Optimization of Mode-Switching Quality of Hybrid Tractor Equipped with HMCVT
Abstract
:1. Introduction
2. Transmission System of Hybrid Tractor
2.1. Transmission Mode Analysis
2.2. Power Transmission System Modeling
3. Optimization of Control Policy for Driver Source Switching
3.1. Evaluation Indicators of Mode-Switching Quality
3.2. Fuzzy Control Strategy of Clutch Oil Pressure
- (1)
- Engaging the initial oil pressure fuzzy control stage.
- (2)
- Fuzzy control stage of oil pressure change rate
3.3. SimulationX and Matlab/Simulink Interact Analysis
4. Clutch-Switching Timing Optimization Based on an Orthogonal Test
4.1. Analyze Simulation Results Using Range Method
4.2. Hardware-in-the-Loop Simulation Test Verification
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huai, Z. The logic and institutional flaws of EU enterprise supply chain due diligence regulation from the perspective of foreign-related legal rule. Ger. Stud. 2023, 38, 102–134+155. [Google Scholar]
- Pascuzzi, S.; Łyp-Wrońska, K.; Gdowska, K.; Paciolla, F. Sustainability Evaluation of Hybrid Agriculture-Tractor Powertrains. Sustainability 2024, 16, 1184. [Google Scholar] [CrossRef]
- Zhou, S.; Walker, P.; Tian, Y.; Zhang, N. Mode switching analysis and control for a parallel hydraulic hybrid vehicle. Veh. Syst. Dyn. 2021, 59, 928–948. [Google Scholar] [CrossRef]
- Banerjee, P.; Ivantysynova, M. Development of a Torque-Based Control Strategy for a Mode-Switching Hydraulic Hybrid Passenger Vehicle; SAE Technical Paper; Purdue University: West Lafayette, IN, USA, 2018. [Google Scholar]
- Oubelaid, A.; Albalawi, F.; Rekioua, T.; Ghoneim, S.S.; Taib, N.; Abdelwahab, S.A.M. Intelligent torque allocation based coordinated switching strategy for comfort enhancement of hybrid electric vehicles. IEEE Access 2022, 10, 58097–58115. [Google Scholar] [CrossRef]
- Zhu, Z.; Sheng, J.; Zhang, H.; Wang, D.; Chen, L. Research on control strategy of rotating tillage condition of hybrid tractor with dual flow coupling configuration. J. Agric. Mach. 2024, 55, 393–400+414. [Google Scholar]
- Qing, D.; Liu, D.; Du, B. Power source torque coordination control for heavy hybrid electric vehicle drive mode switching. Highw. Traffic Technol. 2012, 29, 151–158. [Google Scholar]
- Yu, J.; Cao, Z.; Cheng, M.; Pan, R. Hydro-mechanical power split transmissions: Progress evolution and future trends. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 233, 727–739. [Google Scholar] [CrossRef]
- Li, J.; Zhai, Z.; Song, Z.; Fu, S.; Zhu, Z.; Mao, E. Optimization of the transmission characteristics of an HMCVT for a high-powered tractor based on an improved NSGA-II algorithm. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2022, 236, 2831–2849. [Google Scholar] [CrossRef]
- Pettersson, K.; Heybroek, K.; Mattsson, P.; Krus, P. A novel hydromechanical hybrid motion system for construction machines. Int. J. Fluid Power 2017, 18, 17–28. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Z.; Chn, Y. Lightweight design of hydraulic mechanical continuously variable transmission box based on weight optimization. J. Hunan Agric. Univ. (Nat. Sci. Ed.) 2022, 48, 363–369. [Google Scholar] [CrossRef]
- Hua, Y.; Xia, G.; Tang, X. Wavelet neural network PID control of tractor hydraulic mechanical transmission. J. Hefei Univ. Technol. (Nat. Sci. Ed.) 2020, 43, 26–30+107. [Google Scholar]
- Zhu, Z.; Zeng, L.; Lin, Y.; Chen, L.; Zou, R.; Cai, Y. Adaptive energy management strategy for hybrid tractors based on performance prediction. J. Xi’an Jiaotong Univ. 2023, 57, 201–210. [Google Scholar]
- Cheng, Y.; Liang, Y.; Xu, X. Energy management strategy of HEV based on Gain-power fuel coefficient. China Highw. J. 2022, 35, 343–352. [Google Scholar] [CrossRef]
- Geng, W.; Lou, D.; Zhang, T. Multi-objective energy management strategy for hybrid electric vehicles based on particle swarm optimization. J. Tongji Univ. (Nat. Sci. Ed.) 2020, 48, 1030–1039. [Google Scholar]
- Xiao, X.; Zeng, X.; Dai, Z. A new type of electric vehicle supercapacitor and battery compound power supply system. Acta Electron. 2024, 45, 922–929. [Google Scholar]
- Zhang, X.; Cui, Y.; Yue, Q. Torque coordination control strategy for starting engine in PHEV. J. South China Univ. Technol. (Nat. Sci. Ed.) 2021, 49, 129–139. [Google Scholar]
- Editorial Department of China Highway Journal. An overview of academic research on automotive engineering in China·2017. China Highw. J. 2017, 30, 1–197. [Google Scholar] [CrossRef]
- Qian, W.; Shen, Q.; Wu, P. Research progress of privacy protection technology in big data computing environment. J. Comput. Sci. 2022, 45, 669–701. [Google Scholar]
- Zhu, Z.; Wang, D.; Sun, X. Configuration analysis of hydraulic compound transmission device. J. Jilin Univ. (Eng. Ed.) 2022, 52, 2265–2277. [Google Scholar] [CrossRef]
- Yang, J.; Li, M.; Sun, S. Research on vehicle road friendliness based on semi-active adaptive suspension system. China Highw. J. 2011, 24, 120–126. [Google Scholar] [CrossRef]
- Gao, B.; Wan, K.; Chen, Q.; Wang, Z.; Li, R.; Jiang, Y.; Mei, R.; Luo, Y.; Li, K. Operation mode switching control strategy of heavy hybrid electric vehicle. China Highw. J. 2014, 27, 109–119+126. [Google Scholar] [CrossRef]
- Huang, W. Calculation and analysis of engine starting system. For. Mach. Woodwork. Equip. 2021, 49, 65–68. [Google Scholar] [CrossRef]
- Lu, N.; Chen, T.; Zheng, H. Research on joint simulation analysis platform based on electromechanical hydraulic system. Mach. Tools Hydraul. 2023, 51, 71–78. [Google Scholar]
- Zhu, Z.; Sheng, J.; Zhang, H.; Wang, D.; Chen, L. Prediction of headless rivet installation interference by multivariate nonlinear regression model. J. Xi’an Jiaotong Univ. 2024, 58, 157–166. [Google Scholar]
- Cao, F.Y.; Feng, Q.; Yang, C.J. Optimization of clutch switching timing for dual-mode hydraulic mechanical transmission. J. Xi’an Jiaotong Univ. 2021, 55, 86–93. [Google Scholar]
- Gao, Z.; Zheng, C.; Zhao, R. A review of research on active safety verification and validation of autonomous vehicles in real and virtual scenarios. J. Jilin Univ. (Eng. Ed.) 2024, 1–19. [Google Scholar] [CrossRef]
Origin | df | Adj SS | Adj MS | F Value | p Value | Eminence |
---|---|---|---|---|---|---|
Factor A | 2 | 177.36 | 88.678 | 7.19 | 0.009 | *** |
Factor B | 2 | 16.26 | 8.129 | 0.66 | 0.535 | |
Factor C | 2 | 396.97 | 198.486 | 16.09 | 0.000 | *** |
Factor D | 2 | 130.74 | 65.368 | 5.30 | 0.022 | ** |
Factor E | 2 | 392.59 | 196.296 | 15.91 | 0.000 | *** |
Factor F | 2 | 14.04 | 7.019 | 0.57 | 0.581 | |
Factor G | 2 | 2.75 | 1.374 | 0.11 | 0.896 | |
Error e | 12 | 148.07 | 12.339 |
Origin | df | Adj SS | Adj MS | F Value | p Value | Eminence |
---|---|---|---|---|---|---|
Factor A | 2 | 5.178 | 2.589 | 1.14 | 0.353 | |
Factor B | 2 | 4.019 | 2.009 | 0.88 | 0.439 | |
Factor C | 2 | 13.221 | 6.611 | 2.90 | 0.094 | * |
Factor D | 2 | 19.715 | 19.875 | 4.33 | 0.038 | ** |
Factor E | 2 | 38.712 | 19.356 | 8.50 | 0.005 | *** |
Factor F | 2 | 6.630 | 13.315 | 1.46 | 0.272 | |
Factor G | 2 | 17.337 | 8.722 | 3.83 | 0.052 | |
Error e | 12 | 27.337 | 2.278 |
Origin | df | Adj SS | Adj MS | F Value | p Value | Eminence |
---|---|---|---|---|---|---|
Factor A | 2 | 12.721 | 6.361 | 2.08 | 0.168 | |
Factor B | 2 | 11.110 | 5.555 | 1.81 | 0.205 | |
Factor C | 2 | 43.591 | 21.796 | 7.12 | 0.009 | *** |
Factor D | 2 | 57.966 | 28.983 | 9.46 | 0.003 | *** |
Factor E | 2 | 77.674 | 38.837 | 12.68 | 0.001 | *** |
Factor F | 2 | 2.347 | 1.173 | 0.38 | 0.690 | |
Factor G | 2 | 2.099 | 1.049 | 0.34 | 0.717 | |
Error e | 12 | 36.746 | 3.062 |
Origin | df | Adj SS | Adj MS | F Value | p Value | Eminence |
---|---|---|---|---|---|---|
Factor A | 2 | 0.226 | 0.113 | 1.67 | 0.230 | |
Factor B | 2 | 0.140 | 0.071 | 1.04 | 0.384 | |
Factor C | 2 | 0.724 | 0.362 | 5.35 | 0.022 | ** |
Factor D | 2 | 1.137 | 0.568 | 8.41 | 0.005 | *** |
Factor E | 2 | 1.696 | 0.848 | 12.54 | 0.001 | *** |
Factor F | 2 | 0.044 | 0.022 | 0.32 | 0.730 | |
Factor G | 2 | 0.062 | 0.031 | 0.46 | 0.644 | |
Error e | 12 | 0.811 | 0.068 |
ca | ei | Speed Drop | Dynamic Load Factor | Impact Strength | Switching Time |
---|---|---|---|---|---|
sa | bs | E1C3A2D3B1F3 | E1C3D3F2A3B3 | C3A1E1F2B1D3 | E1D3C3A2B2F2 |
fp | EC major | EC major | CED major | EDC major | |
AD mid | DF mid | B mid | AB mid | ||
BF minor | AB minor | FA minor | F minor | ||
tv | bs | C1E3A2D3B1F3 | E1C3D3F2A3B3 | E1D3C2A3B1F3 | E1D3C2A3B1F3 |
fp | CEA major | E major | EDC major | ED major | |
D mid | CD mid | AB mid | C mid | ||
BF minor | FAB minor | F minor | ABF minor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Sheng, J.; Zhang, H.; Wang, D.; Chen, L. Optimization of Mode-Switching Quality of Hybrid Tractor Equipped with HMCVT. Appl. Sci. 2024, 14, 6288. https://doi.org/10.3390/app14146288
Zhu Z, Sheng J, Zhang H, Wang D, Chen L. Optimization of Mode-Switching Quality of Hybrid Tractor Equipped with HMCVT. Applied Sciences. 2024; 14(14):6288. https://doi.org/10.3390/app14146288
Chicago/Turabian StyleZhu, Zhen, Jie Sheng, Hongwei Zhang, Dehai Wang, and Long Chen. 2024. "Optimization of Mode-Switching Quality of Hybrid Tractor Equipped with HMCVT" Applied Sciences 14, no. 14: 6288. https://doi.org/10.3390/app14146288
APA StyleZhu, Z., Sheng, J., Zhang, H., Wang, D., & Chen, L. (2024). Optimization of Mode-Switching Quality of Hybrid Tractor Equipped with HMCVT. Applied Sciences, 14(14), 6288. https://doi.org/10.3390/app14146288