High-Temperature Short-Time and Ultra-High-Temperature Processing of Juices, Nectars and Beverages: Influences on Enzyme, Microbial Inactivation and Retention of Bioactive Compounds
Abstract
:1. Introduction
2. Applications of UHT and HTST
3. Advantages and Disadvantages of UHT and HTST
4. Impacts of HTST and UHT on Food Quality
4.1. Microbiological Quality and Shelf-Life
Matrix | Parameter | Contents of Microorganisms | Reference |
---|---|---|---|
UHT | |||
Mango nectar | 110 °C/8.6 s | Total aerobic bacteria counts 5.7 log ↓ * Yeasts and molds—nondetected | [45] |
Watermelon juice | 135 °C/2 s | Total flora count more than 3.8 log ↓ * | [43] |
Watermelon juice | 110 °C/2 s, 120 °C/2 s, 135 °C/2 s | Total flora count—survival rate below 0.01%, 0.1% and 0.01%, respectively | [24] |
Açai juice | 138 °C/6 s | Yeast and mold counts 2.2 log ↓ * | [51] |
Carrot juice | 110 °C/8.6 s | Total plate count 4.9 log ↓ * Yeasts and molds—nondetected | [52] |
Pepper and orange juice blend | 110 °C/8.6 s | Total aerobic bacteria—nondetected Yeasts and molds—nondetected | [42] |
Cucumber juice | 110 °C/8.6 s | Total aerobic bacteria 3.6 log ↓ * Yeasts and molds—nondetected | [41] |
Grapefruit juice | 110 °C/8.6 s | Total plate count—nondetected Yeasts and molds—nondetected | [53] |
Korla pear juice | 110 °C/8.6 s | Total plate count—nondetected Yeasts and molds—nondetected | [54] |
Carambola juice | 110 °C/8.6 s | Total aerobics, psychrotrophs, E. coli/coliforms, yeasts and molds—nondetected | [36] |
Mulberry juice | 110 °C/8.6 s | Total aerobic bacteria, yeasts and molds—nondetected | [27] |
Cloudy ginger juice | 110 °C/8.6 s | Total aerobic bacteria, yeasts and molds—nondetected | [38] |
Papaya beverage | 110 °C/8.6 s | Total aerobic bacteria, yeasts and molds—nondetected | [39] |
Clear and cloudy Se-enriched kiwifruit juices | 110 °C/8.6 s | Total aerobic bacteria, yeasts and molds—nondetected | [25] |
Apricot nectar | 110 °C/8.6 s | Total aerobic bacteria, yeasts and molds—nondetected | [20] |
Red prickly pear juice | 130 °C/3 s | Total coliforms, yeasts and molds, mesophilic and psychrophilic—nondetected | [40] |
Black carrot juice | 130 °C/5 s | Total bacterial content, E. coli and yeasts and molds—nondetected | [17] |
Freshly squeezed lettuce juice | 115 °C/5 s | Total aerobic bacteria, yeasts and molds ↓ * (commercial asepsis) | [12] |
Mulberry juice | 110 °C/8.6 s | Total viable bacteria and yeasts and molds—below 1 log CFU | [55] |
HTST | |||
Sea buckthorn juice | 100 °C/15 s | Total aerobic bacteria counts 3.0 log ↓ * Yeast and mold counts—nondetected | [56] |
Orange and carrot juice | 98 °C/21 s | Total plate counts—nondetected Yeast and mold counts—nondetected | [46] |
Nonconcentrated and concentrated sea buckthorn juice | 100 °C/15 s | Total plate counts—nondetected Yeast and mold counts—nondetected | [30] |
Cloudy apple juice | 98 °C/50 s | Total aerobic bacteria counts—nondetected Yeast and mold counts—nondetected E. coli—nondetected | [5] |
Açai juice | 90 °C/6 s | Yeast and mold counts 1.8 log ↓ * | [51] |
Orange juice | 72 °C/20 s | E. coli, Enterobacteriaceae, yeasts and molds < 10 cfu/g Total aerobic plate counts < 1000 cfu/g Lactic acid bacteria < 100 cfu/g | [48] |
Pomegranate juice (MW—Mollar de Elche varietal juice + Wonderful varietal juice; ML—Mollar de Elche + lemon juice; M100—Molar de Elche) | 90 °C/5 s | Total mesophilic aerobic plate count—nondetected | [57] |
Red prickly pear juice | 80 °C/30 s | Total coliforms, yeasts and molds, mesophilic and psychrophilic—nondetected | [40] |
Peach juice | 72 °C/15 s | E. coli O157:H7 5-log reduction | [31] |
Pomegranate fermented beverage | 72 °C/15 s | Aerobic mesophilic bacteria 1.3 log ↓ * Yeasts and molds 3.0 log ↓ * | [58] |
Orange juice | 94 °C/26 s | Total aerobic bacteria—below detection limit | [50] |
Apple juice with raspberry | 85 °C/6 s | Total aerobic mesophilic and psychrophilic counts, yeasts and molds—nondetected | [13] |
Apple juice | 72 °C/26 s | Native microorganisms 5 log ↓ | [59] |
Fruit smoothie-type beverage | 72 °C/15 s | Native microorganisms 3.5 log ↓ * E. coli 6.3 log ↓ * | [60] |
Kale juice | 72 °C/60 s | Total plate count 5.5 log ↓ | [61] |
Whey–grape juice drink | 72 °C/15 s | Bacterial counts below 1 CFU/mL | [62] |
4.2. Basic Physicochemical Characteristics
4.2.1. Total Soluble Solids
4.2.2. pH
4.2.3. Titratable Acidity
4.2.4. Turbidity
4.2.5. Color
4.3. Bioactive Compounds
4.3.1. Vitamin C
4.3.2. Phenolics
Matrix | Parameters | Phenolic Compounds | Vitamins | Other Bioactive Ingredients | Reference |
---|---|---|---|---|---|
Acerola juice, acerola juice + inulin, acerola juice + gluco-oligosaccharides | 136 °C/4.1 s | - | All—vitamin C ↑ * | - | [76] |
Mango nectar | 110 °C/8.6 s | TPC—no statistical difference | Vitamin C—no statistical difference | TCC—no statistical difference | [44] |
Watermelon juice | 110 °C/2 s 120 °C/2 s 135 °C/2 s | TPC ↓ * at 110 and no statistical difference at 120 and 135 °C | - | - | [24] |
Pomegranate juice | 110 °C/8.6 s | Total monomeric anthocyanins 29.3% ↓ | Vitamin C 40.8% ↓ * | - | [70] |
Orange juice | 130 °C/2 s | TPC—7.2% ↓ | Vitamin C 7.2% ↓ * | TCC 13.7% ↓ * | [22] |
Açai juice | 138 °C/6 s | TPC ↓ * Anthocyanins ↓ * | Vitamin C ↓ * | [51] | |
Carrot juice | 110 °C/8.6 s | TPC 11.5% ↓ * | - | Lutein 5.1% ↓ α-Carotene 6.2% ↓ * β-Carotene 43.0% ↓ * Falcarindiol 29.7% ↑ * Falcarindiol-3-acetate 37.4% ↑ * Falcarinol 29.1% ↑ * | [52] |
Pepper and orange juice | 110 °C/8.6 s | TPC—no statistical difference | Vitamin C ↓ * | [42] | |
Tomato juice | 110 °C/8.6 s | Quercetin ↓ * Caffeic acid ↓ Chlorogenic acid—no statistical difference | Vitamin C ↓ * | TCC 7.3% ↓, total lycopene 8.1% ↓, 15-cis-phytoene 5.3% ↓, all-trans -phytoene 5.5% ↓, all-trans-lutein 5.6% ↓, 13-cis-lutein 12.8% ↓ *, 13-cis-β-carotene 8.0%↓, 15-cis-β-carotene from 0 to 0.208 μg/g, all-trans-β-carotene 17.8% ↓ *, cis-β-carotene 7.9% ↓, 9-cis-β-carotene 12.3% ↓, 15-cis-lycopene 57.6% ↑ *, 13-cis-lycopene from 0 to 0.432 μg/g, 9,13-cis,cis-lycopene 9.3% ↓, 9-cis-lycopene 22.0% ↓ *, all-trans-lycopene 9.2% ↓ | [18] |
Red grapefruit juice | 110 °C/8.6 s | TPC 7.7% ↓ * | Ascorbic acid 27.9% ↓ * | - | [53] |
Korla pear juice | 110 °C/8.6 s | TPC 4.7% ↓ * | Ascorbic acid 13.4% ↓ * | - | [54] |
Carambola juice | 110 °C/8.6 s | TPC ↓ * Total flavonols—no statistical difference | Ascorbic acid ↓ | - | [36] |
Mulberry juice | 110 °C/8.6 s | TPC 4.0% ↑ * | - | - | [27] |
Cloudy ginger juice | 110 °C/8.6 s | TPC 14.7% ↓ * | - | Gingerols 14.2% ↓ * | [38] |
Papaya beverage | 110 °C/8.6 s | TPC 12.7% ↓ * | - | TCC 1.2% ↓ | [39] |
Litchi juice | 134 °C/4 s | TPC 19.8% ↓ * TFC 40.1% ↓ * Rutin 19.3% ↓ *, (−)-epicatechin 36.5% ↓ *, chlorogenic acid 18.7% ↓ * | - | - | [86] |
Cloudy pomegranate juice | 110 °C/8.6 s | TPC 7.5% ↓ * Anthocyanins 13.2% ↓ * | - | - | [37] |
Clear and cloudy Se-enriched kiwifruit juices | 110 °C/8.6 s | TPC 5.2% ↑ * and 2.5% ↓ | Ascorbic acid 38.4% ↓ * and 26.6% ↓ * | Total selenium 4.9% ↓ * and 27.3% ↓ * Chlorophyll 80.9% ↓ * and 48.5% ↓ * | [25] |
Apricot nectar | 110 °C/8.6 s | TPC 96.9% ↑ * (+)-catechin 4.7% ↑ *, chlorogenic acid 12.2% ↑ *, neochlorogenic acid 14.6% ↑ *, (−)-epicatechin 5.0% ↓, ferulic acid 5.7% ↑, caffeic acid 12.0% ↑ *, p-coumaric acid 14.3% ↓ * | - | TCC 1.5% ↓, β-carotene 2.6% ↑, α-carotene 44.2% ↑ *, β-cryptoxanthin 13.5% ↓, zeaxanthin 2.8% ↑, lutein 2.7% ↑ | [20] |
Red prickly pear juice | 130 °C/3 s | TPC 2.5% ↑ | - | Betacyanins 63.1% ↓ * Betaxanthins 45.0% ↓ * | [40] |
Red raspberry juice | 110 °C/8.6 s | TPC 31.4% ↓ * TFC 25.5% ↑ Total proanthocyanidins content 5.6% ↑ Total monomer anthocyanins content ↓* | - | - | [84] |
Black carrot juice | 130 °C/5 s | TFC 14.2% ↓ * Total anthocyanins content 8.6% ↓ * TPC ↓ * | - | TCC ↓ | [17] |
Cloudy pomegranate juice | 110 °C/8.6 s | Total monomeric anthocyanins content 29.3% ↓ * Cyanidin-3-O-glucoside ↓ * Cyanidin-3,5-O-diglucoside ↓ * Delphinidin-3-O-glucoside ↓ * Delphinidin-3,5-O-diglucoside ↓ * Afzelechin-delphinidin-3-O-hexosid ↓ Pelargonidin-3-O-glucoside ↓ * Pelargonidin-3,5-O-diglucoside ↓ * | Vitamin C 40.8% ↓ * | - | [70] |
Freshly squeezed lettuce juice | 115 °C/5 s | - | Vitamin C 85.1% ↓ * Vitamin E 13.3% ↓ * Vitamin K1 44.2% ↓ * Vitamin B1 25% ↓ Vitamin B2 4.7% ↑ Vitamin B3 2.2% ↓ Vitamin B6 29.7% ↓ * Vitamin B9 31.7% ↓ * Vitamin B12 12.3% ↓ * | Total chlorophyll 14.1% ↓ * Chlorophyll a 13.7% ↓ * Chlorophyll b 14.9% ↓ * Total β-carotene 35.7% ↓ * (all E)-β-carotene 44.2% ↓ * (9Z)-β-carotene 182.7% ↑ * | [12] |
Mulberry juice | 110 °C/8.6 s | Total anthocyanin content 3.6% ↓ * | - | - | [55] |
4.3.3. Other Bioactive Substances
Matrix | Parameters | Phenolic Compounds | Vitamins | Other Bioactive Ingredients | References |
---|---|---|---|---|---|
Fruit juice–soymilk beverage | 90 °C/60 s | Total phenolic acids 2.8% ↓ *, caffeic acid 11.6% ↑ *, chlorogenic acid 19.4% ↓ *, coumaric acid 2.7% ↓ *, ferulic acid 29.1% ↑ *, sinapic acid 13.0% ↓ *, TFC 61.5% ↑ *, hesperidin 590.1% ↑ *, rutin 43.0% ↓ *, narirutin 22.5% ↑ *, quercetin 16.6% ↑ *, apigenin 31.3% ↓ | - | Cis-violacanthin + antheraxanthin 8.3% ↓, cis-antheraxanthin 17.4% ↓, lutein 38.9% ↓ *, zeaxanthin 26.3% ↓, α-cryptoxanthin 25.0% ↓, β-cryptoxanthin 23.8% ↓ *, α-carotene 0% and β-carotene 16.3% ↓ | [82] |
Orange juice | 90 °C/20 s | - | Vitamin A 16.9% ↑ | TCC 12.6% ↓, neoxanthin+9-cis-violaxanthin 21.1% ↓, antheraxanthin 14.8% ↑, lutein 12.1% ↓, zeaxanthin 17.9% ↓, isolutein 6.8% ↓, β-cryptoxanthin 14.6% ↓, α-carotene 34.1% ↓, 9-cis-α-carotene 24.1% ↓, phytoene + phytofluene 7.7% ↓ and 7,8,7’,8’-tetrahidrolycopene 9.9% ↓, 9.7% ↓ and 17.5% ↓ | [89] |
Tomato juice | 90 °C/30 s 90 °C/60 s | TPC 1.1% ↑ and 0%, chlorogenic acid 0.5% ↑ and 0.7% ↑, ferulic acid 1.1% ↑ and 1.1% ↓, p-coumaric acid 0% and 3.1% ↓, caffeic acid 0% and 4.7% ↑, quercetin 3.9% ↓ and 3.4% ↓, kaempferol 1.8% ↓ and 0% | Vitamin A 2.0% ↑ and 5.1% ↑ | TCC 2.1% ↑ * and 2.1% ↑ *, lycopene 4.6% ↑ * and 7.2% ↑ *, neurosporene 2.3% ↓ * and 5.4% ↓ *, γ-carotene 5.6% ↓ * and 3.4% ↓ *, ζ-carotene 5.0% ↓ and 5.0% ↓, phytofluene 6.2% ↑ * and 5.4% ↑ * and phytoene 2.4% ↓ * and 11.6% ↓ * | [88] |
Clarified and cloudy pomegranate juices | 90 °C/5 s | Total monomeric anthocyanin content 1.2% ↓ and 40.8% ↓ * TPC—no difference | - | - | [81] |
Sea buckthorn juice | 100 °C/15 s | TPC 6.5% ↑ * | Vitamin C 14.3% ↓ * | TCC 20.5% ↓ * | [56] |
Acerola juice, acerola juice + inulin, acerola juice + gluco-oligosaccharides | 90 °C/2 s | - | Vitamin C ↑ * | - | [76] |
Nonconcentrated and concentrated sea buckthorn juice | 100 °C/15 s | TPC—no significant difference | Vitamin C—no significant difference | - | [30] |
Cloudy apple juice | 98 °C/50 s | TPC 22.7% ↓ * | - | - | [5] |
Strawberry juice | 72 °C/15 s | TPC 3.4% ↑ | Vitamin C 0.6% ↑ | - | [26] |
Açai juice | 90 °C/6 s | TPC—↓ * Anthocyanins—no significant difference | Vitamin C—no significant difference | - | [51] |
Lemonade Citrus juice Green juice | 75 °C/90 s | TPC 3.6% ↓, 7.6% ↓ and 0.5% ↑ | Vitamin C 91.7% ↓ * Vitamin C 12.1% ↓ * Vitamin C—nondetected in raw and processed | - | [64] |
Orange juice | 90 °C/60 s | TPC 19.0% ↓ * TFC 14.7% ↑, narirutin 10.8% ↓, hesperidin 28.8% ↑ *, eriocitrin 6.3% ↓, eriodictyol 12.5% ↓, naringenin 9.6% ↓, hesperetin 14.3% ↓ and kaempferol 39.6% ↑ * | L-ascorbic acid 20.1% ↓ * Vitamin A 39.6% ↓ * | TCC 40.8% ↓ *, lutein 21.7% ↓, zeaxanthin 24.0% ↓ *, β-cryptoxanthin 32.3% ↓ *, α-carotene 42.5% ↓ * and β-carotene 39.0% ↓ * | [90] |
Orange juice | 92 °C/30 s 85 °C/15 s | Total flavones 0.3% ↓ and 0.2% ↑, vicenin-2 2.0% ↑ and 1.8% ↑, apigenin-d 2.3% ↓ and 0.9% ↑, total flavanones 7.4% ↑ and 4.6% ↑, naringin-d 5.7% ↑ and 4.3% ↑, narirutin 0.4% ↑ and 4.3% ↑, hesperidin 7.9% ↑ and 4.5% ↑, didymin 11.2% ↑ and 9.2% ↑ and TFC 6.9% ↓ and 4.3% ↓ | - | TCC 16.6% ↓ * and 10.1% ↓ *, (Z)-antheraxanthin isomers 20.0% ↓ and 13.3% ↓, all-(E)- violaxanthin + (Z)- violaxanthin isomers 31.4% ↓ * and 20.0% ↓, (Z)-luteoxanthin isomer 0% and 2.6% ↑, (9Z)-violaxanthin + (Z)-antheraxanthin isomer 17.0% ↓ and 13.1% ↓, (Z)-luteoxanthin isomer 23.7% ↓ * and 15.3% ↓, lutein 2.0% ↓ and 3.9% ↑, zeaxanthin 24.0% ↓ * and 18.0% ↓ *, (9Z)- or (9 Z)-antheraxanthin 20.6% ↓ and 12.2% ↓, zeinoxanthin 21.6% ↓ and 16.2% ↓, β-cryptoxanthin 14.9% ↓ and 7.9% ↓, α-carotene 16.7% ↓ and 8.3% ↓, β-carotene 13.0% ↓ and 4.3% ↓ and phytoene 17.5% ↓ and 10.5% ↓ | [91] |
Cloudy apple juice | 72 °C/15 s 85 °C/30 s | - | Vitamin C ↓ * and ↓ * | - | [74] |
Orange juice | 72 °C/20 s | - | Dehydroascorbic acid ↓ * Ascorbic acid—no significant difference | TCC –no significant difference | [4] |
Pomegranate juice (MW—Mollar de Elche varietal juice + Wonderful varietal juice, ML—Mollar de Elche + lemon juice, M100—Molar de Elche) | 90 °C/5 s | Anthocyanins 6.6% ↓, 2.5% ↓ and 3.7% ↑ Punicalagins 80% ↑ *, 866.7% ↑ * and 975% ↑ * Punicalagin-like 18.2% ↓, 1.6% ↑ and 27.5% ↓ * Punicalin 4.5% ↑, 27.7% ↓ and 3.0% ↓ Ellagic acid 2.7% ↓, 39.4% ↓ * and 12.1% ↓ | Vitamin C 59.6% ↓ *, 31.5% ↓ * and 12.9% ↑ | - | [57] |
Red prickly pear juice | 80 °C/30 s | TPC 2.0% ↓ | - | Betacyanins 14.8% ↓ * Betaxanthins 14.4% ↓ * | [40] |
Peach juice | 72 °C/15 s | TPC 62.1% ↑ * | Ascorbic acid 22.0% ↓ * | - | [31] |
3 Beverages varied in terms of ingredients (blackberry juice, soy beverage, ground flaxseed, water, stabilizer and sweetener) | 71.1 °C/3 s | TPC 3.2% ↑, 8.0% ↓ and 0.2% ↓ Total ellagitannin 2.9% ↓, 15.4% ↓ and 7.4% ↑ Cyanidin-3-O-glucoside 11.4% ↑, 8.3% ↓ and 15.6% ↑ Cyanidin-3-O-malonyl-glucoside 2.4% ↓, 17.8% ↓ and 3.2% ↓ Daidzein 3.4% ↑, 17.5% ↓ and 5.5% ↓ Genistein 11.9% ↑, 9.9% ↓ and 8.5% ↑ Secoisolariciresinol 14.9% ↑, 1.5% ↓ and 9.5% ↓ | - | - | [67] |
Cloudy pomegranate juice | 85 °C/30 s | Total monomeric anthocyanins content 27.5% ↓ * Cyanidin-3-O-glucoside ↑ Cyanidin-3,5-O-diglucoside ↓ * Delphinidin-3-O-glucoside ↓ Delphinidin-3,5-O-diglucoside ↓ Afzelechin-delphinidin-3-O-hexoside ↑ Pelargonidin-3-O-glucoside ↓ Pelargonidin-3,5-O-diglucoside ↓ * | Vitamin C 19.8% ↓ * | - | [70] |
Pomegranate fermented beverage | 72 °C/15 s | TPC 14.1% ↓ TFC 3.4% ↓ Total anthocyanins content 17.5% ↓ * | - | - | [58] |
Orange juice | 76.8 °C/15 s | - | Vitamin C—no significant difference | - | [78] |
Raspberry juice | 85 °C/60 s 85 °C/20 s | Lamberirianin C 3.9% ↓ and 7.3% ↓ Sanguiin H-6 3.7% ↓ and 7.5% ↓ Ellagic acid conjugate 1 1.4% ↓ and 4.2% ↓ Ellagic acid conjugate 2 53.0% ↑ * and 47.1% ↑ * Ellagic acid conjugate 3 21.1% ↓ * and 22.8% ↓ * Ellagic acid 4.3% ↓ and 4.3% ↓ Cyanidin-3-O-sophoroside 7.0% ↓ and 9.0% ↓ Cyanidin-3-O-rutinoside 7.7% ↓ and 10.1% ↓ | - | - | [92] |
Blueberry juice | 95 °C/15 s | TPC 1.1% ↓ Anthocyanin 9.2% ↓ | Vitamin C 18.5% ↓ * | - | [49] |
Orange juice | 70, 80, 90 and 100 °C, time 2, 5, 10, 15 and 30 s | - | Vitamin C—for all temperatures ↓; for 70 °C/10 s 8% ↓, 80 °C/10 s 13% ↓, 90 °C/10 s 15% ↓ and 100 °C/10 s 18% ↓ | - | [14] |
Apple juice with raspberry | 85 °C/6 s | TPC ↓, total flavonoids ↓ | - | - | [13] |
Juice from “Baya Marisa” or “Golden Delicious” apples | 85 °C/30 s | Total hydroxycinnamic acids 42.0% ↓ * and 64.3% ↓ * Total hydroxybenzoic acids 33.6% ↓ * and nondetected in “Golden Delicious” apples Total dihydrochalcones 32.9% ↓ and 2.0% ↓ Total flavanols 79.5% ↓ * and 72.2% ↓ * Total anthocyanins 66.5% ↓ * and nondetected in “Golden Delicious” apples TPC 52.0% ↓ * and 63.7% ↓ * | - | - | [93] |
Orange juice | 90 °C/20 s | TPC 5.3% ↓ | Vitamin C 0.1% ↓ | TCC 12.6% ↓ | [94] |
Strawberry puree–kale juice mix | 72 °C/60 s | Total anthocyanins content ↓ | - | - | [61] |
Whey–grape juice drink | 72 °C/15 s | Total anthocyanins content 8.5% ↓, monomeric anthocyanins 25.0% ↓ and polymeric anthocyanins 2.0% ↓ | - | - | [95] |
Valencia orange juice | 73.9 °C/30 s 92.2 °C/31 s | - | Ascorbic acid 3.8% ↓ and 2.6% ↓ | Total carotenes 5.5% ↑ and 14.0% ↓ TCC 8.5% ↑ and 13.6% ↓ Total carotenoid fatty acids esters 7.7% ↑ and 15.1% ↓ α-carotene 12.5% ↑ and 7.1% ↓ β-carotene 20.6% ↑ and 4.1% ↑ | [96] |
Orange juice | 90 °C/60 s | - | Vitamin C 17.6% ↓ | - | [97] |
Apple and cranberry juice blend | 72 °C/26 s | TPC 3.0% ↓ Cyanidin-3-O-glucoside 14.6% ↓ | - | - | [98] |
4.4. Antioxidant Activity
4.5. Enzymes Activity
Matrix | Parameters | Enzymes—Residual Activities | Reference |
---|---|---|---|
UHT | |||
Mango nectar | 110 °C/8.6 s | Acid invertase 8.6% * | [45] |
Watermelon juice | 110 °C/2 s, 120 °C/2 s, 135 °C/2 s | For 120 °C and 135 °C, 2 times lower residual activity of PPO than at 110 °C | [24] |
Red grapefruit juice | 110 °C/8.6 s | PPO, POD and PME—completely inactivated | [53] |
Apricot nectar | 110 °C/8.6 s | PPO, POD and PME—completely inactivated | [20] |
red raspberry juice | 110 °C/8.6 s | PAL ↓ *; PPO—completely inactivated; PPO—equal to that of fresh juice | [84] |
HTST | |||
Strawberry juice | 90 °C/60 s 90 °C/30 s | 22.2% * for PME, 76.2% * for PG 48% * for PME and 96.8% * for PG | [104] |
Strawberry juice | 90 °C/60 s 90 °C/30 s | Lipoxygenase 37.7% * and 45.3% *, b-glucosidase—slight increase in activity 7.9% and 4.1% | [102] |
Sea buckthorn juice | 100 °C/15 s | SOD 51.3% * | [56] |
Orange and carrot juice | 98 °C/21 s | PME—2% * | [46] |
Cloudy apple juice | 98 °C/50 s | PPO and POD—completely inactivated | [5] |
Cloudy apple juice | 72 °C/15 s 85 °C/30 s | PPO, POD and PME—up to 10% * PPO, POD and PME—completely inactivated | [74] |
Orange juice | 72 °C/20 s | PME 15% *; POD—completely inactivated | [4] |
Peach juice | 72 °C/15 s | PPO 86.4%; PME 87.0% | [31] |
Orange juice | 70, 80, 90 and 100 °C and time 2, 5, 10, 15 and 30 s | PME—inactivation of 99% was only achieved at 90 °C and 100 °C | [14] |
4.6. Hydroxymethylfurfural
4.7. Volatile Compounds
4.8. Sensory Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HPP | high-pressure processing; |
PEF | pulsed electric field; |
HTST | high temperature, short time; |
UHT | ultra-high temperature; |
TSS | total soluble solids; |
HPH | high-pressure homogenization; |
US | ultrasounds; |
TAB | total aerobic bacteria; |
Y&M | yeasts and molds; |
TA | titratable acidity; |
TPC | total phenolic content; |
TFC | total flavonoid content; |
TCC | total carotenoid content; |
GAE | gallic acid; |
AA | antioxidant activity; |
FRAP | ferric-reducing antioxidant power assay; |
DPPH | 2,2-diphenyl-1-picrylhydrazyl; |
TE | Trolox equivalents; |
PPO | polyphenyl oxidase; |
POD | peroxidase; |
PME | pectinomethylesterase; |
PAL | phenylalanine ammonia lyase; |
LOX | lipooxygenase; |
SOD | superoxide dismutase; |
HMF | hydroxymethylfurfural. |
References
- Saikumar, A.; Singh, A.; Dobhal, A.; Arora, S.; Junaid, P.M.; Badwaik, L.S.; Kumar, S. A review on the impact of physical, chemical, and novel treatments on the quality and microbial safety of fruits and vegetables. Syst. Microbiol. Biomanufacturing 2024, 4, 575–597. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, J.; Zhao, T.; Yang, X.; Zhang, J.; Yang, H. Bioavailability and mechanisms of dietary polyphenols affected by non-thermal processing technology in fruits and vegetables. Curr. Res. Food Sci. 2024, 8, 100715. [Google Scholar] [CrossRef] [PubMed]
- Kruszewski, B.; Domian, E.; Nowacka, M. Influence of High-Pressure Homogenization on the Physicochemical Properties and Betalain Pigments of Red Beetroot (Beta vulgaris L.) Juice. Molecules 2023, 28, 2018. [Google Scholar] [CrossRef] [PubMed]
- Vervoort, L.; Van Der Plancken, I.; Grauwet, T.; Timmermans, R.A.H.; Mastwijk, H.C.; Matser, A.M.; Hendrickx, M.E.; Van Loey, A. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice: Part II: Impact on specific chemical and biochemical quality parameters. Innov. Food Sci. Emerg. Technol. 2011, 12, 466–477. [Google Scholar] [CrossRef]
- Deng, H.; Zhao, P.T.; Yang, T.G.; Meng, Y.H. A comparative study of the cloudy apple juice sterilized by high-temperature short-time or high hydrostatic pressure processing: Shelf-life, phytochemical and microbial view. Food Sci. Technol. 2022, 42, e63620. [Google Scholar] [CrossRef]
- Duhan, S.; Kar, A. Optimization of process parameter combinations for pasteurization of sugarcane (Saccharum officinarum) juice using continuous flow microwave system. Indian J. Agric. Sci. 2018, 88, 1253–1257. [Google Scholar] [CrossRef]
- Sattar, S.; Imran, M.; Mushtaq, Z.; Ahmad, M.H.; Arshad, M.S.; Holmes, M.; Maycock, J.; Nisar, M.F.; Khan, M.K. Retention and stability of bioactive compounds in functional peach beverage using pasteurization, microwave and ultrasound technologies. Food Sci. Biotechnol. 2020, 29, 1381–1388. [Google Scholar] [CrossRef]
- Askin, B.; Türkyılmaz, M.; Özkan, M.; Küçüköner, E. Changes in anthocyanins and colour of black mulberry (Morus nigra) juice during clarification and pasteurization. J. Food Meas. Charact. 2022, 16, 784–792. [Google Scholar] [CrossRef]
- Bhagat, B.; Chakraborty, S. Potential of pulsed light treatment to pasteurize pomegranate juice: Microbial safety, enzyme inactivation, and phytochemical retention. LWT 2022, 159, 113215. [Google Scholar] [CrossRef]
- Kruszewski, B.; Zawada, K.; Karpiński, P. Impact of High-Pressure Homogenization Parameters on Physicochemical Characteristics, Bioactive Compounds Content, and Antioxidant Capacity of Blackcurrant Juice. Molecules 2021, 26, 1802. [Google Scholar] [CrossRef]
- Zou, W.; Niu, H.; Yi, J.; Zhou, L. Passion fruit juicing with or without seeds treated by high-pressure processing and thermal pasteurization: Effects on the storage stability of enzymes and quality properties. Innov. Food Sci. Emerg. Technol. 2024, 91, 103554. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, J.; Li, Z.; Weng, M.; Zhang, X.; Tang, X.; Pan, Y. Effects of ultra-high pressure, thermal pasteurization, and ultra-high temperature sterilization on color and nutritional components of freshly-squeezed lettuce juice. Food Chem. 2024, 435, 137524. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Beltrán, A.E.; Salas-Salazar, N.A.; Quintero-Ramos, A.; Parra-Quezada, R.A.; Soto-Caballero, M.C.; Rodríguez-Roque, M.J.; Chávez-Martínez, A.; Flores-Cordova, M.A. Effect of UV-C Radiation and Thermal Treatment on Volatile Compounds, Physicochemical, Microbiological and Phytochemical Parameters on Apple Juice (Malus domestica) with Raspberry (Rubus idaleus L.). Beverages 2024, 10, 7. [Google Scholar] [CrossRef]
- Amaro, K.C.; Russo, G.; Fan, D.L.; Gut, J.A.W.; Tadini, C.C. Modeling and experimental validation of the time-temperature profile, pectin methylesterase inactivation, and ascorbic acid degradation during the continuous flow microwave-assisted pasteurization of orange juice. Food Bioprod. Process. 2024, 144, 191–202. [Google Scholar] [CrossRef]
- Ren, G.; Wan, K.; Kong, H.; Guo, L.; Wang, Y.; Liu, X.; Wei, G. Recent advance in biomass membranes: Fabrication, functional regulation, and antimicrobial applications. Carbohydr. Polym. 2023, 305, 120537. [Google Scholar] [CrossRef]
- Deshaware, S.; Gupta, S. Influence of different pasteurization techniques on antidiabetic, antioxidant and sensory quality of debittered bitter gourd juice during storage. Food Chem. 2019, 285, 156–162. [Google Scholar] [CrossRef]
- Bao, S.; Yin, D.; Zhao, Q.; Zhou, Y.; Hu, Y.; Sun, X.; Liu, X.; Ma, T. Comprehensive evaluation of the effect of five sterilization methods on the quality of black carrot juice based on PCA, TOPSIS and GRA models. Food Chem. X 2023, 17, 100604. [Google Scholar] [CrossRef]
- Wang, X.; Chen, F.; Ma, L.; Liao, X.; Hu, X. Non-volatile and volatile metabolic profiling of tomato juice processed by high-hydrostatic-pressure and high-temperature short-time. Food Chem. 2022, 371, 131161. [Google Scholar] [CrossRef]
- Agcam, E.; Akyildiz, A.; Akdemir Evrendilek, G. A comparative assessment of long-term storage stability and quality attributes of orange juice in response to pulsed electric fields and heat treatments. Food Bioprod. Process. 2016, 99, 90–98. [Google Scholar] [CrossRef]
- Huang, W.; Bi, X.; Zhang, X.; Liao, X.; Hu, X.; Wu, J. Comparative study of enzymes, phenolics, carotenoids and color of apricot nectars treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol. 2013, 18, 74–82. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Plaza, L.; Bobo, G.; Abadias, M.; Viñas, I. Pome Fruit Juices. In Innovative Technologies in Beverage Processing; Aguiló-Aguayo, I., Plaza, L., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–25. ISBN 9781118929346. [Google Scholar]
- Zvaigzne, G.; Karkliņa, D.; Moersel, J.T.; Kuehn, S.; Krasnova, I.; Segliņa, D. Ultra-high temperature effect on bioactive compounds and sensory attributes of orange juice compared with traditional processing. Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci. 2017, 71, 486–491. [Google Scholar] [CrossRef]
- Dash, K.K.; Fayaz, U.; Dar, A.H.; Shams, R.; Manzoor, S.; Sundarsingh, A.; Deka, P.; Khan, S.A. A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chem. Adv. 2022, 1, 100041. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X.; Ma, Y.; Zhao, X.; Zhang, C. Effect of ultrahigh temperature treatment on qualities of watermelon juice. Food Sci. Nutr. 2018, 6, 594–601. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Deng, J.; Luo, D.; Bao, Y.; Liao, X.; Gao, H.; Wu, J. Comparative study of high hydrostatic pressure and high temperature short time processing on quality of clear and cloudy Se-enriched kiwifruit juices. Innov. Food Sci. Emerg. Technol. 2018, 49, 1–12. [Google Scholar] [CrossRef]
- Yildiz, G.; Aadil, R.M. Comparison of high temperature-short time and sonication on selected parameters of strawberry juice during room temperature storage. J. Food Sci. Technol. 2020, 57, 1462–1468. [Google Scholar] [CrossRef]
- Zou, H.; Lin, T.; Bi, X.; Zhao, L.; Wang, Y.; Liao, X. Comparison of High Hydrostatic Pressure, High-PressureCarbon Dioxide and High-Temperature Short-Time Processing on Quality of Mulberry Juice. Food Bioprocess Technol. 2016, 9, 217–231. [Google Scholar] [CrossRef]
- Liu, X.; Wang, R.; Liu, H.; Wang, Y.; Shi, Y.; Zhang, C. High-pressure treatment enhanced aromatic compound concentrations of melon juice and its mechanism. Front. Nutr. 2022, 9, 1052820. [Google Scholar] [CrossRef]
- Pandiselvam, R.; Mitharwal, S.; Rani, P.; Shanker, M.A.; Kumar, A.; Aslam, R.; Barut, Y.T.; Kothakota, A.; Rustagi, S.; Bhati, D.; et al. The influence of non-thermal technologies on color pigments of food materials: An updated review. Curr. Res. Food Sci. 2023, 6, 100529. [Google Scholar] [CrossRef]
- Yang, P.; Wang, Y.; Wu, X.; Geng, H.; Liao, X.; Zhao, L. Effect of High Pressure Processing and High-Temperature Short-Time Sterilization on the Quality of Sea Buckthorn Juice. Shipin Kexue/Food Sci. 2022, 43, 23–32. [Google Scholar] [CrossRef]
- Yildiz, G. Application of ultrasound and high-pressure homogenization against high temperature-short time in peach juice. J. Food Process Eng. 2019, 42, e12997. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, F.; Yun, Y.; Yi, J.; Cai, S.; Zhou, L. Characterization of the flavor, sensory quality and in vitro bioaccessibility in cloudy pomegranate juice treated by high pressure and thermal processing. J. Sci. Food Agric. 2023, 103, 666–679. [Google Scholar] [CrossRef] [PubMed]
- Soni, A.; Brightwell, G. Effect of Hurdle Approaches Using Conventional and Moderate Thermal Processing Technologies for Microbial Inactivation in Fruit and Vegetable Products. Foods 2022, 11, 1811. [Google Scholar] [CrossRef] [PubMed]
- Cebrián, G.; Condón, S.; Mañas, P. Physiology of the inactivation of vegetative bacteria by thermal treatments: Mode of action, influence of environmental factors and inactivation kinetics. Foods 2017, 6, 107. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, F.; Cao, X.; Chen, F.; Hu, X.; Liao, X. Comparison of high hydrostatic pressure and high temperature short time processing on quality of purple sweet potato nectar. Innov. Food Sci. Emerg. Technol. 2012, 16, 326–334. [Google Scholar] [CrossRef]
- Huang, H.W.; Chen, B.Y.; Wang, C.Y. Comparison of high pressure and high temperature short time processing on quality of carambola juice during cold storage. J. Food Sci. Technol. 2018, 55, 1716–1725. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Xi, H.; Guo, X.; Qin, Z.; Pang, X.; Hu, X.; Liao, X.; Wu, J. Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innov. Food Sci. Emerg. Technol. 2013, 19, 85–94. [Google Scholar] [CrossRef]
- Chen, D.; Pan, S.; Chen, J.; Pang, X.; Guo, X.; Gao, L.; Liao, X.; Wu, J. Comparing the Effects of High Hydrostatic Pressure and Ultrahigh Temperature on Quality and Shelf Life of Cloudy Ginger Juice. Food Bioprocess Technol. 2016, 9, 1779–1793. [Google Scholar] [CrossRef]
- Chen, D.; Pang, X.; Zhao, J.; Gao, L.; Liao, X.; Wu, J.; Li, Q. Comparing the effects of high hydrostatic pressure and high temperature short time on papaya beverage. Innov. Food Sci. Emerg. Technol. 2015, 32, 16–28. [Google Scholar] [CrossRef]
- Mesta-Vicuña, G.; Quintero-Ramos, A.; Meléndez-Pizarro, C.O.; Galicia-García, T.; Sánchez-Madrigal, M.Á.; Delgado, E.; Ruiz-Gutiérrez, M.G. Physical, Chemical and Microbiological Properties during Storage of Red Prickly Pear Juice Processed by a Continuous Flow UV-C System. Appl. Sci. 2022, 12, 3488. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Zhao, L.; Wang, Y.; Liao, X. Potential of high-pressure processing and high-temperature/short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innov. Food Sci. Emerg. Technol. 2016, 34, 51–58. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, T.; Wang, Y.; Liao, X. Quality assurance in pepper and orange juice blend treated by high pressure processing and high temperature short time. Innov. Food Sci. Emerg. Technol. 2015, 31, 28–36. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Ma, Y.; Zhao, X.; Zhang, C. Effect of Thermal Treatments on Quality and Aroma of Watermelon Juice. J. Food Qual. 2018, 2018, 9242675. [Google Scholar] [CrossRef]
- Liu, F.; Wang, Y.; Li, R.; Bi, X.; Liao, X. Effects of high hydrostatic pressure and high temperature short time on antioxidant activity, antioxidant compounds and color of mango nectars. Innov. Food Sci. Emerg. Technol. 2014, 21, 35–43. [Google Scholar] [CrossRef]
- Liu, F.; Li, R.; Wang, Y.; Bi, X.; Liao, X. Effects of high hydrostatic pressure and high-temperature short-time on mango nectars: Changes in microorganisms, acid invertase, 5- hydroxymethylfurfural, sugars, viscosity, and cloud. Innov. Food Sci. Emerg. Technol. 2014, 22, 22–30. [Google Scholar] [CrossRef]
- Rivas, A.; Rodrigo, D.; Martínez, A.; Barbosa-Cánovas, G.V.; Rodrigo, M. Effect of PEF and heat pasteurization on the physical-chemical characteristics of blended orange and carrot juice. LWT 2006, 39, 1163–1170. [Google Scholar] [CrossRef]
- Santhirasegaram, V.; Razali, Z.; George, D.S.; Somasundram, C. Comparison of UV-C treatment and thermal pasteurization on quality of Chokanan mango (Mangifera indica L.) juice. Food Bioprod. Process. 2015, 94, 313–321. [Google Scholar] [CrossRef]
- Timmermans, R.A.H.; Mastwijk, H.C.; Knol, J.J.; Quataert, M.C.J.; Vervoort, L.; Van der Plancken, I.; Hendrickx, M.E.; Matser, A.M. Comparing equivalent thermal, high pressure and pulsed electric field processes for mild pasteurization of orange juice. Part I: Impact on overall quality attributes. Innov. Food Sci. Emerg. Technol. 2011, 12, 235–243. [Google Scholar] [CrossRef]
- Zhu, N.; Zhu, Y.; Yu, N.; Wei, Y.; Zhang, J.; Hou, Y.; Sun, A.D. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field. Food Chem. 2019, 274, 146–155. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Shelf life and sensory evaluation of orange juice after exposure to thermosonication and pulsed electric fields. Food Bioprod. Process. 2009, 87, 102–107. [Google Scholar] [CrossRef]
- Linhares, M.d.F.D.; Alves Filho, E.G.; Silva, L.M.A.; Fonteles, T.V.; Wurlitzer, N.J.; de Brito, E.S.; Fernandes, F.A.N.; Rodrigues, S. Thermal and non-thermal processing effect on açai juice composition. Food Res. Int. 2020, 136, 109506. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.C.; Wang, Y.; Zhao, F.; Sun, Z.; Liao, X. Quality comparison of carrot juices processed by high-pressure processing and high-temperature short-time processing. Innov. Food Sci. Emerg. Technol. 2016, 33, 135–144. [Google Scholar] [CrossRef]
- Gao, G.; Zhao, L.; Ma, Y.; Wang, Y.; Sun, Z.; Liao, X. Microorganisms and Some Quality of Red Grapefruit Juice Affected by High Pressure Processing and High Temperature Short Time. Food Bioprocess Technol. 2015, 8, 2096–2108. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Hu, X.; Sun, Z.; Liao, X. Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time. LWT 2016, 65, 283–289. [Google Scholar] [CrossRef]
- You, Y.; Li, N.; Han, X.; Guo, J.; Zhao, Y.; Liu, G.; Huang, W.; Zhan, J. Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2018, 48, 1–10. [Google Scholar] [CrossRef]
- Hou, Z.; Zhang, Y.; Qin, X.; Zhao, L.; Wang, Y.; Liao, X. High pressure processing for sea buckthorn juice with higher superoxide dismutase activity. J. Food Nutr. Res. 2018, 57, 252–263. [Google Scholar]
- Mena, P.; Martí, N.; Saura, D.; Valero, M.; García-Viguera, C. Combinatory Effect of Thermal Treatment and Blending on the Quality of Pomegranate Juices. Food Bioprocess Technol. 2013, 6, 3186–3199. [Google Scholar] [CrossRef]
- Rios-Corripio, G.; de la Peña, M.M.; Welti-Chanes, J.; Guerrero-Beltrán, J.Á. Pulsed electric field processing of a pomegranate (Punica granatum L.) fermented beverage. Innov. Food Sci. Emerg. Technol. 2022, 79, 103045. [Google Scholar] [CrossRef]
- Noci, F.; Riener, J.; Walkling-Ribeiro, M.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. Ultraviolet irradiation and pulsed electric fields (PEF) in a hurdle strategy for the preservation of fresh apple Juice. J. Food Eng. 2008, 85, 141–146. [Google Scholar] [CrossRef]
- Walkling-Ribeiro, M.; Noci, F.; Cronin, D.A.; Lyng, J.G.; Morgan, D.J. Shelf life and sensory attributes of a fruit smoothie-type beverage processed with moderate heat and pulsed electric fields. LWT 2010, 43, 1067–1073. [Google Scholar] [CrossRef]
- Stübler, A.S.; Lesmes, U.; Juadjur, A.; Heinz, V.; Rauh, C.; Shpigelman, A.; Aganovic, K. Impact of pilot-scale processing (thermal, PEF, HPP) on the stability and bioaccessibility of polyphenols and proteins in mixed protein- and polyphenol-rich juice systems. Innov. Food Sci. Emerg. Technol. 2020, 64, 102426. [Google Scholar] [CrossRef]
- Amaral, G.V.; Silva, E.K.; Costa, A.L.R.; Alvarenga, V.O.; Cavalcanti, R.N.; Esmerino, E.A.; Guimarães, J.T.; Freitas, M.Q.; Sant’Ana, A.S.; Cunha, R.L.; et al. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physical properties and sensory acceptance. LWT 2018, 92, 80–86. [Google Scholar] [CrossRef]
- Jittanit, W.; Suriyapornchaikul, N.; Nithisopha, S. The Comparison between the Quality of Lime Juices Produced by Different Preservation Techniques. Procedia—Soc. Behav. Sci. 2013, 91, 691–696. [Google Scholar] [CrossRef]
- de Souza, V.R.; Popović, V.; Bissonnette, S.; Ros, I.; Mats, L.; Duizer, L.; Warriner, K.; Koutchma, T. Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innov. Food Sci. Emerg. Technol. 2020, 64, 102398. [Google Scholar] [CrossRef]
- Torregrosa, F.; Esteve, M.J.; Frígola, A.; Cortés, C. Ascorbic acid stability during refrigerated storage of orange-carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J. Food Eng. 2006, 73, 339–345. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, S.; Liu, F.; Dong, P.; Huang, W.; Xiong, L.; Liao, X. Comparing the effects of high hydrostatic pressure and thermal pasteurization combined with nisin on the quality of cucumber juice drinks. Innov. Food Sci. Emerg. Technol. 2013, 17, 27–36. [Google Scholar] [CrossRef]
- Bonilla, A.I.; Usaga, J.; Cortés, C.; Pérez, A.M. Effect of thermal treatment on selected bioactive compounds and physicochemical properties of a blackberry-soy-flaxseed beverage. NFS J. 2024, 35, 12–15. [Google Scholar] [CrossRef]
- Charles-Rodríguez, A.V.; Nevárez-Moorillón, G.V.; Zhang, Q.H.; Ortega-Rivas, E. Comparison of thermal processing and pulsed electric fields treatment in pasteurization of apple juice. Food Bioprod. Process. 2007, 85, 93–97. [Google Scholar] [CrossRef]
- Cortés, C.; Esteve, M.J.; Frígola, A. Color of orange juice treated by High Intensity Pulsed Electric Fields during refrigerated storage and comparison with pasteurized juice. Food Control 2008, 19, 151–158. [Google Scholar] [CrossRef]
- Yuan, L.; Cheng, F.; Yi, J.; Cai, S.; Liao, X.; Lao, F.; Zhou, L. Effect of high-pressure processing and thermal treatments on color and in vitro bioaccessibility of anthocyanin and antioxidants in cloudy pomegranate juice. Food Chem. 2022, 373, 131397. [Google Scholar] [CrossRef]
- Lee, P.Y.; Kebede, B.T.; Lusk, K.; Mirosa, M.; Oey, I. Investigating consumers’ perception of apple juice as affected by novel and conventional processing technologies. Int. J. Food Sci. Technol. 2017, 52, 2564–2571. [Google Scholar] [CrossRef]
- Feszterová, M.; Kowalska, M.; Mišiaková, M. Stability of Vitamin C Content in Plant and Vegetable Juices under Different Storing Conditions. Appl. Sci. 2023, 13, 10640. [Google Scholar] [CrossRef]
- Wibowo, S.; Essel, E.A.; De Man, S.; Bernaert, N.; Van Droogenbroeck, B.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Comparing the impact of high pressure, pulsed electric field and thermal pasteurization on quality attributes of cloudy apple juice using targeted and untargeted analyses. Innov. Food Sci. Emerg. Technol. 2019, 54, 64–77. [Google Scholar] [CrossRef]
- Verbeyst, L.; Bogaerts, R.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food Bioprocess Technol. 2013, 6, 1015–1023. [Google Scholar] [CrossRef]
- Feszterová, M.; Mišiaková, M.; Kowalska, M. Bioactive Vitamin C Content from Natural Selected Fruit Juices. Appl. Sci. 2023, 13, 3624. [Google Scholar] [CrossRef]
- Alves Filho, E.G.; Silva, L.M.A.; de Brito, E.S.; Wurlitzer, N.J.; Fernandes, F.A.N.; Rabelo, M.C.; Fonteles, T.V.; Rodrigues, S. Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC–MS coupled to chemometrics. Food Chem. 2018, 265, 23–31. [Google Scholar] [CrossRef]
- Fonteles, T.V.; Alves Filho, E.d.G.; Karolina de Araújo Barroso, M.; de Fátima Dantas Linhares, M.; Rabelo, M.C.; e Silva, L.M.A.; Sousa de Brito, E.; Wurlitzer, N.J.; Rodrigues Pereira, E.P.; Ferreira, B.M.; et al. Protective effect of inulin on thermally treated acerola juice: In vitro bioaccessibility of bioactive compounds. Food Biosci. 2021, 41, 101018. [Google Scholar] [CrossRef]
- Atuonwu, J.C.; Leadley, C.; Bosman, A.; Tassou, S.A. High-pressure processing, microwave, ohmic, and conventional thermal pasteurization: Quality aspects and energy economics. J. Food Process Eng. 2020, 43, e13328. [Google Scholar] [CrossRef]
- Matute, A.; Tabart, J.; Cheramy-Bien, J.P.; Kevers, C.; Dommes, J.; Defraigne, J.O.; Pincemail, J. Ex vivo antioxidant capacities of fruit and vegetable juices. Potential in vivo extrapolation. Antioxidants 2021, 10, 770. [Google Scholar] [CrossRef]
- Prestes, A.A.; Canella, M.H.; Helm, C.V.; Gomes da Cruz, A.; Prudencio, E.S. The use of cold pressing technique associated with emerging nonthermal technologies in the preservation of bioactive compounds in tropical fruit juices: An overview. Curr. Opin. Food Sci. 2023, 51, 101005. [Google Scholar] [CrossRef]
- Vegara, S.; Mena, P.; Martí, N.; Saura, D.; Valero, M. Approaches to understanding the contribution of anthocyanins to the antioxidant capacity of pasteurized pomegranate juices. Food Chem. 2013, 141, 1630–1636. [Google Scholar] [CrossRef]
- Morales-De La Peña, M.; Salvia-Trujillo, L.; Rojas-Graü, M.A.; Martín-Belloso, O. Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice-soymilk beverages during refrigerated storage. Food Chem. 2011, 129, 982–990. [Google Scholar] [CrossRef] [PubMed]
- Siguemoto, É.S.; Purgatto, E.; Hassimotto, N.M.A.; Gut, J.A.W. Comparative evaluation of flavour and nutritional quality after conventional and microwave-assisted pasteurization of cloudy apple juice. LWT 2019, 111, 853–860. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, L.; Pan, X.; Lao, F.; Liao, X.; Wu, J. Alterations of phenolic compounds in red raspberry juice induced by high-hydrostatic-pressure and high-temperature short-time processing. Innov. Food Sci. Emerg. Technol. 2021, 67, 102569. [Google Scholar] [CrossRef]
- Luiza Koop, B.; Nascimento da Silva, M.; Diniz da Silva, F.; Thayres dos Santos Lima, K.; Santos Soares, L.; José de Andrade, C.; Ayala Valencia, G.; Rodrigues Monteiro, A. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res. Int. 2022, 153, 110929. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zeng, Q.; Zhang, R.; Wei, Z.; Deng, Y.; Zhang, Y.; Tang, X.; Zhang, M. Comparative study on phenolic profiles and antioxidant activity of litchi juice treated by high pressure carbon dioxide and thermal processing. Food Sci. Technol. Res. 2015, 21, 41–49. [Google Scholar] [CrossRef]
- Chmiel, T.; Van Droogenbroeck, B.; Kusznierewicz, B. The influence of pasteurization methods on the phenolic profiles of cloudy apple juices. J. Int. Soc. Antioxid. Nutr. Health 2016, 3, 3–4. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Hernández-Jover, T.; Martín-Belloso, O. Comparative evaluation of UV-HPLC methods and reducing agents to determine vitamin C in fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Cortés, C.; Esteve, M.J.; Rodrigo, D.; Torregrosa, F.; Frígola, A. Changes of colour and carotenoids contents during high intensity pulsed electric field treatment in orange juices. Food Chem. Toxicol. 2006, 44, 1932–1939. [Google Scholar] [CrossRef]
- Silva, V.M.; Sato, A.C.K.; Barbosa, G.; Dacanal, G.; Ciro-Velásquez, H.J.; Cunha, R.L. The effect of homogenisation on the stability of pineapple pulp. Int. J. Food Sci. Technol. 2010, 45, 2127–2133. [Google Scholar] [CrossRef]
- Stinco, C.M.; Sentandreu, E.; Mapelli-Brahm, P.; Navarro, J.L.; Vicario, I.M.; Meléndez-Martínez, A.J. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chem. 2020, 331, 127259. [Google Scholar] [CrossRef]
- Sójka, M.; Nowakowska, A.; Hejduk, A. Influence of enzymatic clarification, filtration, and pasteurization on ellagitannin and anthocyanin content in raspberry juices. Eur. Food Res. Technol. 2024, 250, 351–359. [Google Scholar] [CrossRef]
- Juhart, J.; Medic, A.; Jakopic, J.; Veberic, R.; Hudina, M.; Stampar, F. Use of HPLC-MS to Determine the Loss of Metabolites in Apple Juices under Different Storage Conditions. Foods 2023, 12, 2822. [Google Scholar] [CrossRef] [PubMed]
- Esteve, M.J.; Frigola, A. The Effects of Thermal and Non-thermal Processing on Vitamin C, Carotenoids, Phenolic Compounds and Total Antioxidant Capacity in Orange Juice. Tree For. Sci. Biotechnol. 2008, 2, 128–134. [Google Scholar]
- Amaral, G.V.; Silva, E.K.; Cavalcanti, R.N.; Martins, C.P.C.; Andrade, L.G.Z.S.; Moraes, J.; Alvarenga, V.O.; Guimarães, J.T.; Esmerino, E.A.; Freitas, M.Q.; et al. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chem. 2018, 239, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Etzbach, L.; Stolle, R.; Anheuser, K.; Herdegen, V.; Schieber, A.; Weber, F. Impact of different pasteurization techniques and subsequent ultrasonication on the in vitro bioaccessibility of carotenoids in valencia orange (Citrus sinensis (L.) Osbeck) juice. Antioxidants 2020, 9, 534. [Google Scholar] [CrossRef]
- Elez-Martínez, P.; Martín-Belloso, O. Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup. Food Chem. 2007, 102, 201–209. [Google Scholar] [CrossRef]
- Caminiti, I.M.; Noci, F.; Muñoz, A.; Whyte, P.; Morgan, D.J.; Cronin, D.A.; Lyng, J.G. Impact of selected combinations of non-thermal processing technologies on the quality of an apple and cranberry juice blend. Food Chem. 2011, 124, 1387–1392. [Google Scholar] [CrossRef]
- Soltani Firouz, M.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [Google Scholar] [CrossRef]
- Krapfenbauer, G.; Kinner, M.; Gössinger, M.; Schönlechner, R.; Berghofer, E. Effect of thermal treatment on the quality of cloudy apple juice. J. Agric. Food Chem. 2006, 54, 5453–5460. [Google Scholar] [CrossRef]
- Aguilar-Rosas, S.; Ballinas-Casarrubias, M.; Elias-Ogaz, L.; Martin-Belloso, O.; Ortega-Rivas, E. Enzyme activity and colour changes in apple juice pasteurised thermally and by pulsed electric fields. Acta Aliment. 2013, 42, 45–54. [Google Scholar] [CrossRef]
- Aguiar, H.d.F.; Yamashita, A.S.; Gut, J.A.W. Development of enzymic time-temperature integrators with rapid detection for evaluation of continuous HTST pasteurization processes. LWT 2012, 47, 110–116. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Changes in quality attributes throughout storage of strawberry juice processed by high-intensity pulsed electric fields or heat treatments. LWT 2009, 42, 813–818. [Google Scholar] [CrossRef]
- Aguiló-Aguayo, I.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Flavour retention and related enzyme activities during storage of strawberry juices processed by high-intensity pulsed electric fields or heat. Food Chem. 2009, 116, 59–65. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, G.; Ma, C.; Li, G.; Wang, R. Effect of ultra-high pressure and ultra-high temperature treatments on the quality of watermelon juice during storage. J. Food Process. Preserv. 2021, 45, e15723. [Google Scholar] [CrossRef]
- Polydera, A.C.; Stoforos, N.G.; Taoukis, P.S. Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J. Food Eng. 2003, 60, 21–29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polak, N.; Kalisz, S.; Kruszewski, B. High-Temperature Short-Time and Ultra-High-Temperature Processing of Juices, Nectars and Beverages: Influences on Enzyme, Microbial Inactivation and Retention of Bioactive Compounds. Appl. Sci. 2024, 14, 8978. https://doi.org/10.3390/app14198978
Polak N, Kalisz S, Kruszewski B. High-Temperature Short-Time and Ultra-High-Temperature Processing of Juices, Nectars and Beverages: Influences on Enzyme, Microbial Inactivation and Retention of Bioactive Compounds. Applied Sciences. 2024; 14(19):8978. https://doi.org/10.3390/app14198978
Chicago/Turabian StylePolak, Natalia, Stanisław Kalisz, and Bartosz Kruszewski. 2024. "High-Temperature Short-Time and Ultra-High-Temperature Processing of Juices, Nectars and Beverages: Influences on Enzyme, Microbial Inactivation and Retention of Bioactive Compounds" Applied Sciences 14, no. 19: 8978. https://doi.org/10.3390/app14198978
APA StylePolak, N., Kalisz, S., & Kruszewski, B. (2024). High-Temperature Short-Time and Ultra-High-Temperature Processing of Juices, Nectars and Beverages: Influences on Enzyme, Microbial Inactivation and Retention of Bioactive Compounds. Applied Sciences, 14(19), 8978. https://doi.org/10.3390/app14198978