Deceptive Modulation of Actual and Perceived Effort While Walking Using Immersive Virtual Reality: A Teleoanticipatory Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. IVR Intervention
2.4. Equipment
2.5. Experimental Procedures
2.6. Statistical Analysis
3. Results
3.1. Demographics
3.2. RPE Scores
3.3. Heart Rate
3.4. Post-IVR Session Responses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wittekind, A.L.; Micklewright, D.; Beneke, R. Teleoanticipation in all-out short-duration cycling. Br. J. Sports Med. 2011, 45, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.M.; Bentley, M.B.; Mann, M.E.; Seaholme, T.S. Self-pacing in interval training: A teleoanticipatory approach. Psychophysiology 2011, 48, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Lambert, E.V.; St Clair Gibson, A.; Noakes, T.D. Complex systems model of fatigue: Integrative homoeostatic control of peripheral physiological systems during exercise in humans. Br. J. Sports Med. 2005, 39, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Baden, D.A.; McLean, T.L.; Tucker, R.; Noakes, T.D.; St Clair Gibson, A. Effect of anticipation during unknown or unexpected exercise duration on rating of perceived exertion, affect, and physiological function. Br. J. Sports Med. 2005, 39, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Coquart, J.B.; Garcin, M. Knowledge of the endpoint: Effect on perceptual values. Int. J. Sports Med. 2008, 29, 976–979. [Google Scholar] [CrossRef] [PubMed]
- Tucker, R. The anticipatory regulation of performance: The physiological basis for pacing strategies and the development of a perception-based model for exercise performance. Br. J. Sports Med. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Day, M.L.; Mcguigan, M.R.; Brice, G.; Foster, C. Monitoring Exercise Intensity During Resistance Training Using the Session RPE Scale. J. Strength. Cond. Res. 2004, 18, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Williams, N. The Borg Rating of Perceived Exertion (RPE) scale. Occup. Med. 2017, 67, 404–405. [Google Scholar] [CrossRef]
- Glass, S.C.; Knowlton, R.G.; Becque, M.D. Accuracy of RPE from graded exercise to establish exercise training intensity. Med. Sci. Sports Exerc. 1992, 24, 1303–1307. [Google Scholar] [CrossRef] [PubMed]
- Lagally, K.M.; Robertson, R.J.; Gallagher, K.I.; Gearhart, R.; Goss, F.L. Ratings of perceived exertion during low- and high-intensity resistance exercise by young adults. Percept. Mot. Ski. 2002, 94, 723–731. [Google Scholar] [CrossRef]
- Ceci, R.; Hassmen, P. Self-monitored exercise at three different RPE intensities in treadmill vs field running. Med. Sci. Sports Exerc. 1991, 23, 732–738. [Google Scholar] [CrossRef] [PubMed]
- Corbett, J.; Barwood, M.J.; Ouzounoglou, A.; Thelwell, R.; Dicks, M. Influence of Competition on Performance and Pacing during Cycling Exercise. Med. Sci. Sports Exerc. 2012, 44, 509–515. [Google Scholar] [CrossRef]
- Williamson, J.W.; McColl, R.; Mathews, D.; Mitchell, J.H.; Raven, P.B.; Morgan, W.P. Hypnotic manipulation of effort sense during dynamic exercise: Cardiovascular responses and brain activation. J. Appl. Physiol. 2001, 90, 1392–1399. [Google Scholar] [CrossRef] [PubMed]
- Finnegan, S.L.; Dearlove, D.J.; Morris, P.; Freeman, D.; Sergeant, M.; Taylor, S.; Pattinson, K.T.S. Breathlessness in a virtual world: An experimental paradigm testing how discrepancy between VR visual gradients and pedal resistance during stationary cycling affects breathlessness perception. PLoS ONE 2023, 18, e0270721. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.S.; Williams, E.L.; Bridge, C.A.; Marchant, D.; Midgley, A.W.; Micklewright, D.; McNaughton, L.R. Physiological and Psychological Effects of Deception on Pacing Strategy and Performance: A Review. Sports Med. 2013, 43, 1243–1257. [Google Scholar] [CrossRef] [PubMed]
- Pires, F.O.; Hammond, J. Manipulation effects of prior exercise intensity feedback by the Borg scale during open-loop cycling. Br. J. Sports Med. 2012, 46, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Hampson, D.B.; St Clair Gibson, A.; Lambert, M.I.; Dugas, J.P.; Lambert, E.V.; Noakes, T.D. Deception and Perceived Exertion during High-Intensity Running Bouts. Percept. Mot. Ski. 2004, 98, 1027–1038. [Google Scholar] [CrossRef] [PubMed]
- Han, D.I.D.; Bergs, Y.; Moorhouse, N. Virtual reality consumer experience escapes: Preparing for the metaverse. Virtual Real. 2022, 26, 1443–1458. [Google Scholar] [CrossRef]
- Slater, M.; Sanchez-Vives, M.V. Enhancing Our Lives with Immersive Virtual Reality. Front. Robot. AI 2016, 3, 74. [Google Scholar] [CrossRef]
- North, M.M.; North, S.M. A Comparative Study of Sense of Presence of Traditional Virtual Reality and Immersive Environments. Australas. J. Inf. Syst. 2016, 20. [Google Scholar] [CrossRef]
- Slater, M.; Pérez Marcos, D.; Ehrsson, H.; Sanchez-Vives, M.V. Inducing illusory ownership of a virtual body. Front. Neurosci. 2009, 3, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Zang, N.; Pope, Z.; Gao, Z. Acute Effect of Virtual Reality Exercise Bike Games on College Students’ Physiological and Psychological Outcomes. Cyberpsychology Behav. Soc. Netw. 2017, 20, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Mestre, D.R.; Ewald, M.; Maiano, C. Virtual reality and exercise: Behavioral and psychological effects of visual feedback. Annu. Rev. Cybertherapy Telemed. 2011, 2011, 122–127. [Google Scholar]
- Dolezal, B.A.; Lau, M.J.; Abrazado, M.; Storer, T.W.; Cooper, C.B. Validity of two commercial grade bioelectrical impedance analyzers for measurement of body fat percentage. J. Exerc. Physiol. Online 2013, 16, 74. [Google Scholar]
- Heyward, V. ASEP methods recommendation: Body composition assessment. J. Exerc. Physiol. 2001, 4, 1–12. [Google Scholar]
- Qian, J.; McDonough, D.J.; Gao, Z. The Effectiveness of Virtual Reality Exercise on Individual’s Physiological, Psychological and Rehabilitative Outcomes: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 4133. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Kay, J. VRun: Running-in-place virtual reality exergame. In Proceedings of the 28th Australian Conference on Computer-Human Interaction, Launceston, Tasmania, Australia, 29 November–2 December 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 562–566. [Google Scholar] [CrossRef]
- Xu, W.; Liang, H.N.; Baghaei, N.; Ma, X.; Yu, K.; Meng, X.; Wen, S. Effects of an Immersive Virtual Reality Exergame on University Students’ Anxiety, Depression, and Perceived Stress: Pilot Feasibility and Usability Study. JMIR Serious Games 2021, 9, e29330. [Google Scholar] [CrossRef] [PubMed]
- Löchtefeld, M.; Krüger, A.; Gellersen, H. DeceptiBike: Assessing the Perception of Speed Deception in a Virtual Reality Training Bike System. In Proceedings of the 9th Nordic Conference on Human-Computer Interaction, Gothenburg, Sweden, 23–27 October 2016; Association for Computing Machinery: New York, NY, USA, 2016; p. 40. [Google Scholar] [CrossRef]
- Piper, T.; Radlo, S.; Gerhardt, K.; Brooks, D.; Schnaiter, J. The Effects of Deception on Maximal Strength, Goals, and Physical Self-Efficacy. Int. J. Strength Cond. 2023, 3. [Google Scholar] [CrossRef]
- Leininger, L.; Coles, M.G.; Gilbert, J.N. Comparing enjoyment and perceived exertion between equivalent bouts of physically interactive video gaming and treadmill walking. Health Fit. J. 2010, 3, 12–18. [Google Scholar] [CrossRef]
- Campo-Prieto, P.; Rodríguez-Fuentes, G.; Cancela-Carral, J.M. Immersive Virtual Reality Exergame Promotes the Practice of Physical Activity in Older People: An Opportunity during COVID-19. Multimodal Technol. Interact. 2021, 5, 52. [Google Scholar] [CrossRef]
- Yoo, S.; Ackad, C.; Heywood, T.; Kay, J. Evaluating the Actual and Perceived Exertion Provided by Virtual Reality Games. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, Denver, CO, USA, 6–11 May 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 3050–3057. [Google Scholar] [CrossRef]
- Eston, R.; Stansfield, R.; Westoby, P.; Parfitt, G. Effect of deception and expected exercise duration on psychological and physiological variables during treadmill running and cycling. Psychophysiology 2012, 49, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Ansley, L.; Robson, P.J.; St Clair Gibson, A.; Noakes, T.D. Anticipatory pacing strategies during supramaximal exercise lasting longer than 30 s. Med. Sci. Sports Exerc. 2004, 36, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Stone, M.R.; Thomas, K.; Wilkinson, M.; Jones, A.M.; St Clair Gibson, A.; Thompson, K.G. Effects of deception on exercise performance: Implications for determinants of fatigue in humans. Med. Sci. Sports Exerc. 2012, 44, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Melancon, J. Consumer profiles in reality vs fantasy-based virtual worlds: Implications for brand entry. J. Res. Interact. Mark. 2011, 5, 298–312. [Google Scholar] [CrossRef]
- Gromala, D.; Tong, X.; Choo, A.; Karamnejad, M.; Shaw, C.D. The Virtual Meditative Walk: Virtual Reality Therapy for Chronic Pain Management. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, Republic of Korea, 18–23 April 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 521–524. [Google Scholar]
- Yu, C.-P.; Lee, H.-Y.; Luo, X.-Y. The effect of virtual reality forest and urban environments on physiological and psychological responses. Urban For. Urban Green 2018, 35, 106–114. [Google Scholar] [CrossRef]
- Rutkowski, S.; Szary, P.; Sacha, J.; Casaburi, R. Immersive Virtual Reality Influences Physiologic Responses to Submaximal Exercise: A Randomized, Crossover Trial. Front. Physiol. 2021, 12, 702266. [Google Scholar] [CrossRef] [PubMed]
Non-IVR | IVR | |||||
---|---|---|---|---|---|---|
Deceptive Treadmill Speed (mph) | 3.3 | 3.5 | 3.7 | 3.3 | 3.5 | 3.7 |
HR (±SD) (bpm) | 111 (13) | 110 (16) | 115 (16) | 107 (14) | 105 (10) | 107 (10) |
Borg RPE (±SD) | 8.5 (1.5) | 8.6 (1.1) | 9.0 (1.3) | 7.5 (0.5) | 7.4 (0.5) | 7.6 (0.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamamoto, T.; Sahni, T.K.; McCabe, C.A.; Nguyen, T.L.; Blatney, A.E.; Lechner, R.J.; Nguyen, T.H.; Benna, D.M.; Farrales, J.P.; Mologne, M.S.; et al. Deceptive Modulation of Actual and Perceived Effort While Walking Using Immersive Virtual Reality: A Teleoanticipatory Approach. Appl. Sci. 2024, 14, 6072. https://doi.org/10.3390/app14146072
Yamamoto T, Sahni TK, McCabe CA, Nguyen TL, Blatney AE, Lechner RJ, Nguyen TH, Benna DM, Farrales JP, Mologne MS, et al. Deceptive Modulation of Actual and Perceived Effort While Walking Using Immersive Virtual Reality: A Teleoanticipatory Approach. Applied Sciences. 2024; 14(14):6072. https://doi.org/10.3390/app14146072
Chicago/Turabian StyleYamamoto, Trent, Trinabh K. Sahni, Corinne A. McCabe, Trevor L. Nguyen, August E. Blatney, Ross J. Lechner, Thalia H. Nguyen, Dominic M. Benna, Jason P. Farrales, Mitchell S. Mologne, and et al. 2024. "Deceptive Modulation of Actual and Perceived Effort While Walking Using Immersive Virtual Reality: A Teleoanticipatory Approach" Applied Sciences 14, no. 14: 6072. https://doi.org/10.3390/app14146072
APA StyleYamamoto, T., Sahni, T. K., McCabe, C. A., Nguyen, T. L., Blatney, A. E., Lechner, R. J., Nguyen, T. H., Benna, D. M., Farrales, J. P., Mologne, M. S., Neufeld, E. V., & Dolezal, B. A. (2024). Deceptive Modulation of Actual and Perceived Effort While Walking Using Immersive Virtual Reality: A Teleoanticipatory Approach. Applied Sciences, 14(14), 6072. https://doi.org/10.3390/app14146072