Analysis, Design, and Experimental Validation of a High-Isolation, Low-Cross-Polarization Antenna Array Demonstrator for Software-Defined-Radar Applications
Abstract
1. Introduction
2. Array Design
2.1. Analytical Techniques
2.1.1. Sidelobe Level
2.1.2. Beamwidth
2.1.3. Bandwidth
2.2. Numerical Results
3. Element Design
3.1. Antenna Structure
3.2. Full-Wave Results
4. Sub-Array Demonstrator
4.1. Full-Wave Results
4.2. Experimental Results
- An important PCB curvature has been observed. This is due to the manufacturing process, and at the design frequency this issue can affect the antenna gain and the -parameters;
- Possible variations in the dielectric constant with respect to the one shown in the data sheet of the materials;
- Possible interactions between the metallic support and the radiating elements. These metallic parts are very near to the radiating board, and their effect could be not negligible.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fulton, C.; Yeary, M.; Thompson, D.; Lake, J.; Mitchell, A. Digital Phased Arrays: Challenges and Opportunities. Proc. IEEE 2016, 104, 487–503. [Google Scholar] [CrossRef]
- Kwag, Y.K.; Jung, J.S.; Woo, I.S.; Park, M.S. Modern software defined radar (SDR) technology and its trends. J. Electromagn. Eng. Sci. 2014, 14, 321–328. [Google Scholar] [CrossRef]
- Debatty, T. Software defined radar a state of the art. In Proceedings of the 2nd International Workshop on Cognitive Information Processing (CIP), Elba, Italy, 14–16 June 2010; pp. 253–257. [Google Scholar]
- Ciociola, A.; Infante, L.; Ricciardella, N.; Solimene, R.; Felaco, M.; Pellegrini, G. Digitally Synthesized Antenna Test Bench for Next Generation Phased Array Systems. In Proceedings of the IEEE International Conference Phased Array Systems & Technology, Waltham, MA, USA, 11–14 October 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Castillo-Rubio, C.F.; Pascual, J.M. Current Full Digital Phased-Array Radar developments for Naval applications. In Proceedings of the 2019 IEEE International Symposium on Phased Array System &Technology (PAST), Waltham, MA, USA, 15–18 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Capria, A.; Petri, D.; Moscardini, C.; Conti, M.; Forti, A.C.; Massini, R.; Cerretelli, M.; Ledda, S.; Tesi, V.; Dalle Mese, E.; et al. Software-defined Multiband Array Passive Radar (SMARP) demonstrator: A test and evaluation perspective. In Proceedings of the OCEANS 2015, IEEE, Genova, Italy, 18–21 May 2015; pp. 1–6. [Google Scholar]
- Capria, A.; Giusti, E.; Moscardini, C.; Conti, M.; Petri, D.; Martorella, M.; Berizzi, F. Multifunction imaging passive radar for harbour protection and navigation safety. IEEE Aerosp. Electron. Syst. Mag. 2017, 32, 30–38. [Google Scholar] [CrossRef]
- Jamil, K.; Alam, M.; Hadi, M.A.; Alhekail, Z.O. A multi-band multi-beam software-defined passive radar. Part I: System design. In Proceedings of the Radar 2012, Glasgow, UK, 22–25 October 2012; pp. 64–67. [Google Scholar]
- Jamil, K.; Alam, M.; Hadi, M.A.; Alhekail, Z.O. A multi-band multi-beam software-defined passive radar. Part II: Signal processing. In Proceedings of the Radar 2012, Glasgow, UK, 22–25 October 2012; pp. 72–75. [Google Scholar]
- Saeidi-Manesh, H.; Karimkashi, S.; Zhang, G.; Doviak, R.J. High-isolation low cross-polarization phased-array antenna for MPAR application. Radio Sci. 2017, 52, 1544–1557. [Google Scholar] [CrossRef]
- Saeidi-Manesh, H.; Zhang, G. Low cross-polarization, high-isolation microstrip patch antenna array for multi-mission applications. IEEE Access 2018, 7, 5026–5033. [Google Scholar] [CrossRef]
- Saeidi-Manesh, H.; Zhang, G. High-isolation, low cross-polarization, dual-polarization, hybrid feed microstrip patch array antenna for MPAR application. IEEE Trans. Antennas Propag. 2018, 66, 2326–2332. [Google Scholar] [CrossRef]
- Tseng, F.I.; Cheng, D.K. Optimum scannable planar arrays with an invariant sidelobe level. Proc. IEEE 1968, 56, 1771–1778. [Google Scholar] [CrossRef]
- Rocca, P.; Oliveri, G.; Mailloux, R.J.; Massa, A. Unconventional phased array architectures and design methodologies—A review. Proc. IEEE 2016, 104, 544–560. [Google Scholar] [CrossRef]
- Cheng, D.K. Optimization techniques for antenna arrays. Proc. IEEE 1971, 59, 1664–1674. [Google Scholar] [CrossRef]
- Kim, Y.; Elliott, R. Extensions of the Tseng–Cheng pattern synthesis technique. J. Electromagn. Waves Appl. 1988, 2, 255–268. [Google Scholar] [CrossRef]
- Elliot, R.S. Antenna Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Balanis, C.A. Antenna Theory—Analysis and Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Mailloux, R.J. Phased Array Antenna Handbook; Artech House: Washington, DC, USA, 2005. [Google Scholar]
- Waterhouse, R. Microstrip Patch Antennas: A Designer’s Guide; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mishra, P.K.; Jahagirdar, D.R.; Kumar, G. A Review of Broadband Dual Linearly Polarized Microstrip Antenna Designs with High Isolation [Education Column]. IEEE Antennas Propag. Mag. 2014, 56, 238–251. [Google Scholar] [CrossRef]
- Ghorbani, K.; Waterhouse, R. Dual polarized wide-band aperture stacked patch antennas. IEEE Trans. Antennas Propag. 2004, 52, 2171–2175. [Google Scholar] [CrossRef]
- Yang, F.; Rahmat-Samii, Y. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Trans. Antennas Propag. 2003, 51, 2936–2946. [Google Scholar] [CrossRef]
- SIMULIA CST Studio Suite. Dassault Systemes; SIMULIA CST Studio Suite: Dearborn, MI, USA, 2023. [Google Scholar]
- Pozar, D. The active element pattern. IEEE Trans. Antennas Propag. 1994, 42, 1176–1178. [Google Scholar] [CrossRef]
Substrates/Patch/Connectors | Slots | Strips | |||
---|---|---|---|---|---|
Parameter | Value [mm] | Parameter | Value [mm] | Parameter | Value [mm] |
p | 26.98 | 12.42 | 4.80 | ||
0.51 | 10.00 | 13.05 | |||
0.79 | 6.02 | 8.55 | |||
2.36 | 12.56 | 4.80 | |||
12.9 | 1.84 | 0.9 | |||
12.9 | 1.84 | 8.87 | |||
14.5 | 0.26 | 0.55 | |||
14.5 | 3.29 | 6.00 | |||
5.50 | 1.85 | 0.90 | |||
13.49 | 1.85 | 11.37 | |||
9.00 | 0.15 | — | — | ||
5.50 | 2.25 | — | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricciardella, N.; Fuscaldo, W.; Mattei, T.; Fiorello, A.M.; Infante, L.; Galli, A. Analysis, Design, and Experimental Validation of a High-Isolation, Low-Cross-Polarization Antenna Array Demonstrator for Software-Defined-Radar Applications. Appl. Sci. 2024, 14, 6015. https://doi.org/10.3390/app14146015
Ricciardella N, Fuscaldo W, Mattei T, Fiorello AM, Infante L, Galli A. Analysis, Design, and Experimental Validation of a High-Isolation, Low-Cross-Polarization Antenna Array Demonstrator for Software-Defined-Radar Applications. Applied Sciences. 2024; 14(14):6015. https://doi.org/10.3390/app14146015
Chicago/Turabian StyleRicciardella, Nicholas, Walter Fuscaldo, Tito Mattei, Anna Maria Fiorello, Leopoldo Infante, and Alessandro Galli. 2024. "Analysis, Design, and Experimental Validation of a High-Isolation, Low-Cross-Polarization Antenna Array Demonstrator for Software-Defined-Radar Applications" Applied Sciences 14, no. 14: 6015. https://doi.org/10.3390/app14146015
APA StyleRicciardella, N., Fuscaldo, W., Mattei, T., Fiorello, A. M., Infante, L., & Galli, A. (2024). Analysis, Design, and Experimental Validation of a High-Isolation, Low-Cross-Polarization Antenna Array Demonstrator for Software-Defined-Radar Applications. Applied Sciences, 14(14), 6015. https://doi.org/10.3390/app14146015