1.204 | 1.075 | 1.090 | 1415.000 | 2621.000 | 3443.000 | 5.108 | 4.959 |
SD | 0.003 | 0.002 | 0.002 | 0.002 | 0.001 | 0.005 | 5.568 | 10.536 | 21.000 | 0.014 | 0.009 |
% RSD | 0.002 | 0.001 | 0.000 | 0.001 | 0.001 | 0.005 | 0.004 | 0.004 | 0.006 | 0.003 | 0.002 |
Condition 3: Flow rate 1.2 mL/min | 1.402 | 2.385 | 3.544 | 1.208 | 1.089 | 1.119 | 1281 | 2468 | 3290 | 5.638 | 5.277 |
1.399 | 2.382 | 3.534 | 1.207 | 1.084 | 1.115 | 1283 | 2471 | 3265 | 5.648 | 5.248 | |
1.398 | 2.374 | 3.521 | 1.203 | 1.089 | 1.123 | 1280 | 2445 | 3244 | 5.604 | 5.222 | |
Mean | 1.400 | 2.380 | 3.533 | 1.206 | 1.087 | 1.119 | 1281.333 | 2461.333 | 3266.333 | 5.630 | 5.249 |
SD | 0.002 | 0.006 | 0.012 | 0.003 | 0.003 | 0.004 | 1.528 | 14.224 | 23.029 | 0.023 | 0.028 |
% RSD | 0.001 | 0.002 | 0.003 | 0.002 | 0.003 | 0.004 | 0.001 | 0.006 | 0.007 | 0.004 | 0.005 |
Condition 4: Flow rate 0.8 mL/min | 2.084 | 3.586 | 5.353 | 1.195 | 1.074 | 1.121 | 1574 | 3015 | 3831 | 6.375 | 5.823 |
2.08 | 3.593 | 5.37 | 1.206 | 1.073 | 1.12 | 1570 | 3012 | 3826 | 6.41 | 5.836 | |
2.08 | 3.596 | 5.379 | 1.199 | 1.073 | 1.121 | 1571 | 3009 | 3814 | 6.419 | 5.841 | |
Mean | 2.081 | 3.592 | 5.367 | 1.200 | 1.073 | 1.121 | 1571.667 | 3012.000 | 3823.667 | 6.401 | 5.833 |
SD | 0.002 | 0.005 | 0.013 | 0.006 | 0.001 | 0.001 | 2.082 | 3.000 | 8.737 | 0.023 | 0.009 |
% RSD | 0.001 | 0.001 | 0.002 | 0.005 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.004 | 0.002 |
Condition 5: Mobile phase pH 5.3 | 1.516 | 2.469 | 3.584 | 1.207 | 1.09 | 1.111 | 1339 | 2518 | 3308 | 5.254 | 5.002 |
1.521 | 2.468 | 3.58 | 1.212 | 1.09 | 1.114 | 1359 | 2516 | 3299 | 5.235 | 4.985 | |
1.523 | 2.468 | 3.579 | 1.212 | 1.09 | 1.114 | 1362 | 2520 | 3296 | 5.224 | 4.982 | |
Mean | 1.520 | 2.468 | 3.581 | 1.210 | 1.090 | 1.113 | 1353.333 | 2518.000 | 3301.000 | 5.238 | 4.990 |
SD | 0.004 | 0.001 | 0.003 | 0.003 | 0.000 | 0.002 | 12.503 | 2.000 | 6.245 | 0.015 | 0.011 |
% RSD | 0.002 | 0.000 | 0.001 | 0.002 | 0.000 | 0.002 | 0.009 | 0.001 | 0.002 | 0.003 | 0.002 |
Condition 6: Mobile phase pH 5.7 | 1.861 | 3.365 | 5.139 | 1.217 | 1.078 | 1.136 | 1523 | 2978 | 3766 | 6.88 | 6.098 |
1.861 | 3.367 | 5.138 | 1.22 | 1.084 | 1.138 | 1526 | 2995 | 3778 | 6.897 | 6.102 | |
1.861 | 3.362 | 5.126 | 1.219 | 1.082 | 1.137 | 1528 | 3001 | 3775 | 6.888 | 6.092 | |
Mean | 1.861 | 3.365 | 5.134 | 1.219 | 1.081 | 1.137 | 1525.667 | 2991.333 | 3773.000 | 6.888 | 6.097 |
SD | 0.000 | 0.003 | 0.007 | 0.002 | 0.003 | 0.001 | 2.517 | 11.930 | 6.245 | 0.009 | 0.005 |
% RSD | 0.000 | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 | 0.002 | 0.004 | 0.002 | 0.001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gedawy, A.; Al-Salami, H.; Dass, C.R. Simultaneous HPLC of Metformin, Glipizide and Gliclazide, and Metformin Uptake and Protection of HEI-OC1 from Hyperglycaemia. Appl. Sci. 2024, 14, 10469. https://doi.org/10.3390/app142210469
Gedawy A, Al-Salami H, Dass CR. Simultaneous HPLC of Metformin, Glipizide and Gliclazide, and Metformin Uptake and Protection of HEI-OC1 from Hyperglycaemia. Applied Sciences. 2024; 14(22):10469. https://doi.org/10.3390/app142210469
Chicago/Turabian StyleGedawy, Ahmed, Hani Al-Salami, and Crispin R. Dass. 2024. "Simultaneous HPLC of Metformin, Glipizide and Gliclazide, and Metformin Uptake and Protection of HEI-OC1 from Hyperglycaemia" Applied Sciences 14, no. 22: 10469. https://doi.org/10.3390/app142210469
APA StyleGedawy, A., Al-Salami, H., & Dass, C. R. (2024). Simultaneous HPLC of Metformin, Glipizide and Gliclazide, and Metformin Uptake and Protection of HEI-OC1 from Hyperglycaemia. Applied Sciences, 14(22), 10469. https://doi.org/10.3390/app142210469