Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Extracts Preparation
2.3. Total Phenolic Content
2.4. Total Flavonoid Content
2.5. Antioxidant Activity
2.5.1. DPPH Method
2.5.2. FRAP Method
2.6. Microorganisms
2.7. Preparing Suspensions of Extracts to Antimicrobial Tests
2.8. Antifungal Activity
2.9. Antibacterial Activity
3. Results
3.1. Total Phenolic and Flavonoid Compounds Content
3.2. Antioxidant Activity by FRAP and DPPH Methods
3.3. Antifungal Activity
3.4. Antibacterial Activity
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV 2023. State of the World Vine and Wine Sector in 2022. Available online: https://www.oiv.int/sites/default/files/documents/OIV_State_of_the_world_Vine_and_Wine_sector_in_2022_2.pdf (accessed on 20 September 2023).
- Ferrer-Gallego, R.; Silva, P. The Wine Industry By-Products: Applications for Food Industry and Health Benefits. Antioxidants 2022, 11, 2025. [Google Scholar] [CrossRef] [PubMed]
- Kazakova, E.; Lee, J. Sustainable Manufacturing for a Circular Economy. Sustainability 2022, 14, 17010. [Google Scholar] [CrossRef]
- Niculescu, V.-C.; Ionete, R.-E. An Overview on Management and Valorisation of Winery Wastes. Appl. Sci. 2023, 13, 5063. [Google Scholar] [CrossRef]
- Chatzimitakos, T.; Athanasiadis, V.; Kalompatsios, D.; Mantiniotou, M.; Bozinou, E.; Lalas, S.I. Pulsed Electric Field Applications for the Extraction of Bioactive Compounds from Food Waste and By-Products: A Critical Review. Biomass 2023, 3, 22. [Google Scholar] [CrossRef]
- Almulhim, A.I. Toward a Greener Future: Applying Circular Economy Principles to Saudi Arabia’s Food Sector for Environmental Sustainability. Sustainability 2024, 16, 786. [Google Scholar] [CrossRef]
- Constantin, O.E.; Stoica, F.; Ratu, R.N.; Stănciuc, N.; Bahrim, G.E.; Râpeanu, G. Bioactive Components, Applications, Extractions, and Health Benefits of Winery By-Products from a Circular Bioeconomy Perspective: A Review. Antioxidants 2024, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Caldas, A.R.; Catita, J.; Machado, R.; Ribeiro, A.; Cerqueira, F.; Horta, B.; Medeiros, R.; Lúcio, M.; Lopes, C.M. Omega-3- and Resveratrol-Loaded Lipid Nanosystems for Potential Use as Topical Formulations in Autoimmune, Inflammatory, and Cancerous Skin Diseases. Pharmaceutics 2021, 13, 1202. [Google Scholar] [CrossRef] [PubMed]
- Moldovan, M.L.; Carpa, R.; Fizes, I.; Vlase, L.; Bogdan, C.; Iurian, S.M.; Benedec, D.; Pop, A. Phytochemical Profile and Biological Activities of Tendrils and Leaves Extracts from a Variety of Vitis vinifera L. Antioxidants 2020, 9, 373. [Google Scholar] [CrossRef] [PubMed]
- Prusova, B.; Licek, J.; Kumsta, M.; Baron, M.; Sochor, J. Polyphenolic composition of grape stems. Not. Bot. Horti Agrobot. Cluj-Napoca 2020, 48, 1543–1559. [Google Scholar] [CrossRef]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Dani, C.; Oliboni, L.S.; Agostini, F.; Funchal, C.; Serafini, F.; Henriques, J.A.; Salvador, M. Phenolic content of grapevine leaves (Vitis labrusca var. Bordo) and its neuroprotective effect against peroxide damage. Toxicol. Vitr. 2010, 24, 148–153. [Google Scholar] [CrossRef]
- Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical and structural characterization of grape stalks and evaluation of its potential as lignocellulosic raw materials. Ind. Crops Prod. 2013, 35, 178–184. [Google Scholar] [CrossRef]
- Leal, C.; Costa, C.M.; Barros, A.I.R.N.A.; Gouvinhas, I. Assessing the Relationship Between the Phenolic Content and Elemental Composition of Grape (Vitis vinifera L.) Stems. Waste Biomass Valorizat. 2021, 12, 1313–1325. [Google Scholar] [CrossRef]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I.R.N.A. Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Mattos, G.N.; Tonon, R.V.; Furtado, A.A.L.; Cabral, L.M.C. Grape by-product extracts against microbial proliferation and lipid oxidation: A review. J. Sci. Food Agric. 2017, 97, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, G.; Brasili, E.; Pasqua, G. Antifungal Activity of Phenolic and Polyphenolic Compounds from Different Matrices of Vitis vinifera L. against Human Pathogens. Molecules 2020, 25, 3748. [Google Scholar] [CrossRef] [PubMed]
- Leal, C.; Santos, R.A.; Pinto, R.; Queiroz, M.; Rodrigues, M.; Saavedra, M.J.; Barros, A.; Gouvinhas, I. Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi J. Biol. Sci. 2020, 27, 1009–1015. [Google Scholar] [CrossRef] [PubMed]
- Troilo, M.; Difonzo, G.; Paradiso, V.M.; Summo, C.; Caponio, F. Bioactive Compounds from Vine Shoots, Grape Stalks, and Wine Lees: Their Potential Use in Agro-Food Chains. Foods 2021, 10, 342. [Google Scholar] [CrossRef]
- Michailidis, D.; Angelis, A.; Nikolaou, P.E.; Mitakou, S.; Skaltsounis, A.L. Exploitation of Vitis vinifera, Foeniculum vulgare, Cannabis sativa and Punica granatum By-Product Seeds as Dermo-Cosmetic Agents. Molecules 2021, 26, 731. [Google Scholar] [CrossRef] [PubMed]
- Nassiri-Asl, M.; Hosseinzadeh, H. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update. Phytother. Res. 2016, 30, 1392–1403. [Google Scholar] [CrossRef] [PubMed]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef] [PubMed]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Shah, S.A.A.; Sarian, M.N.; Khattak, M.M.A.K.; Khatib, A.; Sabere, A.S.M.; Yusoff, Y.M.; Latip, J. Flavonoids as Antidiabetic and Anti-Inflammatory Agents: A Review on Structural Activity Relationship-Based Studies and Meta-Analysis. Int. J. Mol. Sci. 2022, 23, 12605. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; Atauri, I.G.C.; Malheiro, A.C.; Moutinho-Pereira, J.; Santos, J. Viticulture in Portugal: A review of recent trends and climate change projections. Oeno One 2017, 51, 61–69. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Cruz, R.; Pereira, J.A.; Ramalhosa, E. Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res. Int. 2013, 50, 161–166. [Google Scholar] [CrossRef]
- Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents 2019, 53, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.D.; Domínguez-Perles, R.; Abraão, A.; Gomes, V.; Gouvinhas, I.; Barros, A.N. Exploring the Antioxidant Potential of Phenolic Compounds from Winery By-Products by Hydroethanolic Extraction. Molecules 2023, 28, 6660. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, C.G.K.; de Jesus, J.L.L.; Ramos, F.A.P.; Mezalira, T.S.; Ferreira, R.G.; Otutumi, L.K.; Soares, A.A. Compostos bioativos do bagaço de uva (Vitis vinífera): Seus benefícios e perspectivas para o desenvolvimento sustentável. Tecnologia de Alimentos: Tópicos Físicos, Químicos e Biológicos 2020, 1, 485–500. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, B.B.P.P. Optimization of antioxidants extraction from coffee silverskin, a roasting by-product, having in view a sustainable process. Ind. Crops Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Almada, S.; Maia, L.B.; Waerenborgh, J.C.; Vieira, B.J.C.; Mira, N.P.; Silva, E.R.; Cerqueira, F.; Pinto, E.; Alves, L.G. Cyclam-based iron(iii) and copper(ii) complexes: Synthesis, characterization and application as antifungal agents. New J. Chem. 2022, 46, 16764–16770. [Google Scholar] [CrossRef]
- Sousa, C.; Gabriel, C.; Cerqueira, F.; Manso, M.C.; Vinha, A. Coffee industrial waste as a natural source of bioactive compounds with antibacterial and antifungal activities. In The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs; Formatex Research Center: Barcelona, Spain, 2015; pp. 131–136. [Google Scholar]
- Vázquez-Armenta, F.J.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; González-Aguilar, M.R.; Nazzaro, F.; Fratianni, F.; Ayala-Zavala, J.F. Antibacterial and antioxidant properties of grape stem extract applied as disinfectant in fresh leafy vegetables. J. Food Sci. Technol. 2017, 54, 3192–3200. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes: A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Res. Int. 2014, 65 Pt C, 375–384. [Google Scholar] [CrossRef]
- Dorosh, O.; Moreira, M.M.; Rodrigues, F.; Peixoto, A.F.; Freire, C.; Morais, S.; Delerue-Matos, C. Vine-Canes Valorisation: Ultrasound-Assisted Extraction from Lab to Pilot Scale. Molecules 2020, 25, 1739. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.S.S.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Krasteva, D.; Ivanov, Y.; Chengolova, Z.; Godjevargova, T. Antimicrobial Potential, Antioxidant Activity, and Phenolic Content of Grape Seed Extracts from Four Grape Varieties. Microorganisms 2023, 11, 395. [Google Scholar] [CrossRef] [PubMed]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Ananga, A.; Tsolova, V. Recent Advances and Uses of Grape Flavonoids as Nutraceuticals. Nutrients 2014, 6, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Vinha, A.F.; Nunes, A. Desperdícios da Vinicultura: Potenciais Aplicações e Sustentabilidade; Novas Edições Acadêmicas (OmniScriptum AraPers GmbH): Beau-Bassin, Mauritius, 2017; ISBN 978-3-330-20104-0. [Google Scholar]
- Li, L.; Sun, B. Grape and wine polymeric polyphenols: Their importance in enology. Crit. Rev. Food Sci. Nutr. 2019, 59, 563–579. [Google Scholar] [CrossRef] [PubMed]
- Radojević, I.D.; Mladenović, K.G.; Grujović, M.Ž.; Vasić, S.M. Grape stalks as a source of antioxidant and antimicrobial substances and their potential application. Bot. Serbica 2022, 46, 179–186. [Google Scholar] [CrossRef]
- Mosele, J.; da Costa, B.S.; Bobadilla, S.; Motilva, M.-J. Phenolic Composition of Red and White Wine Byproducts from Different Grapevine Cultivars from La Rioja (Spain) and How This Is Affected by the Winemaking Process. J. Agric. Food Chem. 2023, 71, 18746–18757. [Google Scholar] [CrossRef] [PubMed]
- Cataneo, C.B.; Caliari, V.; Valdemiro Gonzaga, L.; Marta Kuskoski, E.; Fett, R. Antioxidant activity and phenolic content of agricultural by-products from wine production. Semin. Ciências Agrárias 2008, 29, 93–101. [Google Scholar] [CrossRef]
- Silva, M.L.C.; Costa, R.S.; Santana, A.d.S.; Koblitz, M.G.B. Compostos fenólicos, carotenóides e atividade antioxidante em produtos vegetais. Semin. Ciências Agrárias 2010, 31, 669–682. [Google Scholar] [CrossRef]
- Costa, E.; Cosme, F.; Jordão, A.M.; Mendes-Faia, A. Anthocyanin profile and antioxidant activity from 24 grape varieties cultivated in two Portuguese wine regions. Oeno One 2014, 48, 51–62. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, S.; Sharma, B.K.; Subedi, N.; Ranabhat, S.; Baral, M.P. Burden of Serious Bacterial Infections and Multidrug-Resistant Organisms in an Adult Population of Nepal: A Comparative Analysis of Minimally Invasive Tissue Sampling Informed Mortality Surveillance of Community and Hospital Deaths. Clin. Infect. Dis. 2021, 73 (Suppl. S5), S415–S421. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- WHO. Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Jamiu, A.T.; Albertyn, J.; Sebolai, O.M.; Pohl, C.H. Update on Candida krusei, a potential multidrug-resistant pathogen. Med Mycol. 2021, 59, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Hornik, C.D.; Bondi, D.S.; Greene, N.M.; Cober, M.P.; John, B. Review of Fluconazole Treatment and Prophylaxis for Invasive Candidiasis in Neonates. J. Pediatr. Pharmacol. Ther. 2021, 26, 115–122. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lalloo, U.G.; Komarow, L.; Aberg, J.A.; Clifford, D.B.; Hogg, E.; McKhann, A.; Bukuru, A.; Lagat, D.; Pillay, S.; Mave, V.; et al. ACTG A5225 Team. Higher Dose Oral Fluconazole for the Treatment of AIDS-related Cryptococcal Meningitis (HIFLAC)-report of A5225, a multicentre, phase I/II, two-stage, dose-finding, safety, tolerability and efficacy randomised, amphotericin B-controlled trial of the AIDS Clinical Trials Group. PLoS ONE 2023, 18, e0281580. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bogdan, C.; Pop, A.; Iurian, S.M.; Benedec, D.; Moldovan, M.L. Research Advances in the Use of Bioactive Compounds from Vitis vinifera By-Products in Oral Care. Antioxidants 2020, 9, 502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pozzo, L.; Grande, T.; Raffaelli, A.; Longo, V.; Weidner, S.; Amarowicz, R.; Karamać, M. Characterization of Antioxidant and Antimicrobial Activity and Phenolic Compound Profile of Extracts from Seeds of Different Vitis Species. Molecules 2023, 28, 4924. [Google Scholar] [CrossRef] [PubMed]
Variety | Extractor Solvent | TPC (mg GAE/100 g) | TFC (mg CE/100 g) | DPPH (μmol TE/100 g) | FRAP (μmol FSE/100 g) |
---|---|---|---|---|---|
Touriga Franca | W | 61.3 ± 0.7 | 37.1 ± 1.4 | 974.8 ± 1.2 | 2037.7 ± 1.2 |
E | 210.8 ± 0.4 | 70.3 ± 1.1 | 2096.3 ± 0.5 | 3756.8 ± 10.0 | |
E:W (50:50 v/v) | 187.6 ± 1.4 | 61.4 ± 1.0 | 1749.8 ± 1.1 | 3019.0 ± 1.0 | |
Touriga Nacional | W | 74.8 ± 1.0 | 93.9 ± 1.0 | 1041.7 ± 1.4 | 2984.7 ± 0.3 |
E | 393.1 ± 1.8 | 195.0 ± 6.4 | 3323.6 ± 3.5 | 3780.9 ± 1.6 | |
E:W (50:50 v/v) | 264.4 ± 4.4 | 102.0 ± 1.1 | 2791.5 ± 1.1 | 3064.7 ± 0.6 | |
Viosinho | W | 60.6 ± 0.8 | 37.5 ± 2.3 | 400.0 ± 1.9 | 791.0 ± 1.8 |
E | 80.2 ± 1.3 | 41.2 ± 0.8 | 792.1 ± 2.7 | 1490.7 ± 8.9 | |
E:W (50:50 v/v) | 66.0 ± 2.0 | 27.7 ± 0.5 | 601.8 ± 0.8 | 1022.5 ± 1.3 | |
Tinta Roriz | W | 72.4 ± 0.7 | 40.2 ± 1.1 | 494.4 ± 1.1 | 1040.6 ± 0.9 |
E | 106.3 ± 6.7 | 62.1 ± 0.5 | 1005.3 ± 1.5 | 2032.1 ± 0.9 | |
E:W (50:50 v/v) | 99.1 ± 0.8 | 54.4 ± 0.6 | 949.4 ± 1.0 | 1981.1 ± 1.1 |
Variety | Extractor Solvent | TPC (mg GAE/100 g) | TFC (mg CE/100 g) | DPPH (μmol TE/100 g) | FRAP (μmol FSE/100 g) |
---|---|---|---|---|---|
Touriga Franca | W | 4306.4 ± 328.1 | 969.8 ± 118.0 | 2603.1 ± 140.2 | 40,991.6 ± 3633.2 |
E | 58,115.8 ± 563.9 | 2051.9 ± 107.9 | 4329.8 ± 412.9 | 62,633.7 ± 4390.6 | |
E:W (50:50 v/v) | 14,184.7 ± 749.8 | 311.3 ± 28.0 | 930.6 ± 85.7 | 954.0 ± 203.5 | |
Touriga Nacional | W | 2885.1 ± 209.3 | 1144.8 ± 26.4 | 2824.5 ± 376.7 | 38,842.3 ± 4356.8 |
E | 5528.0 ± 447.5 | 2753.0 ± 214.0 | 4842.5 ± 562.7 | 68,822.8 ± 5178.2 | |
E:W (50:50 v/v) | 3943.8 ± 328.3 | 850.4 ± 33.3 | 1279.9 ± 172.6 | 11,470.4 ± 1927.6 | |
Viosinho | W | 3817.5 ± 184.2 | 1361.0 ± 105.6 | 3817.5 ± 184.2 | 43,637.1 ± 484.7 |
E | 5865.5 ± 598.4 | 2460.0 ± 368.7 | 5865.5 ± 598.4 | 66,871.0 ± 173.2 | |
E:W (50:50 v/v) | 3954.6 ± 392.4 | 361.3 ± 59.2 | 3954.6 ± 392.4 | 9379.7 ± 150.1 | |
Tinta Roriz | W | 4873.2 ± 319.2 | 1519.6 ± 92.3 | 4873.2 ± 319.2 | 54,544.3 ± 4496.0 |
E | 6892.3 ± 458.6 | 2776.7 ± 192.8 | 6892.3 ± 458.6 | 71,024.5 ± 2752.3 | |
E:W (50:50 v/v) | 15,292.3 ± 543.0 | 232.7 ± 10.6 | 15,292.3 ±543.0 | 8662.0 ± 853.7 |
Variety | Yeast | Extract | MIC (μg/mL) |
---|---|---|---|
Touriga Franca | C. albicans | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | >200.0 | ||
C. krusei | W | >200.0 | |
E | >200.0 | ||
E:W (50:50 v/v) | 17.5 ± 6.9 | ||
Touriga Nacional | C. albicans | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | 100.0 ± 0.0 | ||
C. krusei | W | >200.0 | |
E | >200.0 | ||
E:W | 10.0 ± 3.4 | ||
Viosinho | C. albicans | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | 200.0 ± 0.0 | ||
C. krusei | W | >200.0 | |
E | >200.0 | ||
E:W (50:50 v/v) | 8.8 ± 3.4 | ||
Tinta Roriz | C. albicans | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | >200.0 | ||
C. krusei | W | >200.0 | |
E | >200.0 | ||
E:W (50:50 v/v) | 35.0 ± 13.7 |
Variety | Yeast | Extract | MIC (μg/mL) |
---|---|---|---|
Touriga Franca | S. aureus | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | 100.0 ± 0.0 | ||
E. coli | W | >200.0 | |
E | >200.0 | ||
E:W (50:50 v/v) | >200.0 | ||
Touriga Nacional | S. aureus | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | 40.0 ± 13.7 | ||
E. coli | W | >200.0 | |
E | >200.0 | ||
E:W | >200.0 | ||
Viosinho | S. aureus | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | 50.0 ± 35.4 | ||
E. coli | W | >200.0 | |
E | >200.0 | ||
E:W (50:50 v/v) | >200.0 | ||
Tinta Roriz | S. aureus | W | >200.0 |
E | >200.0 | ||
E:W (50:50 v/v) | 100.0 ± 0.0 | ||
E. coli | W | >200.0 | |
E | >200.0 | ||
E:W (50:50 v/v) | >200.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinha, A.F.; Sousa, C.; Vilela, A.; Ferreira, J.; Medeiros, R.; Cerqueira, F. Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities. Appl. Sci. 2024, 14, 6278. https://doi.org/10.3390/app14146278
Vinha AF, Sousa C, Vilela A, Ferreira J, Medeiros R, Cerqueira F. Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities. Applied Sciences. 2024; 14(14):6278. https://doi.org/10.3390/app14146278
Chicago/Turabian StyleVinha, Ana F., Carla Sousa, Andreia Vilela, Joana Ferreira, Rui Medeiros, and Fátima Cerqueira. 2024. "Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities" Applied Sciences 14, no. 14: 6278. https://doi.org/10.3390/app14146278
APA StyleVinha, A. F., Sousa, C., Vilela, A., Ferreira, J., Medeiros, R., & Cerqueira, F. (2024). Potential of Portuguese Viticulture By-Products as Natural Resources of Bioactive Compounds—Antioxidant and Antimicrobial Activities. Applied Sciences, 14(14), 6278. https://doi.org/10.3390/app14146278