Impact of High-Pressure Processing on Quality and Safety of High-Oil-Content Pesto Sauce: A Comparative Study with Thermal Processing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Bacteria Inoculation
2.3. Microbiological Analysis
2.3.1. Bacteria Enumeration
2.3.2. Time–Kill Kinetic Studies
2.4. Chemical Analysis
2.4.1. GC/MS Analysis
2.4.2. pH
2.4.3. Total Phenolic Content (TPC)
2.4.4. Total Antioxidant Capacity
2.4.5. Lipid Oxidation
2.5. Statistical Analysis
3. Results
3.1. Bacteria Enumeration Results of the Pesto Sauces
3.2. Time–Kill Kinetic Study Results of the Pesto Sauces
3.3. GC-MS Results of the Pesto Oils
3.4. pH Changes in the Pesto Sauces
3.5. Total Phenolic Content Results of the Pesto Sauces
3.6. Total Antioxidant Capacity of Pesto Sauces
3.7. Lipid Oxidation of Pesto Sauces
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rana, J.; Paul, J. Consumer Behavior and Purchase Intention for Organic Food: A Review and Research Agenda. J. Retail. Consum. 2017, 38, 157–165. [Google Scholar] [CrossRef]
- Hosni, H.; Periklis, D.; Baourakis, G. Consumers Attitude towards Healthy Food:“Organic and Functional Foods”. Int. J. Food Beverage Manuf. Bus. Models 2017, 2, 85–99. [Google Scholar] [CrossRef]
- Savelli, E.; Murmura, F.; Bravi, L. Healthy and Quality Food Attitudes and Lifestyle: A Generational Cohort Comparison. TQM J. 2023. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Nowacka, M.; Colussi, R.; Frasson, S.F.; Demirkesen, I.; Mert, B.; Singha, P.; Singh, S.K.; Falsafi, S.R. Impact of Emerging Non-Thermal Processing Treatments on Major Food Macromolecules: Starch, Protein, and Lipid. Trends Food Sci. Technol. 2023, 141, 104208. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Zeng, X.; Han, Z.; Brennan, C.S. Non-thermal Technologies and Its Current and Future Application in the Food Industry: A Review. Int. J. Food Sci. Technol. 2019, 54, 1–13. [Google Scholar] [CrossRef]
- Zhao, Y.-M.; de Alba, M.; Sun, D.-W.; Tiwari, B. Principles and Recent Applications of Novel Non-Thermal Processing Technologies for the Fish Industry—A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 728–742. [Google Scholar] [CrossRef]
- Jadhav, H.B.; Annapure, U.S.; Deshmukh, R.R. Non-Thermal Technologies for Food Processing. Front. Nutr. 2021, 8, 657090. [Google Scholar] [CrossRef]
- Allai, F.M.; Azad, Z.A.A.; Mir, N.A.; Gul, K. Recent Advances in Non-Thermal Processing Technologies for Enhancing Shelf Life and Improving Food Safety. Appl. Food Res. 2023, 3, 100258. [Google Scholar] [CrossRef]
- Chakka, A.K.; Sriraksha, M.; Ravishankar, C. Sustainability of Emerging Green Non-Thermal Technologies in the Food Industry with Food Safety Perspective: A Review. LWT-Food Sci. Technol. 2021, 151, 112140. [Google Scholar] [CrossRef]
- Riekkinen, K.; Martikainen, K.; Korhonen, J. Effectiveness of High-Pressure Processing Treatment for Inactivation of Listeria Monocytogenes in Cold-Smoked and Warm-Smoked Rainbow Trout. Appl. Sci. 2023, 13, 3735. [Google Scholar] [CrossRef]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of Novel Technologies on Polyphenols during Food Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- Pou, K.J.; Raghavan, V. Recent Advances in the Application of High Pressure Processing-Based Hurdle Approach for Enhancement of Food Safety and Quality. J. Biosyst. Eng. 2020, 45, 175–187. [Google Scholar] [CrossRef]
- Velazquez, G.; Vázquez, P.; Vázquez, M.; Torres, J.A. Avances En El Procesado de Alimentos Por Alta Presión Advances in the Food Processing by High Pressure Avances No Procesado de Alimentos Por Alta Presión. CYTA-J. Food. 2005, 4, 353–367. [Google Scholar] [CrossRef]
- Mújica-Paz, H.; Valdez-Fragoso, A.; Samson, C.T.; Welti-Chanes, J.; Torres, J.A. High-Pressure Processing Technologies for the Pasteurization and Sterilization of Foods. Food Bioprocess Technol. 2011, 4, 969–985. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards (BIOHAZ Panel); Koutsoumanis, K.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F. The Efficacy and Safety of High-pressure Processing of Food. EFSA J. 2022, 20, e07128. [Google Scholar]
- Rendueles, E.; Omer, M.K.; Alvseike, O.; Alonso-Calleja, C.; Capita, R.; Prieto, M. Microbiological Food Safety Assessment of High Hydrostatic Pressure Processing: A Review. LWT-Food Sci. Technol. 2011, 44, 1251–1260. [Google Scholar] [CrossRef]
- Wiśniewski, P.; Chajęcka-Wierzchowska, W.; Zadernowska, A. Impact of High-Pressure Processing (HPP) on Listeria Monocytogenes—An Overview of Challenges and Responses. Foods 2023, 13, 14. [Google Scholar] [CrossRef]
- Milani, E.; Silva, F.V. Comparing High Pressure Thermal Processing and Thermosonication with Thermal Processing for the Inactivation of Bacteria, Moulds, and Yeasts Spores in Foods. J. Food Eng. 2017, 214, 90–96. [Google Scholar]
- Morales, P.; Calzada, J.; Rodríguez, B.; De Paz, M.; Gaya, P.; Nuñez, M. Effect of Cheese Water Activity and Carbohydrate Content on the Barotolerance of Listeria Monocytogenes Scott A. J. Food Prot. 2006, 69, 1328–1333. [Google Scholar] [CrossRef]
- Beuchat, L.R.; Komitopoulou, E.; Beckers, H.; Betts, R.P.; Bourdichon, F.; Fanning, S.; Joosten, H.M.; Ter Kuile, B.H. Low--Water Activity Foods: Increased Concern as Vehicles of Foodborne Pathogens. J. Food Prot. 2013, 76, 150–172. [Google Scholar] [CrossRef]
- Medina-Meza, I.G.; Barnaba, C.; Barbosa-Cánovas, G.V. Effects of High Pressure Processing on Lipid Oxidation: A Review. Innov. Food Sci. Emerg. Technol. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Guyon, C.; Meynier, A.; de Lamballerie, M. Protein and Lipid Oxidation in Meat: A Review with Emphasis on High-Pressure Treatments. Trends Food Sci. Technol. 2016, 50, 131–143. [Google Scholar] [CrossRef]
- Andrés, A.I.; Cava, R.; Ventanas, J.; Muriel, E.; Ruiz, J. Lipid Oxidative Changes throughout the Ripening of Dry-Cured Iberian Hams with Different Salt Contents and Processing Conditions. Food Chem. 2004, 84, 375–381. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, X.; Ren, Y.; Fan, E.; Chang, H.; Wu, H. Effects of High Pressure Treatment and Temperature on Lipid Oxidation and Fatty Acid Composition of Yak (Poephagus grunniens) Body Fat. Meat Sci. 2013, 94, 489–494. [Google Scholar] [CrossRef]
- Cheah, P.; Ledward, D. Catalytic Mechanism of Lipid Oxidation Following High Pressure Treatment in Pork Fat and Meat. J. Food Sci. 1997, 62, 1135–1139. [Google Scholar] [CrossRef]
- Aubourg, S.P.; Tabilo-Munizaga, G.; Reyes, J.E.; Rodríguez, A.; Pérez-Won, M. Effect of High-pressure Treatment on Microbial Activity and Lipid Oxidation in Chilled Coho Salmon. Eur. J. Lipid Sci. Technol. 2010, 112, 362–372. [Google Scholar] [CrossRef]
- Lakshmanan, R.; Miskin, D.; Piggott, J.R. Quality of Vacuum Packed Cold-smoked Salmon during Refrigerated Storage as Affected by High-pressure Processing. J. Sci. Food Agric. 2005, 85, 655–661. [Google Scholar] [CrossRef]
- Ma, H.; Ledward, D.; Zamri, A.; Frazier, R.; Zhou, G. Effects of High Pressure/Thermal Treatment on Lipid Oxidation in Beef and Chicken Muscle. Food Chem. 2007, 104, 1575–1579. [Google Scholar] [CrossRef]
- Butz, P.; Tauscher, B. Emerging Technologies: Chemical Aspects. Food Res. Int. 2002, 35, 279–284. [Google Scholar] [CrossRef]
- Rasanayagam, V.; Balasubramaniam, V.; Ting, E.; Sizer, C.; Bush, C.; Anderson, C. Compression Heating of Selected Fatty Food Materials during High-pressure Processing. J. Food Sci. 2003, 68, 254–259. [Google Scholar] [CrossRef]
- Amadei, G.; Ross, B.M. Quantification of Character-impacting Compounds in Ocimum basilicum and’Pesto Alla Genovese’with Selected Ion Flow Tube Mass Spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Klimankova, E.; Holadová, K.; Hajšlová, J.; Čajka, T.; Poustka, J.; Koudela, M. Aroma Profiles of Five Basil (Ocimum basilicum L.) Cultivars Grown under Conventional and Organic Conditions. Food Chem. 2008, 107, 464–472. [Google Scholar] [CrossRef]
- Stanojevic, L.P.; Marjanovic-Balaban, Z.R.; Kalaba, V.D.; Stanojevic, J.S.; Cvetkovic, D.J.; Cakic, M.D. Chemical Composition, Antioxidant and Antimicrobial Activity of Basil (Ocimum basilicum L.) Essential Oil. J. Essent. Oil Bear. Plants 2017, 20, 1557–1569. [Google Scholar] [CrossRef]
- Zengin, H.; Baysal, A.H. Antibacterial and Antioxidant Activity of Essential Oil Terpenes against Pathogenic and Spoilage-Forming Bacteria and Cell Structure-Activity Relationships Evaluated by SEM Microscopy. Molecules 2014, 19, 17773–17798. [Google Scholar] [CrossRef]
- Arshad, H.M.; Mohiuddin, O.A.; Azmi, M.B. Comparative in Vitro Antibacterial Analysis of Different Brands of Cefixime against Clinical Isolates of Staphylococcus Aureus and Escherichia coli. J. Appl. Pharm. Sci. 2012, 2, 109–113. [Google Scholar]
- Usaga, J.; Acosta, Ó.; Churey, J.J.; Padilla-Zakour, O.I.; Worobo, R.W. Evaluation of High Pressure Processing (HPP) Inactivation of Escherichia coli O157: H7, Salmonella Enterica, and Listeria Monocytogenes in Acid and Acidified Juices and Beverages. Int. J. Food Microbiol. 2021, 339, 109034. [Google Scholar] [CrossRef] [PubMed]
- Ziaee, E.; Razmjooei, M.; Shad, E.; Eskandari, M.H. Antibacterial Mechanisms of Zataria Multiflora Boiss. Essential Oil against Lactobacillus curvatus. LWT-Food Sci. Technol. 2018, 87, 406–412. [Google Scholar] [CrossRef]
- Klug, T.V.; Collado, E.; Martínez-Sánchez, A.; Gómez, P.A.; Aguayo, E.; Otón, M.; Artés, F.; Artés-Hernandez, F. Innovative Quality Improvement by Continuous Microwave Processing of a Faba Beans Pesto Sauce. Food Bioprocess Technol. 2018, 11, 561–571. [Google Scholar] [CrossRef]
- Hilma, R.; Herliani, H.; Almurdani, M. Determination of Total Phenolic, Flavonoid Content Andfree Radical Scavenging Activity of Etanol Extract Sawo Stem Bark (Manilkara zapota (L.)). Pros. CELSciTech 2018, 3, 62–68. [Google Scholar]
- Kulkarni, A.P.; Aradhya, S.M. Chemical Changes and Antioxidant Activity in Pomegranate Arils during Fruit Development. Food Chem. 2005, 93, 319–324. [Google Scholar] [CrossRef]
- Bekdeşer, B.; Çelik, S.E.; Bener, M.; Dondurmacıoğlu, F.; Yıldırım, E.; Yavuz, E.N.; Apak, R. Determination of Primary and Secondary Oxidation Products in Vegetable Oils with Gold Nanoparticle Based Fluorometric Turn-on Nanosensor: A New Total Oxidation Value. Food Chem. 2024, 434, 137426. [Google Scholar] [CrossRef] [PubMed]
- Hortwitz, W. AOAC Official Method 965.33, Peroxide Value of Oils and Fats. In Official Methods of Analysis of AOAC International, 17th ed.; AOAC Int.: Gaithersburg, MD, USA, 2002. [Google Scholar]
- Tompkins, C.; Perkins, E.G. The Evaluation of Frying Oils with the P-anisidine Value. J. Am. Oil Chem. Soc. 1999, 76, 945–947. [Google Scholar] [CrossRef]
- Yang, R.; Xu, J.; Lombardo, S.P.; Ganjyal, G.M.; Tang, J. Desiccation in Oil Protects Bacteria in Thermal Processing. Food Res. Int. 2020, 137, 109519. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Xie, Y.; Lombardo, S.P.; Tang, J. Oil Protects Bacteria from Humid Heat in Thermal Processing. Food Control 2021, 123, 107690. [Google Scholar] [CrossRef]
- Georget, E.; Sevenich, R.; Reineke, K.; Mathys, A.; Heinz, V.; Callanan, M.; Rauh, C.; Knorr, D. Inactivation of Microorganisms by High Isostatic Pressure Processing in Complex Matrices: A Review. Innov. Food Sci. Emerg. Technol. 2015, 27, 1–14. [Google Scholar] [CrossRef]
- D’Souza, T.; Karwe, M.; Schaffner, D.W. Effect of High Hydrostatic Pressure on Salmonella Inoculated into Creamy Peanut Butter with Modified Composition. J. Food Prot. 2014, 77, 1664–1668. [Google Scholar] [CrossRef]
- Raffalli, J.; Rosec, J.; Carlez, A.; Dumay, E.; Richard, N.; Cheftel, J. High Pressure Stress and Inactivation of Listeria Innocua in Inoculated Dairy Cream. Sci. Aliments 1994, 14, 349–358. [Google Scholar]
- Evert-Arriagada, K.; Trujillo, A.; Amador-Espejo, G.; Hernández-Herrero, M. High Pressure Processing Effect on Different Listeria Spp. in a Commercial Starter-Free Fresh Cheese. Food Microbiol. 2018, 76, 481–486. [Google Scholar] [CrossRef]
- Romano, R.; De Luca, L.; Aiello, A.; Pagano, R.; Di Pierro, P.; Pizzolongo, F.; Masi, P. Basil (Ocimum basilicum L.) Leaves as a Source of Bioactive Compounds. Foods 2022, 11, 3212. [Google Scholar] [CrossRef]
- Tarchoune, I.; Sgherri, C.; Izzo, R.; Lachaâl, M.; Navari-Izzo, F.; Ouerghi, Z. Changes in the Antioxidative Systems of Ocimum basilicum L. (Cv. Fine) under Different Sodium Salts. Acta Physiol. Plant. 2012, 34, 1873–1881. [Google Scholar] [CrossRef]
- Şayin Sert, T.; Coşkun, F. The Effects of High-Pressure Processing on pH, Thiobarbituric Acid Value, Color and Texture Properties of Frozen and Unfrozen Beef Mince. Molecules 2022, 27, 3974. [Google Scholar] [CrossRef] [PubMed]
- Okpala, C.O.; Piggott, J.R.; Schaschke, C.J. Influence of High-Pressure Processing (HPP) on Physico-Chemical Properties of Fresh Cheese. Innov. Food Sci. Emerg. Technol. 2010, 11, 61–67. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Kyriacou, M.C.; Soteriou, G.A.; Pizzolongo, F.; Romano, R.; De Pascale, S.; Rouphael, Y. Genotype and Successive Harvests Interaction Affects Phenolic Acids and Aroma Profile of Genovese Basil for Pesto Sauce Production. Foods 2021, 10, 278. [Google Scholar] [CrossRef] [PubMed]
- Kaşikçi, M.B.; Bağdatlioğlu, N. High Hydrostatic Pressure Treatment of Fruit, Fruit Products and Fruit Juices: A Review on Phenolic Compounds. Food Health 2016, 2, 27–39. [Google Scholar]
Time (Hour) | 0 | 2 | 4 | 6 | 24 |
---|---|---|---|---|---|
Treatment | L. monocytogenes Counts (log CFU/mL) | ||||
Control | 4.82 ± 0.12 Ad | 6.14 ± 0.29 Ac | 7.62 ± 0.12 Ab | 8.18 ± 0.34 Aa | 8.28 ± 0.25 Aa |
NPO-34 | 4.93 ± 0.17 Ad | 6.05 ± 0.31 Ac | 6.66 ± 0.23 Bb | 7.77 ± 0.27 Aa | 8.02 ± 0.14 Aa |
NPO-54 | 4.94 ± 0.35 Ad | 6.07 ± 0.16 Ac | 7.49 ± 0.19 Ab | 8.07 ± 0.19 Aa | 8.20 ± 0.33 Aa |
Control | 4.89 ± 0.27 Ae | 6.25 ± 0.11 Ad | 7.51 ± 0.36 Ac | 8.10 ± 0.18 Ab | 8.73 ± 0.24 Aa |
TPO-34 | 4.85 ± 0.08 Ae | 6.10 ± 0.29 Ad | 6.73 ± 0.24 Bc | 7.82 ± 0.36 Ab | 8.50 ± 0.26 Aa |
TPO-54 | 4.90 ± 0.19 Ad | 6.13 ± 0.38 Ac | 7.39 ± 0.15 Ab | 8.12 ± 0.31 Aa | 8.64 ± 0.21 Aa |
Control | 4.85 ± 0.26 Ad | 6.11 ± 0.42 Ac | 7.63 ± 0.17 Ab | 8.21 ± 0.26 Aa | 8.73 ± 0.21 Aa |
HPO-34 | 4.92 ± 0.17 Ae | 6.05 ± 0.14 Ad | 6.65 ± 0.31 Bc | 7.75 ± 0.45 Ab | 8.50 ± 0.09 Aa |
HPO-54 | 4.93 ± 0.21 Ad | 6.08 ± 0.28 Ac | 7.52 ± 0.20 Ab | 8.09 ± 0.19 Aa | 8.64 ± 0.38 Aa |
Time (Hour) | 0 | 2 | 4 | 6 | 24 |
---|---|---|---|---|---|
Treatment | S. Typhimurium Counts (log CFU/g) | ||||
Control | 6.16 ± 0.21 Ac | 6.50 ± 0.08 Ab | 8.07 ± 0.34 Aa | 8.25 ± 0.26 Aa | 8.55 ± 0.22 Aa |
NPO-34 | 6.15 ± 0.32 Ab | 5.90 ± 0.22 Bb | 7.89 ± 0.25 Aa | 8.22 ± 0.42 Aa | 8.74 ± 0.16 Aa |
NPO-54 | 6.04 ± 0.12 Ac | 6.75 ± 0.13 Ab | 7.96 ± 0.41 Aa | 8.10 ± 0.25 Aa | 8.63 ± 0.21 Aa |
Control | 5.98 ± 0.15 Ac | 6.67 ± 0.14 Ab | 7.86 ± 0.29 Ab | 8.37 ± 0.19 Aa | 8.69 ± 0.33 Aa |
TPO-34 | 6.12 ± 0.22 Ab | 6.02 ±0.26 Bb | 8.02 ± 0.09 Aa | 8.21 ± 0.32 Aa | 8.58 ± 0.24 Aa |
TPO-54 | 6.06 ± 0.14 Ac | 6.58 ± 0.14 Ab | 7.94 ± 0.17 Aa | 8.29 ± 0.34 Aa | 8.47 ± 0.31 Aa |
Control | 6.16 ± 0.11 Ac | 6.51 ± 0.17 Ab | 7.95 ± 0.31 Aa | 8.30 ± 0.14 Aa | 8.46 ± 0.17 Aa |
HPO-34 | 6.33 ±0.15 Ab | 5.90 ± 0.10 Bc | 7.87 ±0.17 Aa | 8.22 ± 0.31 Aa | 8.67 ± 0.26 Aa |
HPO-54 | 6.36 ±0.19 Ab | 6.67 ± 0.16 Ab | 7.93 ±0.24 Aa | 8.25 ± 0.28 Ab | 8.73 ± 0.18 Aa |
Signal Intensity | |||||||||
---|---|---|---|---|---|---|---|---|---|
34% Oil | 54% Oil | ||||||||
Compound Name | SI | RT (min) | RI | NP | TP | HPP | NP | TP | HPP |
α-pinene | 96 | 9.28 | 932 | 1.14 × 105 | 1.00 × 105 | 0.97 × 105 | 5.55 × 104 | 5.73 × 104 | 6.57 × 104 |
sabinene | 90 | 9.50 | 974 | 1.40 × 105 | 1.48 × 105 | 1.17 × 105 | 7.72 × 104 | 7.54 × 104 | 8.58 × 104 |
β-pinene | 95 | 9.67 | 979 | 1.78 × 105 | 1.69 × 105 | 1.54 × 105 | 1.02 × 105 | 0.89 × 105 | 0.97 × 105 |
β-myrcene | 93 | 9.96 | 989 | 2.22 × 105 | 2.47 × 105 | 1.97 × 105 | 1.26 × 105 | 1.18 × 105 | 1.33 × 105 |
cymene | 93 | 11.16 | 1029 | 8.79 × 104 | 7.91 × 104 | 8.38 × 104 | 4.55 × 104 | 2.42 × 104 | 3.09 × 104 |
limonene | 92 | 11.25 | 1032 | 1.43 × 105 | 1.37 × 105 | 1.28 × 105 | 6.12 × 104 | 5.83 × 104 | 7.45 × 104 |
1,8-cineol | 96 | 11.36 | 1035 | 1.82 × 106 | 1.68 × 106 | 1.52 × 106 | 0.90 × 106 | 0.82 × 106 | 0.99 × 106 |
β-ocimene | 93 | 11.74 | 1048 | 1.57 × 105 | 1.37 × 105 | 1.28 × 105 | 7.24 × 104 | 7.19 × 104 | 8.66 × 104 |
l-linalool | 96 | 13.48 | 1105 | 9.06 × 106 | 8.26 × 106 | 7.51 × 106 | 4.52 × 106 | 4.04 × 106 | 4.96 × 106 |
l-camphor | 92 | 15.06 | 1158 | 0.93 × 105 | 1.08 × 105 | 0.71 × 105 | 4.53 × 104 | 4.79 × 104 | 3.62 × 104 |
α-terpineol | 92 | 16.49 | 1208 | 1.75 × 105 | 1.62 × 105 | 1.54 × 105 | 7.96 × 104 | 6.97 × 104 | 8.63 × 104 |
eugenol | 93 | 19.14 | 1368 | 5.83 × 106 | 5.12 × 106 | 5.12 × 106 | 2.82 × 106 | 2.44 × 106 | 3.07 × 106 |
Treatment | TPC (mg GAE/100 gr Pesto) | AA% |
---|---|---|
NP-34 | 33.01 ± 0.47 e | 61.45 ± 0.79 a |
TP-34 | 32.81 ± 0.17 e | 60.07 ± 1.06 a |
HP-34 | 33.99 ± 0.09 d | 62.93 ± 1.29 a |
NP-54 | 36.04 ± 0.10 c | 60.35 ± 1.21 a |
TP-54 | 36.87 ± 0.04 b | 60.89 ± 1.10 a |
HP-54 | 40.01 ± 0.09 a | 61.09 ± 0.35 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shad, E.; Raninen, K.; Podergina, S.; Chan, L.I.; Tong, K.P.; Hälikkä, H.; Huovinen, M.; Korhonen, J. Impact of High-Pressure Processing on Quality and Safety of High-Oil-Content Pesto Sauce: A Comparative Study with Thermal Processing. Appl. Sci. 2024, 14, 9425. https://doi.org/10.3390/app14209425
Shad E, Raninen K, Podergina S, Chan LI, Tong KP, Hälikkä H, Huovinen M, Korhonen J. Impact of High-Pressure Processing on Quality and Safety of High-Oil-Content Pesto Sauce: A Comparative Study with Thermal Processing. Applied Sciences. 2024; 14(20):9425. https://doi.org/10.3390/app14209425
Chicago/Turabian StyleShad, Ehsan, Kaisa Raninen, Svetlana Podergina, Lok In Chan, Kam Pui Tong, Heidi Hälikkä, Marjo Huovinen, and Jenni Korhonen. 2024. "Impact of High-Pressure Processing on Quality and Safety of High-Oil-Content Pesto Sauce: A Comparative Study with Thermal Processing" Applied Sciences 14, no. 20: 9425. https://doi.org/10.3390/app14209425
APA StyleShad, E., Raninen, K., Podergina, S., Chan, L. I., Tong, K. P., Hälikkä, H., Huovinen, M., & Korhonen, J. (2024). Impact of High-Pressure Processing on Quality and Safety of High-Oil-Content Pesto Sauce: A Comparative Study with Thermal Processing. Applied Sciences, 14(20), 9425. https://doi.org/10.3390/app14209425