Compositional Characteristics of Currant Juices Prepared by Different Processes and Other Selected Currant Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Berries and Commercial Products
Juice Preparation
2.2. Chemicals and Reagents
2.3. Methods
2.3.1. Soluble Solids Analysis
2.3.2. Sugar Analysis
2.3.3. Organic Acids Analysis
2.3.4. d-Isocitric Acid Content
2.3.5. Titratable Acidity and Formol Number Analysis
2.3.6. Ash and Mineral Substances Analysis
2.3.7. Ascorbic Acid Content
2.3.8. Anthocyanins Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition of Black and Red Currant Juices
Marker | Black Currant (BC) | Red Currant (RC) | ANOVA p-Values | Literature Data | Reference | |||
---|---|---|---|---|---|---|---|---|
E (n = 16) | WE (n = 6) | E (n = 10) | WE (n = 6) | BC | RC | |||
Soluble solids [°Brix] | 16.2 ± 1.7 cd | 15.9 ± 1.8 c | 12.0 ± 1.7 ab | 12.9 ± 2.8 a | <0.001 | 8.9–20.0 | 8.0–15.3 | [2,4,10,11,12,28,33,34,36,37,38,39] |
Sucrose [g/kg] | 0.8 ± 0.5 bcd | <0.1 a | <0.1 a | <0.1 a | <0.005 | 0.0–36.9 | 0.0–11.6 | [4,6,11,12,28,30,32,38,39,40,41] |
Glucose [g/kg] | 39.1 ± 7.9 | 37.0 ± 8.2 | 33.1 ± 7.8 | 36.5 ± 8.0 | NS | 21.0–82.8 | 7.0–46.6 | [4,6,11,12,28,30,32,38,39,40,41] |
Fructose [g/kg] | 50.2 ± 8.2 c | 47.2 ± 9.5 | 37.3 ± 7.5 a | 39.6 ± 7.4 | <0.005 | 23.0–85.4 | 18.0–55.4 | [4,11,12,28,30,32,38,39,40,41] |
Ratio Glc/Fru | 0.8 ± 0.1 cd | 0.8 ± 0.1 cd | 0.9 ± 0.1 ab | 0.9 ± 0.1 ab | <0.001 | 0.6–0.9 | 0.7–1.2 | [28,32,34] |
Malic acid [g/kg] | 2.9 ± 0.7 | 3.0 ± 0.7 | 3.7 ± 3.3 | 2.2 ± 0.8 | NS | 0.6–10.0 | 0.3–19.0 | [4,6,11,12,28,30,31,33,34,38,40] |
Citric acid [g/kg] | 33.8 ± 6.2 c | 37.0 ± 6.1 cd | 22.0 ± 7.4 ab | 25.2 ± 5.8 b | <0.001 | 18.0–59.8 | 9.9–38.0 | [4,6,11,12,28,30,31,33,34,38,40] |
d-isocitric acid [mg/kg] | 266 ± 39 | 281 ± 62 | 213 ± 53 | 257 ± 51 | NS | 125–500 | 130–313 | [28,31,34,42] |
Ratio CA/ICA | 132 ± 43 | 143 ± 57 | 103 ± 32 | 98 ± 13 | NS | 80–200 | 75–188 | [28,31] |
Titratable acidity [g/kg] | 37.6 ± 4.3 cd | 38.8 ± 3.5 cd | 25.8 ± 3.2 ab | 25.2 ± 4.3 ab | <0.001 | 8.7–48.0 | 12.0–39.0 | [2,10,28,33,34,37,39,43] |
Formol number [mL 0.1 M NaOH/100 g] | 15.7 ± 6.6 | 22.5 ± 7.6 | 23.0 ± 13.2 | 17.3 ± 9.1 | NS | 7.0–30.0 | 1.5–2.6 | [28,34] |
Ash [g/kg] | 5.2 ± 0.5 | 5.5 ± 0.5 | 4.4 ± 1.6 | 4.2 ± 1.5 | NS | 5.0–11.0 | 4.7–7.2 | [28,30,34,41,43] |
Phosphorus [mg/kg] | 274 ± 81 | 302 ± 97 | 246 ± 110 | 262 ± 138 | NS | 160–606 | 156–440 | [28,30,34,35,41,43] |
Potassium [mg/kg] | 1717 ± 441 | 2046 ± 301 | 1685 ± 827 | 1544 ± 657 | NS | 1711–4100 | 1272–3000 | [28,30,33,34,35,41,43] |
Magnesium [mg/kg] | 145 ± 30 cd | 115 ± 25 | 102 ± 20 a | 100 ± 22 a | <0.001 | 80–679 | 21–393 | [28,30,33,34,35,41,43] |
Calcium [mg/kg] | 370 ± 94 cd | 324 ± 90 | 232 ± 42 a | 257 ± 28 a | <0.001 | 160–749 | 90–380 | [28,30,33,34,35,41,43] |
Ascorbic acid [mg/kg] | 1631 ± 387 cd | 1396 ± 475 cd | 241 ± 100 ab | 295 ± 85 ab | <0.001 | 171–3960 | 121–768 | [2,4,8,10,11,12,14,28,30,33,34,36,37,38,39,40,41,43,44] |
Black Currant (BC) | Student’s t-Test p-Values | Reference | |||
---|---|---|---|---|---|
Marker | E (n = 16) | WE (n = 6) | Literature Data | ||
Dp-3-glu (*Cy-3-glu) | 33.7 ± 10.1 b | 19.9 ± 6.3 a | 2.1–113.2 | <0.01 | [4,10,11,13,14,36,38,40,44,45,46,47,48] |
Dp-3-rut | 243.6 ± 89.5 b | 151.1 ± 61.9 a | 11.5–311.4 | <0.05 | [4,10,11,13,14,36,38,40,44,45,46,47,48] |
Cy-3-glu | 16.7 ± 4.6 b | 10.3 ± 3.0 a | 0.6–28.6 | <0.01 | [4,10,11,13,14,36,38,40,44,45,46,47,48,49] |
Cy-3-rut | 117.9 ± 49.0 | 102.8 ± 50.7 | 11.4–211.4 | NS | [4,10,11,13,14,36,38,40,44,45,46,47,48,49] |
Sum of unknown (*Cy-3-glu) | nd | nd | 0.0–14.4 | - | [10,38,40,45,46,47] |
TACy * | 411.9 ± 140.7 | 284.1 ± 117.7 | 29.4–586.6 | NS | [4,6,8,10,11,13,14,28,33,36,38,44,45,47,48] |
Red currant (RC) | Student’s t-test p-Values | Reference | |||
Marker | E (n = 10) | WE (n = 6) | Literature data | ||
Dp-3-glu (*Cy-3-glu) | nd | nd | 0.0–0.2 | - | [10,38,45,46,47] |
Dp-3-rut | nd | nd | <LOD | - | [10,38,45,46,47] |
Cy-3-glu | 20.7 ± 8.0 | 20.9 ± 4.6 | 0.2–28.9 | NS | [10,38,45,46,47,49] |
Cy-3-rut | 10.2 ± 4.4 | 10.0 ± 3.5 | 1.6–17.5 | NS | [10,38,45,46,47,49] |
Sum of unknown (*Cy-3-glu) | 11.9 ± 10.1 | 5.1 ± 2.2 | 0.0–12.5 | NS | [10,38,46,47] |
TACy * | 42.8 ± 14.3 | 36.1 ± 7.1 | 4.7–31.7 | NS | [2,10,33,38,39,47] |
3.2. Chemical Composition of Commercial Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heiberg, M.; Maage, F. CURRANTS AND GOOSEBERRIES. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 1708–1712. ISBN 9780122270550. [Google Scholar] [CrossRef]
- Zdunić, G.; Šavikin, K.; Pljevljakušić, D.; Djordjević, B. Chapter 5—Black (Ribes nigrum L.) and Red Currant (Ribes rubrum L.) Cultivars. In Nutritional Composition of Fruit Cultivars, 1st ed.; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 101–126. ISBN 9780124081178. [Google Scholar] [CrossRef]
- Jasrotia, A.; Bakshi, P.; Kour, K.; Preet, M.S. Chapter 14—Currants (Ribes spp.). Minor Fruits: Nutraceutical Importance and Cultivation, 1st ed.; Ghosh, S.N., Ed.; Jaya Publications House: Delhi, India, 2017; pp. 257–286. ISBN 9789386110299. [Google Scholar]
- Laaksonen, O.; Mäkilä, L.; Tahnoven, R.; Kallio, H.; Yang, B. Sensory quality and compositional characteristics of blackcurrant juices produced by different processes. Food Chem. 2013, 138, 2421–2429. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). 2023. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 25 April 2024).
- Laaksonen, O.; Mäkilä, L.; Jokinen, M.; Metz, T.; Kallio, H.; Yang, B. Impact of storage on sensory quality of blackcurrant juices prepared with or without enzymatic treatment at industrial scale. Eur. Food Res. Technol. 2020, 246, 2611–2620. [Google Scholar] [CrossRef]
- Matthews, C. SOFT DRINKS/Production. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 5352–5358. ISBN 9780122270550. [Google Scholar] [CrossRef]
- Landbo, A.-K.; Meyer, A.S. Effects of different enzymatic maceration treatments on enhancement of anthocyanins and other phenolics in black currant juice. Innov. Food Sci. Emerg. Technol. 2004, 5, 503–513. [Google Scholar] [CrossRef]
- Mäkilä, L.; Laaksonen, O.; Kallio, H.; Yang, B. Effect of processing technologies and storage conditions on stability of black currant juices with special focus on phenolic compounds and sensory properties. Food Chem. 2017, 221, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Kidoń, M.; Narasimhan, G. Effect of Ultrasound and Enzymatic Mash Treatment on Bioactive Compounds and Antioxidant Capacity of Black, Red and White Currant Juices. Molecules 2022, 27, 318. [Google Scholar] [CrossRef] [PubMed]
- Laaksonen, O.A.; Mäkilä, L.; Sandell, M.A.; Salminen, J.-P.; Liu, P.; Kallio, H.P.; Yang, B. Chemical-Sensory Characteristics and Consumer Responses of Blackcurrant Juices Produced by Different Industrial Processes. Food Bioprocess Technol. 2014, 7, 2877–2888. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, B.; Tuomasjukka, S.; Ou, S.; Kallio, H. Effects of Latitude and Weather Conditions on Contents of Sugars, Fruit Acids, and Ascorbic Acid in Black Currant (Ribes nigrum L.) Juice. J. Agric. Food Chem. 2009, 57, 2977–2987. [Google Scholar] [CrossRef] [PubMed]
- Šimerdová, B.; Bobríková, M.; Lhotská, I.; Kaplan, J.; Křenová, A.; Šatínský, D. Evaluation of Anthocyanin Profiles in Various Blackcurrant Cultivars over a Three-Year Period Using a Fast HPLC-DAD Method. Foods 2021, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Rachtan-Janicka, J.; Ponder, A.; Hallmann, E. The Effect of Organic and Conventional Cultivations on Antioxidants Content in Blackcurrant (Ribes nigrum L.) Species. Appl. Sci. 2021, 11, 5113. [Google Scholar] [CrossRef]
- DIN EN 12143; Fruit and Vegetable Juices—Estimation of Soluble Solids Content—Refractometric Method. Deutsches Institut für Normung: Berlin, Germany, 1996.
- DIN EN 12630; Fruit and Vegetable Juices—Determination of Glucose, Fructose, Sorbitol and Sucrose Contents—Method Using High Performance Liquid Chromatography. Deutsches Institut für Normung: Berlin, Germany, 1999.
- Scherer, R.; Rybka, A.C.P.; Ballus, C.A.; Meinhart, A.D.; Filho, J.T.; Godboy, H.T. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem. 2012, 135, 150–154. [Google Scholar] [CrossRef]
- Rajchl, A.; Čížková, H.; Ševčík, R.; Jodasová, A.; Voldřich, M. Analytical data for plum paste as a tool for evaluation of plum paste authenticity. J. Food Nutr. Res. 2013, 52, 71–77. [Google Scholar]
- Podskalská, T.; Kvasnička, F.; Čížková, H. Metody stanovení d-isocitronové kyseliny ve výrobcích z ovoce/Methods for Determination of d-Isocitric Acid in Fruit Products. Chem. Listy 2021, 115, 615–622. [Google Scholar]
- Booklet d-Isocitric Acid (d-Isocitrate), Assay Procedure; K-ISOC 04/20; Megazyme Ltd., Bray, Co.: Wicklow, Ireland, 2020; pp. 1–11.
- DIN EN 12147; Fruit and Vegetable Juices—Determination of Titratable Acidity. Deutsches Institut für Normung: Berlin, Germany, 1997.
- DIN EN 1133; Fruit and Vegetable Juices—Determination of the Formol Number. Deutsches Institut für Normung: Berlin, Germany, 1994.
- DIN EN 1135; Fruit and Vegetable Juices—Determination of Ash. Deutsches Institut für Normung: Berlin, Germany, 1994.
- DIN EN 1136; Fruit and Vegetable Juices—Determination of Phosphorus Content; Spectrophotometric Method. Deutsches Institut für Normung: Berlin, Germany, 1994.
- DIN EN 1134; Fruit and Vegetable Juices—Determination of Sodium, Potassium, Calcium and Magnesium Content by Atomic Absorption Spectrophotometry (AAS). Deutsches Institut für Normung: Berlin, Germany, 1994.
- Hiroshi, I.; Ono, I. Determination of ascorbic acid and dehydroascorbic acid in juices by high-performance liquid chromatography with electrochemical detection using l-cysteine as precolumn reluctant. J. Chromatogr. A 1993, 654, 215–220. [Google Scholar] [CrossRef]
- IFU Method No. 71; Fruit Juices and Nectars—Detection of Anthocyanins by HPLC. International Federation of Fruit Juice Producers: Paris, France, 1998.
- The AIJN Code of Practice for evaluation of fruit and vegetable juices. In Reference Guidelines, 6.11 Reference Guideline for Blackcurrant Juice/Purée; A.I.J.N—European Fruit Juice Association: Belgium, Brussels, 2019.
- Cosmulescu, S.; Trandafir, I.; Nour, V. MINERAL COMPOSITION OF FRUIT IN BLACK AND RED CURRANT. South West J. Hortic. Biol. Environ. 2015, 6, 43–51. [Google Scholar]
- Souci, S.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables, 8th ed.; Medpharm Scientific Publishers: Stuttgart, Germany, 2015; p. 1182. ISBN 9783804750729. [Google Scholar]
- Stój, A.; Targoński, Z. Use of content analysis of selected organic acids for the detection of berry juice adulterations. Pol. J. Food Nutr. Sci. 2006, 56, 41–47. [Google Scholar]
- Stój, A.; Targoński, Z. Use of sugar content analysis for the estimation of berry juice authenticity. Pol. J. Food Nutr. Sci. 2005, 55, 403–409. [Google Scholar]
- Nour, V.; Trandafir, I.; Ionica, M.E. Ascorbic acid, anthocyanins, organic acids and mineral content of some black and red currant cultivars. Fruits 2011, 66, 353–362. [Google Scholar] [CrossRef]
- Bazzarini, R.; Bigliardi, D.; Gherardi, S.; Castaldo, D.; Andrea, L.V.; Trifirò, A. Caratterizzazione analitica di lamponi, mirtilli, more di rovo e ribes rosso di diversa provenienza. Industria Conserve 1986, 61, 22–28. [Google Scholar]
- Štursa, V.; Diviš, P.; Jurečková, Z.; Matějíček, A. ANALYSIS OF RED CURRANT (RIBES RUBRUM) AND RED GOOSEBERRY (RIBES UVA-CRISPA) VARIETIES BY INDUCTIVELY COUPLED PLASMA ATOMIC EMISSION SPECTROSCOPY. In Proceedings of the Conference MendelNet 2016, Brno, Czech Republic, 9–10 November 2016; Faculty of AgriSciences, Mendel Uvinersity: Brno, Czech Republic, 2016; pp. 669–674, ISBN 9788075094438. [Google Scholar]
- Djordjević, B.; Djurović, D.; Zec, G.; Zagorac, D.D.; Natić, M.; Meland, M.; Akšić, M.F. Does Shoot Age Influence Biological and Chemical Properties in Black Currant (Ribes nigrum L.) Cultivars? Plants 2022, 11, 866. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Öberg, E.; Johansson, E.; Andersson, S.C.; Rumpunen, K. Phenols and Ascorbic Acid in Black Currants (Ribes nigrum L.): Variation Due to Genotype, Location, and Year. J. Agric. Food Chem. 2013, 61, 9298–9306. [Google Scholar] [CrossRef]
- Zheng, J. Sugars, Acids and Phenolic Compounds in Currants and Sea Buckthorn in Relation to the Effects of Environmental Factors; University of Turku: Turku, Finland, 23 September 2013; ISBN 9789512954933. [Google Scholar]
- Djordjević, B.; Šavikin, K.; Zdunić, G.; Janković, T.; Vulić, T.; Oparnica, Č.; Radivojević, D. Biochemical Properties of Red Currant Varieties in Relation to Storage. Plant Foods Hum. Nutr. 2010, 65, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Bordonaba, J.G.; Terry, L.A. Biochemical Profiling and Chemometric Analysis of Seventeen UK-Grown Black Currant Cultivars. J. Agric. Food Chem. 2008, 56, 7422–7430. [Google Scholar] [CrossRef]
- USDA Food and Nutrient Database for Fietary Studies. 2019. Available online: https://fdc.nal.usda.gov/fdc-app.html#/?query=currant (accessed on 18 April 2024).
- Wallrauch, S.; Greiner, G. Bestimmung der d-Isocitronensäure in Fruchtsäften und alkoholfreien Erfrischungsgetränken. Flüssiges Obst. 1977, 44, 241–245. [Google Scholar]
- Marjanović-Balaban, Z.; Grujić, S.; Jasic, M.; Vujadinović, D. TESTING OF CHEMICAL COMPOSITION OF WILD BERRIES. In Proceedings of the Third International Scientific Symposium “Agrosym Jahorina 2012”, Jahorina, Bosnia and Herzegovina, 15–17 November 2012; Kovačević, D., Ed.; Faculty of Agriculture, University of East Sarajevo: Lukavica, Bosnia and Herzegovina, 2012; pp. 154–160. [Google Scholar]
- Iversen, C.K. Black Currant Nectar: Effect of Processing and Storage on Anthocyanin and Ascorbic Acid Content. J. Food Sci. 1999, 64, 37–41. [Google Scholar] [CrossRef]
- Wu, X.; Gu, L.; Prior, R.L.; McKay, S. Characterization of Anthocyanins and Proanthocyanidins in Some Cultivars of Ribes, Aronia, and Sambucus and Their Antioxidant Capacity. J. Agric. Food Chem. 2004, 52, 7846–7856. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R.; Slatnar, A.; Bizjak, J.; Stampar, F.; Mikulic-Petkovsek, M. Anthocyanin composition of different wild and cultivated berry species. LWT Food Sci. Technol. 2015, 60, 509–517. [Google Scholar] [CrossRef]
- Ponder, A.; Hallmann, E.; Kwolek, M.; Srednicka-Tober, D.; Kazimierczak, R. Genetic Differentiation in Anthocyanin Content among Berry Fruits. Curr. Issues Mol. Biol. 2021, 43, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Jakobek, L.; Seruga, M.; Medvidović-Kosanović, M.; Novak, J.I. Anthocyanin content and antioxidant activity of various red fruit juices. Dtsch. Lebensm. Rundsch. Z. Leb. Leb. 2007, 103, 58–64. [Google Scholar]
- Stój, A.; Malik, A.; Targoński, Z. Comparative analysis of anthocyanin composition of juices obtained from selected species of berry fruits. Pol. J. Food Nutr. Sci. 2006, 56, 401–407. [Google Scholar]
Black Currant (BC, Ribes nigrum L.) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Sample No. | Cultivar | Harvest Period | Enzyme Addition | Juice Yield [%] | Sample No. | Cultivar | Harvest Period | Enzyme Addition | Juice Yield [%] |
1/20 | Öjebyn | 2020 | with | 69.2 | 1/21 | Red Hube ’ | 2021 | with | 73.2 |
2/20 | Titania | 71.2 | 2/21 | Titania * | 67.7 | ||||
3/20 | Titania * | 68.1 | 3/21 | Öjebyn ° | 67.2 | ||||
4/20 | Othello | 72.4 | 4/21 | - | 74.4 | ||||
5/20 | Öjebyn ° | 67.7 | 5/21 | Viola | 65.3 | ||||
6/20 | Ben Hope | 72.7 | 6/21 | Titania | 69.3 | ||||
7/20 | Red Hube ’ | 69.8 | 7/21 | - | 70.7 | ||||
8/20 | - | 56.4 | 8/21 | - | 73.6 | ||||
9/20 | - | without | 78.9 | 9/21 | - | without | 72.7 | ||
10/20 | Othello | 64.6 | 10/21 | - | 67.7 | ||||
11/20 | Ben Hope | 65.1 | 11/21 | - | 72.8 | ||||
Red currant (RC, Ribes rubrum L.) | |||||||||
Sample No. | Cultivar | Harvest period | Enzyme addition | Juice yield [%] | Sample No. | Cultivar | Harvest period | Enzyme addition | Juice yield [%] |
12/20 | Rovada | 2020 | with | 71.3 | 12/21 | Heinemann’s R.S. | 2021 | with | 77.9 |
13/20 | - | 75.9 | 13/21 | Jonkheer van Tets | 80.9 | ||||
14/20 | - | 79.4 | 14/21 | - | 80.0 | ||||
15/20 | - | 83.0 | 15/21 | - | 76.2 | ||||
16/20 | - | 80.8 | 16/21 | - | 80.0 | ||||
17/20 | - | without | 81.7 | 17/21 | - | without | 78.5 | ||
18/20 | - | 78.1 | 18/21 | - | 73.6 | ||||
19/20 | - | 70.6 | 19/21 | - | 75.8 |
Black Currant (BC) | ||
---|---|---|
Sample No. | Product Type | Product Composition |
20 | homogenates | frozen berries |
21 | frozen berries | |
22 | frozen berries | |
23 | frozen berries | |
28 | concentrates | juice concentrate 65°Brix |
29 | juice concentrate 65°Brix | |
30 | juice concentrate 65°Brix | |
31 | juice concentrate 68.95°Brix | |
32 | nectars | water, fructose-glucose syrup, sugar, black currant juice concentrate (25%) |
33 | water, fructose-glucose syrup, sugar, black currant juice concentrate (25%) | |
34 | water, black currant juice concentrate (25%), sugar, citric acid, ascorbic acid | |
35 | water, black currant juice concentrate (25%), sugar, citric acid, ascorbic acid | |
36 | water, black currant juice concentrate (25%), sugar, citric acid, ascorbic acid | |
37 | water, sugar, black currant concentrate (25%), black currant flavouring, ascorbic acid | |
38 | water, sugar, black currant concentrate (25%), black currant flavouring, ascorbic acid | |
Red currant (RC) | ||
24 | homogenates | frozen berries |
25 | frozen berries | |
26 | frozen berries | |
27 | frozen berries |
Marker | Black Currant (BC) | Red Currant (RC) | ||
---|---|---|---|---|
Homogenates | Concentrates * | Nectars | Homogenates | |
(n = 4) | (n = 4) | (n = 7) | (n = 4) | |
Soluble solids [°Brix] | 16.9 ± 1.5 | 16.1 ± 0.0 | 12.1 ± 0.5 | 12.0 ± 1.9 |
Sucrose [g/kg] | <0.1 | 3.4 ± 0.7 | 39.0 ± 32.8 | <0.1 |
Glucose [g/kg] | 39.0 ± 6.4 | 35.0 ± 1.6 | 21.9 ± 16.1 | 33.4 ± 6.9 |
Fructose [g/kg] | 49.3 ± 7.9 | 43.4 ± 1.2 | 24.4 ± 18.1 | 36.8 ± 7.1 |
Ratio Glc/Fru | 0.8 ± 0.0 | 0.8 ± 0.0 | 0.9 ± 0.1 | 0.9 ± 0.0 |
Malic acid [g/kg] | 2.7 ± 0.8 | 2.4 ± 0.2 | 0.6 ± 0.2 | 4.5 ± 4.0 |
Citric acid [g/kg] | 29.0 ± 2.4 | 28.3 ± 1.2 | 6.0 ± 1.9 | 21.5 ± 4.8 |
d-isocitric acid [mg/kg] | 297 ± 29 | 363 ± 26 | 40 ± 18 | 222 ± 57 |
Ratio CA/ICA | 98 ± 3 | 78 ± 4 | 167 ± 56 | 98 ± 6 |
Titratable acidity [g/kg] | 34.4 ± 3.2 | 33.9 ± 1.6 | 6.7 ± 0.9 | 25.3 ± 4.1 |
Formol number [mL 0.1 M NaOH/100 g] | 18.6 ± 4.6 | 8.8 ± 0.7 | 3.2 ± 1.1 | 27.6 ± 5.8 |
Ash [g/kg] | 7.4 ± 0.5 | 6.0 ± 0.3 | 1.1 ± 0.4 | 6.2 ± 0.2 |
Phosphorus [mg/kg] | 449 ± 35 | 185 ± 29 | 39 ± 11 | 320 ± 19 |
Potassium [mg/kg] | 2593 ± 130 | 2219 ± 371 | 282 ± 62 | 2185 ± 155 |
Magnesium [mg/kg] | 239 ± 64 | 141 ± 9 | 31 ± 10 | 151 ± 18 |
Calcium [mg/kg] | 660 ± 211 | 430 ± 27 | 114 ± 41 | 354 ± 91 |
Ascorbic acid [mg/kg] | 1290 ± 473 | 1022 ± 307 | 258 ± 211 | 149 ± 83 |
Marker | Black Currant (BC) | Red Currant (RC) | ||
---|---|---|---|---|
Homogenates (n = 4) | Concentrates (n = 4) | Nectars (n = 7) | Homogenates (n = 4) | |
Dp-3-glu (*Cy-3-glu) | 11.7 ± 4.5 | 26.7 ± 26.6 | 5.1 ± 4.2 | nd |
Dp-3-rut | 130.4 ± 20.1 | 247.8 ± 233.4 | 27.2 ± 17.3 | nd |
Cy-3-glu | 31.1 ± 26.7 | 13.0 ± 12.0 | 1.8 ± 1.3 | 13.9 ± 6.6 |
Cy-3-rut | 82.7 ± 34.1 | 99.5 ± 97.2 | 13.1 ± 8.9 | 5.4 ± 3.7 |
Sum of unknown (*Cy-3-glu) | nd | 2.7 ± 1.4 | nd | 2.8 ± 1.0 |
TACy * | 255.8 ± 60.5 | 388.3 ± 365.7 | 47.2 ± 31.6 | 22.1 ± 10.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podskalská, T.; Bhujel, N.K.; Hraničková, M.; Beňo, F.; Tobolka, A.; Čížková, H. Compositional Characteristics of Currant Juices Prepared by Different Processes and Other Selected Currant Products. Appl. Sci. 2024, 14, 6029. https://doi.org/10.3390/app14146029
Podskalská T, Bhujel NK, Hraničková M, Beňo F, Tobolka A, Čížková H. Compositional Characteristics of Currant Juices Prepared by Different Processes and Other Selected Currant Products. Applied Sciences. 2024; 14(14):6029. https://doi.org/10.3390/app14146029
Chicago/Turabian StylePodskalská, Tereza, Novel Kishor Bhujel, Martina Hraničková, Filip Beňo, Adam Tobolka, and Helena Čížková. 2024. "Compositional Characteristics of Currant Juices Prepared by Different Processes and Other Selected Currant Products" Applied Sciences 14, no. 14: 6029. https://doi.org/10.3390/app14146029
APA StylePodskalská, T., Bhujel, N. K., Hraničková, M., Beňo, F., Tobolka, A., & Čížková, H. (2024). Compositional Characteristics of Currant Juices Prepared by Different Processes and Other Selected Currant Products. Applied Sciences, 14(14), 6029. https://doi.org/10.3390/app14146029