Assessment of Production Technologies on Dairy Farms in Terms of Animal Welfare
Abstract
:1. Introduction
2. Approach to Performing the Review
3. Selected Aspects of Animal Welfare
4. Introduction to the Issue of Progress in Production Technologies on Farms
5. Technology of Feeding and Providing Water to Dairy Cattle
6. Milking Technology
7. Housing Systems and Other Technological Aspects
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kannal, P.N.; Solanki, S.N.; Deshmukh, S.S.; Waghmare, A.A. A review on mechanization of dairy farming. Int. J. Vet. Sci. Anim. Husb. 2024, SP-9, 276–285. [Google Scholar]
- Berckmans, D. General introduction to precision livestock farming. Anim. Front. 2017, 7, 6–11. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Tyris, D.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy use in the EU livestock sector: A review recommending energy efficiency measures and renewable energy sources adoption. Appl. Sci. 2022, 12, 2142. [Google Scholar] [CrossRef]
- Sauer, J.; Latacz-Lohmann, U. Investment, technical change and efficiency: Empirical evidence from German dairy production. Eur. Rev. Agric. Econ. 2015, 42, 151–175. [Google Scholar] [CrossRef]
- Chetroiu, R.; Cișmileanu, A.E.; Cofas, E.; Petre, I.L.; Rodino, S.; Dragomir, V.; Marin, A.; Turek-Rahoveanu, P.A. Assessment of the relations for determining the profitability of dairy farms, a premise of their economic sustainability. Sustainability 2022, 14, 7466. [Google Scholar] [CrossRef]
- Junior, J.C.R.; Tamanini, R.; da Silva, L.C.C.; Beloti, V. Quality of milk produced by small and large dairy producers. Semin. Ciênc. Agrár. 2015, 36, 883–888. [Google Scholar] [CrossRef]
- Webster, J. Animal Welfare: Freedoms, dominions and “A life worth living”. Animals 2016, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Rethlefsen, M.L.; Kirtley, S.; Waffenschmidt, S.; Ayala, A.P.; Moher, D.; Page, M.J.; Koffel, J.B. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst. Rev. 2021, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Paré, G.; Trudel, M.-C.; Jaana, M.; Kitsiou, S. Synthesizing information systems knowledge: A typology of literature reviews. Inform. Manag. 2015, 52, 183–199. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.; Weary, D.M. A 100-year review: Animal welfare in the Journal of Dairy Science—The first 100 years. J. Dairy Sci. 2017, 100, 10432–10444. [Google Scholar] [CrossRef]
- Weary, D.M.; Droege, P.; Braithwaite, V.A. Behavioral evidence of felt emotions: Approaches, inferences, and refinements. Adv. Stud. Behav. 2017, 49, 27–48. [Google Scholar] [CrossRef]
- Fraser, D.; Weary, D.M.; Pajor, E.A.; Milligan, B.N. A scientific conception of animal welfare that reflects ethical concerns. Anim. Welfare 1997, 6, 187–205. [Google Scholar] [CrossRef]
- Council, F.A.W. FAWC updates the five freedoms. Vet. Rec. 1992, 131, 357. [Google Scholar]
- Broom, D.M. A history of animal welfare science. Acta Biotheor. 2011, 59, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Gaworski, M. Implementation of technical and technological progress in dairy production. Processes 2021, 9, 2103. [Google Scholar] [CrossRef]
- Michałek, R.; Kowalski, J. Technical progress in agriculture. Ann. Rev. Agric. Eng. 2000, 2, 67–80. [Google Scholar]
- Nowacki, T.; Nowacki, J.K. Changes and Trends in the Quality and Balance of Energy Consumption in Agriculture (General Methodology); AGRI/MECH Report No. 105; United Nations: Geneva, Switzerland, 1984. [Google Scholar]
- Da Borso, F.; Chiumenti, A.; Sigura, M.; Pezzuolo, A. Influence of automatic feeding systems on design and management of dairy farms. J. Agric. Eng. 2017, 48, 48–52. [Google Scholar] [CrossRef]
- Romano, E.; Brambilla, M.; Cutini, M.; Giovinazzo, S.; Lazzari, A.; Calcante, A.; Tangorra, F.M.; Rossi, P.; Motta, A.; Bisaglia, C.; et al. Increased cattle feeding precision from automatic feeding systems: Considerations on technology spread and farm level perceived advantages in Italy. Animals 2023, 13, 3382. [Google Scholar] [CrossRef] [PubMed]
- Mocera, F.; Somà, A. Working Cycle requirements for an electrified architecture of a vertical feed mixer vehicle. Procedia Struct. Integr. 2018, 12, 213–223. [Google Scholar] [CrossRef]
- Mocera, F.; Somà, A. Analysis of a parallel hybrid electric tractor for agricultural applications. Energies 2020, 13, 3055. [Google Scholar] [CrossRef]
- Nabokov, V.I.; Novopashin, L.A.; Denyozhko, L.V.; Sadov, A.A.; Ziablitckaia, N.V.; Volkova, S.A.; Speshilova, I.V. Applications of feed pusher robots on cattle farmings and its economic efficiency. Int. Trans. J. Eng. Manag. Appl. Sci. Technol. 2020, 11, 1–7. [Google Scholar] [CrossRef]
- Angrecka, S.; Solecka, U.; Vieira, F.M.C.; Herbut, P.; Deniz, M.; Adamczyk, K.; Godyń, D. Noise as a factor of environmental stress for cattle—A review. Ann. Anim. Sci. 2023, 23, 717–723. [Google Scholar] [CrossRef]
- Endres, M.I.; DeVries, T.J.; von Keyserlingk, M.A.G.; Weary, D.M. Short communication: Effect of feed barrier design on the behavior of loose-housed lactating dairy cows. J. Dairy Sci. 2005, 88, 2377–2380. [Google Scholar] [CrossRef] [PubMed]
- Huzzey, J.M.; DeVries, T.J.; Valois, P.; von Keyserlingk, M.A.G. Stocking density and feed barrier design affect the feeding and social behavior of dairy cattle. J. Dairy Sci. 2006, 89, 126–133. [Google Scholar] [CrossRef] [PubMed]
- DeVries, T.J.; von Keyserlingk, M.A.G.; Weary, D.M. Effect of feeding space on the inter-cow distance, aggression, and feeding behavior of free-stall housed lactating dairy cows. J. Dairy Sci. 2004, 87, 1432–1438. [Google Scholar] [CrossRef]
- Krauβ, M.; Drastig, K.; Prochnow, A.; Rose-Meierhöfer, S.; Kraatz, S. Drinking and cleaning water use in a dairy cow barn. Water 2016, 8, 302. [Google Scholar] [CrossRef]
- Machado Filho, L.C.P.; Teixeira, D.L.; Weary, D.M.; von Keyserlingk, M.A.G.; Hötzel, J. Designing better water troughs: Dairy cows prefer and drink more from larger troughs. Appl. Anim. Behav. Sci. 2004, 89, 185–193. [Google Scholar] [CrossRef]
- Teixeira, D.L.; Hötzel, M.J.; Machado Filho, L.C.P. Designing better water troughs: 2. Surface area and height, but not depth, influence dairy cows’ preference. Appl. Anim. Behav. Sci. 2006, 96, 169–175. [Google Scholar] [CrossRef]
- Burkhardt, F.K.; Hayer, J.J.; Heinemann, C.; Steinhoff-Wagner, J. Drinking behavior of dairy cows under commercial farm conditions differs depending on water trough design and cleanliness. Appl. Anim. Behav. Sci. 2022, 256, 105752. [Google Scholar] [CrossRef]
- Spörndly, E.; Wredle, E. Automatic milking and grazing—Effects of location of drinking water on water intake, milk yield, and cow behavior. J. Dairy Sci. 2005, 88, 1711–1722. [Google Scholar] [CrossRef]
- Nitzan, R.; Bruckental, I.; Bar Shira, Z.; Maltz, E.; Halachmi, I. Stochastic models for simulating parallel, rotary, and side-opening milking parlors. J. Dairy Sci. 2006, 89, 4462–4472. [Google Scholar] [CrossRef] [PubMed]
- Beaver, A.; Weary, D.M.; von Keyserlingk, M.A.G. Invited review: The welfare of dairy cattle housed in tiestalls compared to less-restrictive housing types: A systematic review. J. Dairy Sci. 2021, 104, 9383–9417. [Google Scholar] [CrossRef] [PubMed]
- Haley, D.B.; de Passillè, A.M.; Rushen, J. Assessing cow comfort: Effects of two floor types and two tie stall designs on the behaviour of lactating dairy cows. Appl. Anim. Behav. Sci. 2001, 71, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Platz, S.; Ahrens, F.; Bendel, J.; Meyer, H.H.D.; Erhard, M.H. What happens with cow behavior when replacing concrete slatted floor by rubber coating: A case study. J. Dairy Sci. 2008, 91, 999–1004. [Google Scholar] [CrossRef] [PubMed]
- Kic, P. Criteria for optimization of milkings parlour on dairy farm. In Proceedings of the 14th International Scientific Conference on Engineering for Rural Development, Jelgava, Latvia, 20–22 May 2015; University of Agriculture: Jelgava, Latvia, 2015; pp. 106–111. [Google Scholar]
- Gaworski, M.; Kamińska, N.; Kic, P. Evaluation and optimization of milking in some Polish dairy farms differed in milking parlours. Agron. Res. 2017, 15, 112–122. [Google Scholar]
- Chiumenti, A.; da Borso, F.; Chiumenti, R.; Kic, P. Applying a mathematical model to compare, choose, and optimize the management and economics of milking parlors in dairy farms. Agriculture 2020, 10, 472. [Google Scholar] [CrossRef]
- Gaworski, M.; Kic, P. Improvement of mobile milkings parlours in small dairy farms including technical and functional aspects. In Proceedings of the 16th International Scientific Conference on Engineering for Rural Development, Jelgava, Latvia, 24–26 May 2017; University of Agriculture: Jelgava, Latvia, 2017; pp. 402–407. [Google Scholar] [CrossRef]
- Da Borso, F.; Kic, P.; Kante, J. Analysis of management, labor and economics of milking systems in intensive goat farms. Agriculture 2022, 12, 513. [Google Scholar] [CrossRef]
- Gaworski, M.; Boćkowski, M. Method for comparing current versus recommended housing conditions in dairy cattle production. Agric. Food Sci. 2018, 27, 17–27. [Google Scholar] [CrossRef]
- De Boyer des Roches, A.; Lardy, R.; Capdeville, J.; Mounier, L.; Veissier, I. Do International Commission of Agricultural and Biosystems Engineering (CIGR) dimension recommendations for loose housing of cows improve animal welfare? J. Dairy Sci. 2019, 102, 10235–10249. [Google Scholar] [CrossRef]
- Gaworski, M.; Rocha, Á.G.F. Effect of management practices on time spent by cows in waiting area before milking. In Proceedings of the Conference on Engineering for Rural Development, Jelgava, Latvia, 25–27 May 2016; Volume 15, pp. 1300–1304. [Google Scholar]
- Irrgang, N.; Zipp, K.A.; Brandt, S.; Knierim, U. Effects of space allowance in the waiting area on agonistic interactions and heart rate of high and low ranking horned dairy cows. Livest. Sci. 2015, 179, 47–53. [Google Scholar] [CrossRef]
- Dijkstra, C.; Veermäe, I.; Praks, J.; Poikalainen, V.; Arney, D.R. Dairy cow behavior and welfare implications of time waiting before entry into the milking parlor. J. Appl. Anim. Welf. Sci. 2012, 15, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Mangalis, M.; Jaundžeikars, D.; Priekulis, J. Cow crowding in waiting yard using mechanical drivers and its influence on productivity of rotary type milking equipment. Agron. Res. 2015, 13, 237–244. [Google Scholar]
- Rodenburg, J. Robotic milking: Technology, farm design, and effects on work flow. J. Dairy Sci. 2017, 100, 7729–7738. [Google Scholar] [CrossRef] [PubMed]
- Gaworski, M.; Leola, A.; Sada, O.; Kic, P.; Priekulis, J. Effect of cow traffic system and herd size on cow performance and automatic milking systems capacity. Agron. Res. 2016, 14, 33–40. [Google Scholar]
- Ketelaar-de Lauwere, C.C.; Devir, S.; Metz, J.H.M. The influence of social hierarchy on the time budget of cows and their visits to an automatic milking system. Appl. Anim. Behav. Sci. 1996, 49, 199–211. [Google Scholar] [CrossRef]
- Rossing, W.; Hogewerf, P.H. State of the art of automatic milking systems. Comput. Electron. Agric. 1997, 17, 1–17. [Google Scholar] [CrossRef]
- Sonck, B.R. Labour research on automatic milking with a human-controlled cow traffic. Neth. J. Agric. Sci. 1995, 43, 261–285. [Google Scholar] [CrossRef]
- Du, X.; Tejeda, H.; Yang, Z.; Lu, L. A general-equilibrium model of labor-saving technology adoption: Theory and evidences from robotic milking systems in Idaho. Sustainability 2022, 14, 7683. [Google Scholar] [CrossRef]
- Frost, A.R.; Mottram, T.T.; Street, M.J.; Hall, R.C.; Spencer, D.S.; Allen, C.J. A field trial of a teatcup attachment robot for an automatic milking system. J. Agric. Eng. Res. 1993, 55, 325–334. [Google Scholar] [CrossRef]
- Artmann, R. Sensor systems for milking robots. Comput. Electron. Agric. 1997, 17, 19–40. [Google Scholar] [CrossRef]
- Hogeveen, H.; Ouweltjes, W. Sensors and management support in high-technology milking. J. Anim. Sci. 2003, 81, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Stefanowska, J.; Plavsic, M.; Ipema, A.H.; Hendriks, M.M.W.B. The effect of omitted milking on the behaviour of cows in the context of cluster attachment failure during automatic milking. Appl. Anim. Behav. Sci. 2000, 67, 277–291. [Google Scholar] [CrossRef] [PubMed]
- Penry, J.F. Mastitis control in automatic milking systems. Vet. Clin. Food A 2018, 34, 439–456. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J. Estimating efficiency in automatic milking systems. J. Dairy Sci. 2012, 95, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.A.; Siegford, J.M. Invited review: The impact of automatic milking systems on dairy cow management, behavior, health, and welfare. J. Dairy Sci. 2012, 95, 2227–2247. [Google Scholar] [CrossRef] [PubMed]
- Gaworski, M.; Leola, A.; Kiiman, H.; Sada, O.; Kic, P.; Priekulis, J. Assessment of dairy cow herd indices associated with different milking systems. Agron. Res. 2018, 16, 83–93. [Google Scholar]
- Steeneveld, W.; Hogeveen, H. Characterization of Dutch dairy farms using sensor systems for cow management. J. Dairy Sci. 2015, 98, 709–717. [Google Scholar] [CrossRef]
- Caja, G.; Castro-Costa, A.; Knight, C.H. Engineering to support wellbeing of dairy animals. J. Dairy Res. 2016, 83, 136–147. [Google Scholar] [CrossRef]
- Bowell, V.; Rennie, L.; Tierney, G.; Lawrence, A.; Haskell, M. Relationships between building design, management system and dairy cow welfare. Anim. Welf. 2003, 12, 547–552. [Google Scholar] [CrossRef]
- Stygar, A.H.; Gómez, Y.; Berteselli, G.V.; Dalla Costa, E.; Canali, E.; Niemi, J.K.; Llonch, P.; Pastell, M. A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Front. Vet. Sci. 2021, 8, 634338. [Google Scholar] [CrossRef]
- Abhijeet, K.; Prasanna, S.B.; Mahesh, P.S.; Gouri, M.D.; Vivek, M.P.; Bhandekar, S.K.; Ali, S.M.; Masood, K.D.; Karan, P. Comparative study of automation and conventional system on production performance in dairy farms. Asian J. Dairy Food Res. 2021, 40, 25–29. [Google Scholar] [CrossRef]
- Davis, K.L.; Jago, J.G.; Wieliczko, R.; Copeman, P.J.A.; Bright, K.; Woolford, M.W. Factors influencing milk harvesting efficiency in an automatic milking system. Proc. N. Z. Soc. Anim. Prod. 2005, 65, 271–275. [Google Scholar]
- Calcante, A.; Tangorra, F.M.; Oberti, R. Analysis of electric energy consumption of automatic milking systems in different configurations and operative conditions. J. Dairy Sci. 2016, 99, 4043–4047. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, J.B.; Pedersen, J. Electricity and Water Consumption at Milking; Farm Test–Cattle, nr. 17, 1–42; Danish Agricultural Advisory Service: Aarhus, Denmark, 2004. [Google Scholar]
- Steeneveld, W.; Tauer, L.W.; Hogeveen, H.; Oude Lansink, A.G.J.M. Comparing technical efficiency of farms with an automatic milking system and a conventional milking system. J. Dairy Sci. 2012, 95, 7391–7398. [Google Scholar] [CrossRef] [PubMed]
- Nogalski, Z.; Czerpak, K.; Pogorzelska, P. Effect of automatic and conventional milking on somatic cell count and lactation traits in primiparous cows. Ann. Anim. Sci. 2011, 11, 433–441. [Google Scholar]
- Toušová, R.; Ducháček, J.; Stádnik, L.; Ptáček, M.; Beran, J. The comparison of milk production and quality in cows from conventional and automatic milking systems. J. Cent. Eur. Agric. 2014, 15, 100–114. [Google Scholar] [CrossRef]
- Weiss, D.; Helmreich, S.; Mostl, E.; Dzidic, A.; Bruckmaier, R.M. Coping capacity of dairy cows during the change from conventional to automatic milking, J. Anim. Sci. 2004, 82, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Hovinen, M.; Rasmussen, M.D.; Pyörälä, S. Udder health of cows changing from tie stalls or free stalls with conventional milking to free stalls with either conventional or automatic milking. J. Dairy Sci. 2009, 92, 3696–3703. [Google Scholar] [CrossRef]
- Gygax, L.; Neuffer, I.; Kaufmann, C.; Hauser, R.; Wechsler, B. Comparison of functional aspects in two automatic milking systems and auto-tandem milking parlors. J. Dairy Sci. 2007, 90, 4265–4274. [Google Scholar] [CrossRef]
- Hopster, H.; Bruckmaier, R.M.; Van der Werf, J.T.N.; Korte, S.M.; Macuhova, J.; Korte-Bouws, G.; van Reenen, C.G. Stress responses during milking; comparing conventional and automatic milking in primiparous dairy cows. J. Dairy Sci. 2002, 85, 3206–3216. [Google Scholar] [CrossRef]
- Gaworski, M. Behavior of cows in the lying area when the exit gates in the pens are opened: How many cows are forced to get up to go to the milking parlor? Animals 2023, 13, 2882. [Google Scholar] [CrossRef] [PubMed]
- Wildridge, A.M.; Thomson, P.C.; Garcia, S.C.; Jongman, E.C.; Kerrisk, K.L. Transitioning from conventional to automatic milking: Effects on the human-animal relationship. J. Dairy Sci. 2020, 103, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Gargiulo, J.I.; Lyons, N.A.; Kempton, K.; Armstrong, D.A.; Garcia, S.C. Physical and economic comparison of pasture-based automatic and conventional milking systems. J. Dairy Sci. 2020, 103, 8231–8240. [Google Scholar] [CrossRef] [PubMed]
- Hansen, B.G.; Herje, H.O.; Höva, J. Profitability on dairy farms with automatic milking systems compared to farms with conventional milking systems. Int. Food Agribus. Man. 2019, 22, 215–228. [Google Scholar] [CrossRef]
- Butler, D.; Holloway, L.; Bear, C. The impact of technological change in dairy farming: Robotic milking systems and the changing role of the stockperson. J. R. Agric. Soc. Engl. 2012, 173, 1–6. [Google Scholar]
- Ketelaar-de Lauwere, C.C.; Ipema, A.H.; van Ouwerkerk, E.N.J.; Hendriks, M.M.W.B.; Metz, J.H.M.; Noordhuizen, J.P.T.M.; Schouten, W.G.P. Voluntary automatic milking in combination with grazing of dairy cows: Milking frequency and effects on behaviour. Appl. Anim. Behav. Sci. 1999, 64, 91–109. [Google Scholar] [CrossRef]
- Lyons, N.A.; Kerrisk, K.L.; Garcia, S.C. Comparison of 2 systems of pasture allocation on milking intervals and total daily milk yield of dairy cows in a pasture-based automatic milking system. J. Dairy Sci. 2013, 96, 4494–4504. [Google Scholar] [CrossRef] [PubMed]
- Spörndly, E.; Wredle, E. Automatic milking and grazing—Effects of distance to pasture and level of supplements on milk yield and cow behavior. J. Dairy Sci. 2004, 87, 1702–1712. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.F.; Boyle, L.A. Assessing whether dairy cow welfare is “better” in pasture-based than in confinement-based management systems. N. Z. Vet. J. 2020, 68, 168–177. [Google Scholar] [CrossRef]
- Armbrecht, L.; Lambertz, C.; Albers, D.; Gauly, M. Assessment of welfare indicators in dairy farms offering pasture at differing levels. Animal 2019, 13, 2336–2347. [Google Scholar] [CrossRef]
- Leso, L.; Andrade, R.R.; Bambi, G.; Becciolini, V.; Barbari, M. Free-choice pasture access for dry cows: Effects on health, behavior, and milk production. J. Dairy Sci. 2023, 106, 7954–7964. [Google Scholar] [CrossRef] [PubMed]
- Smid, A.-M.C.; Boone, V.; Jarbeau, M.; Lombard, J.; Barkema, H.W. Outdoor access practices in the Canadian dairy industry. J. Dairy Sci. 2023, 106, 7711–7724. [Google Scholar] [CrossRef] [PubMed]
- Beaver, A.; Proudfoot, K.L.; von Keyserlingk, M.A.G. Symposium review: Considerations for the future of dairy cattle housing: An animal welfare perspective. J. Dairy Sci. 2020, 103, 5746–5758. [Google Scholar] [CrossRef]
- Phillips, C.J.C.; Beerda, B.; Knierim, U.; Waiblinger, S.; Lidfors, L.; Krohn, C.C.; Hopster, H. A review of the impact of housing on dairy cow behaviour, health and welfare. In Livestock Housing: Modern Management to Ensure Optimal Health and Welfare of Farm Animals; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 221–232. [Google Scholar] [CrossRef]
- Popescu, S.; Borda, C.; Diugan, E.A.; Niculae, M.; Razvan, S.; Sandru, C.D. The effect of the housing system on the welfare quality of dairy cows. Ital. J. Anim. Sci. 2014, 13, 2940. [Google Scholar] [CrossRef]
- Wang, R.; Gao, Z.; Li, Q.; Zhao, C.; Gao, R.; Zhang, H.; Li, S.; Feng, L. Detection method of cow estrus behavior in natural scenes based on improved YOLOv5. Agriculture 2022, 12, 1339. [Google Scholar] [CrossRef]
- Fregonesi, J.A.; Veira, D.M.; von Keyserlingk, M.A.G.; Weary, D.M. Effects of bedding quality on lying behavior of dairy cows. J. Dairy Sci. 2007, 90, 5468–5472. [Google Scholar] [CrossRef]
- Gaworski, M. Free-stall use and preferences in dairy cows: A case study on neck rails covered by foam. Animals 2019, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Gaworski, M. Differences in occupation of lying stalls by cows: Case study of pens with one row of stalls. In Proceedings of the Conference on Engineering for Rural Development, Jelgava, Latvia, 26–28 May 2021; Volume 20, pp. 1039–1045. [Google Scholar] [CrossRef]
- Palacio, S.; Adam, S.; Bergeron, R.; Pellerin, D.; de Passillé, A.M.; Rushen, J.; Haley, D.; DeVries, T.J.; Vasseur, E. Minor stall modifications and outdoor access can help improve dairy cow welfare in tie-stalls. Can. J. Anim. Sci. 2023, 103, 1–14. [Google Scholar] [CrossRef]
- Boyer, V.; Edwards, E.; Guiso, M.F.; Adam, S.; Krawczel, P.; de Passillé, A.M.; Vasseur, E. Making tiestalls more comfortable: III. Providing additional lateral space to improve the resting capacity and comfort of dairy cows. J. Dairy Sci. 2021, 104, 3327–3338. [Google Scholar] [CrossRef]
- McPherson, S.E.; Vasseur, E. Making tiestalls more comfortable: IV. Increasing stall bed length and decreasing manger wall height to heal injuries and increase lying time in dairy cows housed in deep-bedded tiestalls. J. Dairy Sci. 2021, 104, 3339–3352. [Google Scholar] [CrossRef]
- Tucker, C.B.; Weary, D.M.; von Keyserlingk, M.A.G.; Beauchemin, K.A. Cow comfort in tie-stalls: Increased depth of shavings or straw bedding increases lying time. J. Dairy Sci. 2009, 92, 2684–2690. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, M.V.; Rushen, J.; de Passillé, A.M.; Vasseur, E.; Orsel, K.; Pellerin, D. Associations between on-farm animal welfare indicators and productivity and profitability on Canadian dairies: I. On freestall farms. J. Dairy Sci. 2019, 102, 4341–4351. [Google Scholar] [CrossRef]
- Hansen, M.N. Comparison of the labour requirement involved in the housing of dairy cows in different housing systems. Acta Agric. Scand. Sect. A-Anim. Sci. 2000, 50, 153–160. [Google Scholar] [CrossRef]
- Næss, G.; Bøe, K.E. Labour input in small cubicle dairy barns with different layouts and mechanisation levels. Biosyst. Eng. 2011, 110, 83–89. [Google Scholar] [CrossRef]
- Marino, R.; Petrera, F.; Abeni, F. Scientific productions on precision livestock farming: An overview of the evolution and current state of research based on a bibliometric analysis. Animals 2023, 13, 2280. [Google Scholar] [CrossRef] [PubMed]
- Tuyttens, F.A.; Molento, C.F.; Benaissa, S. Twelve threats of precision livestock farming (PLF) for animal welfare. Front. Vet. Sci. 2022, 9, 889623. [Google Scholar] [CrossRef] [PubMed]
- Pomar, C.; Remus, A. Review: Fundamentals, limitations and pitfalls on the development and application of precision nutrition techniques for precision livestock farming. Animal 2023, 17, 100763. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Guarino, M. A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? J. Clean. Prod. 2020, 262, 121409. [Google Scholar] [CrossRef]
- Kaur, U.; Malacco, V.M.R.; Bai, H.; Price, T.P.; Datta, A.; Xin, L.; Sen, S.; Nawrocki, R.A.; Chiu, G.; Sundaram, S.; et al. Invited review: Integration of technologies and systems for precision animal agriculture—A case study on precision dairy farming. J. Anim. Sci. 2023, 101, skad206. [Google Scholar] [CrossRef]
- Gargiulo, J.I.; Eastwood, C.R.; Garcia, S.C.; Lyons, N.A. Dairy farmers with larger herd sizes adopt more precision dairy technologies. J. Dairy Sci. 2018, 101, 5466–5473. [Google Scholar] [CrossRef]
- Robbins, J.A.; von Keyserlingk, M.A.G.; Fraser, D.; Weary, D.M. Invited review: Farm size and animal welfare. J. Anim. Sci. 2016, 94, 5439–5455. [Google Scholar] [CrossRef] [PubMed]
- Berckmans, D. Precision livestock farming technologies for welfare management in intensive livestock systems. OIE Rev. Sci. Tech. 2014, 33, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, S.; Viejo, C.G.; Tongson, E.; Dunshea, F.R. The livestock farming digital transformation: Implementation of new and emerging technologies using artificial intelligence. Anim. Health Res. Rev. 2022, 23, 59–71. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, W.; Lv, C.; Guo, M.; Yang, M.; Fu, Q.; Liu, X. Advancements in artificial intelligence technology for improving animal welfare: Current applications and research progress. Anim. Res. One Health 2024, 2, 93–109. [Google Scholar] [CrossRef]
- Vlaicu, P.A.; Gras, M.A.; Untea, A.E.; Lefter, N.A.; Rotar, M.C. Advancing livestock technology: Intelligent systemization for enhanced productivity, welfare, and sustainability. AgriEngineering 2024, 6, 1479–1496. [Google Scholar] [CrossRef]
- Mowla, N.; Mowla, N.; Shah, A.F.M.S.; Rabie, K.M.; Shongwe, T. Internet of Things and wireless sensor networks for smart agriculture applications: A survey. IEEE Access 2023, 11, 145813–145852. [Google Scholar] [CrossRef]
- Ahmed, H.; Ekman, L.; Lind, N. Planned behavior, social networks, and perceived risks: Understanding farmers’ behavior toward precision dairy technologies. J. Dairy Sci. 2024, 107, 2968–2982. [Google Scholar] [CrossRef]
- Palma-Molina, P.; Hennessy, T.; O’Connor, A.H.; Onakuse, S.; O’Leary, N.; Moran, B.; Shalloo, L. Factors associated with intensity of technology adoption and with the adoption of 4 clusters of precision livestock farming technologies in Irish pasture-based dairy systems. J. Dairy Sci. 2023, 106, 2498–2509. [Google Scholar] [CrossRef] [PubMed]
- Mattachini, G.; Antler, A.; Riva, E.; Arbel, A.; Provolo, G. Automated measurement of lying behavior for monitoring the comfort and welfare of lactating dairy cows. Livest. Sci. 2013, 158, 145–150. [Google Scholar] [CrossRef]
- Crump, A.; Jenkins, K.; Bethell, E.J.; Ferris, C.P.; Arnott, G. Pasture access affects behavioral indicators of wellbeing in dairy cows. Animals 2019, 9, 902. [Google Scholar] [CrossRef]
- Alsaaod, M.; Römer, C.; Kleinmanns, J.; Hendriksen, K.; Rose-Meierhöfer, S.; Plümer, L.; Büscher, W. Electronic detection of lameness in dairy cows through measuring pedometric activity and lying behavior. Appl. Anim. Behav. Sci. 2012, 142, 134–141. [Google Scholar] [CrossRef]
- Alvarez, A.; del Corral, J. Identifying different technologies using a latent class model: Extensive versus intensive dairy farms. Eur. Rev. Agric. Econ. 2010, 37, 231–250. [Google Scholar] [CrossRef]
- Foris, B.; Sadrzadeh, N.; Krahn, J.; Weary, D.M.; von Keyserlingk, M.A.G. The effect of placement and group size on the use of an automated brush by groups of lactating dairy cattle. Animals 2023, 13, 760. [Google Scholar] [CrossRef]
- Sadrzadeh, N.; Foris, B.; Krahn, J.; von Keyserlingk, M.A.G.; Weary, D.M. Automated monitoring of brush use in dairy cattle. PLoS ONE 2024, 19, e0305671. [Google Scholar] [CrossRef] [PubMed]
- Gaworski, M.; Boćkowski, M. Comparison of cattle housing systems based on the criterion of damage to barn equipment and construction errors. Animals 2022, 12, 2530. [Google Scholar] [CrossRef] [PubMed]
- Shablia, V.P.; Tkachova, I.V. Machine and manual working actions for different manure removing technologies. Bol. Ind. Anim. 2020, 77, 1–14. [Google Scholar] [CrossRef]
- Telezhenko, E.; Lidfors, L.; Bergsten, C. Dairy cow preferences for soft or hard flooring when standing or walking. J. Dairy Sci. 2007, 90, 3716–3724. [Google Scholar] [CrossRef] [PubMed]
- Angrecka, S.; Herbut, P.; Godyń, D.; Vieira, F.M.C.; Zwolenik, M. Dynamics of microclimate conditions in freestall barns during winter—A case study from Poland. J. Ecol. Eng. 2020, 21, 129–136. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Nawalany, G. Influence of wind on air movement in a free-stall barn during the summer period. Ann. Anim. Sci. 2013, 13, 109–119. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Nawalany, G.; Adamczyk, K. Spatial and temporal distribution of temperature, relative humidity and air velocity in a parallel milking parlour during summer period. Ann. Anim. Sci. 2015, 15, 517–526. [Google Scholar] [CrossRef]
- Collier, R.J.; Dahl, G.E.; Van Baale, M.J. Major advances associated with environmental effects on dairy cattle. J. Dairy Sci. 2006, 89, 1244–1253. [Google Scholar] [CrossRef]
- Kic, P. Influence of external thermal conditions on temperature–humidity parameters of indoor air in a Czech dairy farm during the summer. Animals 2022, 12, 1895. [Google Scholar] [CrossRef] [PubMed]
- Papez, J.; Kic, P. Standard and real parameters of dairy farm technology in Czech Republic. In Proceedings of the 6th International Conference on Trends in Agricultural Engineering (TAE) 2016, Prague, Czech Republic, 7–9 September 2016; Czech University of Life Sciences Prague: Prague, Czech Republic, 2016; pp. 460–465. [Google Scholar]
- Guerra, M.S.S.; Bánkuti, F.I.; Silva, A.A. Agroecological practices and the typology of milk production systems in Brazilian rural settlements. J. Sustain. Res. 2024, 6, e240027. [Google Scholar] [CrossRef]
- Vigors, B.; Wemelsfelder, F.; Lawrence, A.B. What symbolises a “good farmer” when it comes to farm animal welfare? J. Rural Stud. 2023, 98, 159–170. [Google Scholar] [CrossRef]
- Butler, D.; Holloway, L. Technology and restructuring the social field of dairy farming: Hybrid capitals, ‘stockmanship’ and automatic milking systems: Technology and hybrid capitals in dairy farming. Sociol. Rural. 2016, 56, 513–530. [Google Scholar] [CrossRef]
- Barkema, H.W.; Van der Ploeg, J.D.; Schukken, Y.H.; Lam, T.J.G.M.; Benedictus, G.; Brand, A. Management style and its association with bulk milk somatic cell count and incidence rate of clinical mastitis. J. Dairy Sci. 1999, 82, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Axelsson, L.; Arvidsson-Segerkvist, K.; Pálsdóttir, A.M.; Ljung, M. The meaning of animal well-being for farmers and dairy farm employees. Agric. Food Sci. 2024, 33, 30–39. [Google Scholar] [CrossRef]
- Weary, D.M.; von Keyserlingk, M.A.G. Using animal welfare to frame discussion on dairy farm technology. Animal 2023, 17, 100836. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaworski, M.; Kic, P. Assessment of Production Technologies on Dairy Farms in Terms of Animal Welfare. Appl. Sci. 2024, 14, 6086. https://doi.org/10.3390/app14146086
Gaworski M, Kic P. Assessment of Production Technologies on Dairy Farms in Terms of Animal Welfare. Applied Sciences. 2024; 14(14):6086. https://doi.org/10.3390/app14146086
Chicago/Turabian StyleGaworski, Marek, and Pavel Kic. 2024. "Assessment of Production Technologies on Dairy Farms in Terms of Animal Welfare" Applied Sciences 14, no. 14: 6086. https://doi.org/10.3390/app14146086
APA StyleGaworski, M., & Kic, P. (2024). Assessment of Production Technologies on Dairy Farms in Terms of Animal Welfare. Applied Sciences, 14(14), 6086. https://doi.org/10.3390/app14146086