Copper Alloys Performance in High-Pressure and Low-Velocity Conditions Using a Custom Tribometer
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Construction
2.2. Results Validation Approaches
2.2.1. Uncertainty Friction Coefficient Estimation Methodology
2.2.2. Comparative Study of the Results with Reference Equipment
2.3. Tribological Performance Study of Two Commercial Copper Alloys Methodology
2.3.1. Tribological Tests Definitions
2.3.2. Effects of Temperature on Tribological Performance Study
2.3.3. Subsurface Strain during Dry Sliding Study Methodology
3. Results and Discussion
3.1. Design and Construction of the Custom Tribometer
3.2. Validation
3.2.1. Uncertainty Friction Coefficient Estimation
3.2.2. Comparative Results with Reference Equipment
3.3. Tribological Performance Study of Two Commercial Copper Alloys
3.3.1. Tribological Tests
3.3.2. Effects of Temperature on Tribological Performance
3.3.3. Subsurface Strain during Dry Sliding
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
q | Heat per area generation [Wm−2] |
µ | Friction coefficient |
W | Applied normal load [N] |
A | Bearing contact area [m2] |
P | Contact pressure [Pa] |
V | Velocity [ms−1] |
F | Friction force [N] |
kT | Thermal conductivity of sliding bearing material [Wm−1K−1] |
s | Thickness of the bearing base material [m] |
ΔT | Bearing surface temperature increase [°C] |
k | Specific wear rate [mm3N−1mm−1] |
Ls | Sliding distance [mm] |
Q | Worn material volume [mm3] |
u(xi) | Standard uncertainty |
i) | Standard deviation of the mean |
a | Uncertainty component range value |
uc(xi) | Combined standard uncertainty |
uF | Combined standard uncertainty of friction force |
uW | Combined standard uncertainty of normal load |
uµ | Combined standard uncertainty of friction coefficient |
q1 | Pin heat per area generation in pin-on-disc test [Wm−2] |
q2 | Disc heat per area generation in pin-on-disc test [Wm−2] |
k1 | Pin material thermal conductivity [Wm−1K−1] |
k2 | Disc material thermal conductivity [Wm−1K−1] |
l1 | Linear distance of sliding contact and pin support |
l1b | Pin heat-diffusion length [m] |
l2b | Disc heat-diffusion length [m] |
Tb | Surface bulk temperature [°C] |
T0 | Room temperature [°C] |
Ac1 | Nominal contact area of the clamp contact [m2] |
An | Nominal contact area [m2] |
ω | Angular velocity [s−1] |
hc1 | Heat transfer coefficient [Wm−2K−1] |
r0 | Radius of nominal contact area [m] |
L | Low load level (289.89N) |
M | Medium load level (580.07N) |
H | High load level (755.37N) |
ε(Z) | Subsurface shear strain in tribologically transformed zone |
θ | Shear angle in tribologically transformed zone |
Z | Depth from the worn surface |
References
- Kingsbury, G.R. Friction and Wear of Sliding Bearing Materials; ASM International: Novelty, OH, USA, 1990. [Google Scholar]
- Glaeser, W.A. Materials for Tribology; Elsevier Science: Amsterdam, The Netherlands; New York, NY, USA, 1992; 260p. [Google Scholar]
- Ruusila, V.; Nyyssönen, T.; Kallio, M.; Vuorinen, P.; Lehtovaara, A.; Valtonen, K.; Kuokkala, V.T. The effect of microstructure and lead content on the tribological properties of bearing alloys. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2013, 227, 878–887. [Google Scholar] [CrossRef]
- Pratt, G.C. Materials for Plain Bearings. Int. Metall. Rev. 2013, 18, 62–88. [Google Scholar] [CrossRef]
- Hutchings, I.M. Tribology: Friction and Wear of Engineering Materials; CRC Press: Boca Raton, FL, USA, 1992; 273p. [Google Scholar]
- CDA. Selection Guide with Bound and Hydro Computer-Assisted Sleeve Bearing Design; Copper Development Association: New York, NY, USA, 1997. [Google Scholar]
- CDA. Cost-Effective Manufacturing: Copper Alloy Bearings (CDA Publication TN45, 1971); Copper Development Association: Hempstead, NY, USA, 1992. [Google Scholar]
- Prasad, B.K. Sliding wear behaviour of bronzes under varying material composition, microstructure and test conditions. Wear 2004, 257, 110–123. [Google Scholar] [CrossRef]
- Schmidt, R.F.; Schmidt, D.G. Selection and Application of Copper Alloy Castings. In Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Novelty, OH, USA, 1990; pp. 346–355. [Google Scholar]
- Equey, S.; Houriet, A.; Mischler, S. Wear and frictional mechanisms of copper-based bearing alloys. Wear 2011, 273, 9–16. [Google Scholar] [CrossRef]
- de Gee, A.W.J.; Vaessen, G.H.G.; Begelinger, A. The Influence of Composition and Structure on the Sliding Wear of Copper-Tin-Lead Alloys. ASLE Trans. 1969, 12, 44–54. [Google Scholar] [CrossRef]
- Prasad, B.K.; Patwardhan, A.K.; Yegneswaran, A.H. Factors controlling dry sliding wear behaviour of a leaded tin bronze. Mater. Sci. Tech. Ser. 1996, 12, 427–435. [Google Scholar] [CrossRef]
- Glaeser, W.A. Wear Properties of Heavy Loaded Copper-Base Bearing Alloys. JOM J. Miner. Met. Mater. Soc. 1983, 35, 50–55. [Google Scholar] [CrossRef]
- Richardson, I. Guide to Nickel Aluminum Bronze for Engineers; Copper Development Association: Hempstead, NY, USA, 2016. [Google Scholar]
- Meigh, H. Cast and Wrought Aluminium Bronzes: Properties, Processes and Structure; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Jahanafrooz, A.; Hasan, F.; Lorimer, G.W.; Ridley, N. Microstructural Development in Complex Nickel-Aluminum Bronzes. Metall. Trans. A 1983, 14, 1951–1956. [Google Scholar] [CrossRef]
- Wharton, J.A.; Barik, R.C.; Kear, G.; Wood, R.J.K.; Stokes, K.R.; Walsh, F.C. The corrosion of nickel–aluminium bronze in seawater. Corros. Sci. 2005, 47, 3336–3367. [Google Scholar] [CrossRef]
- Shi, Z.; Sun, Y.; Bloyce, A.; Bell, T. Unlubricated rolling-sliding wear mechanisms of complex aluminium bronze against steel. Wear 1996, 193, 235–241. [Google Scholar] [CrossRef]
- Hasan, F.; Jahanafrooz, A.; Lorimer, G.W.; Ridley, N. The Morphology, Crystallography, and Chemistry of Phases in as-Cast Nickel-Aluminum Bronze. Metall. Trans. A 1982, 13, 1337–1345. [Google Scholar] [CrossRef]
- Nascimento, M.S.; Santos, G.A.D.; Teram, R.; Santos, V.T.D.; Silva, M.R.D.; Couto, A.A. Effects of Thermal Variables of Solidification on the Microstructure, Hardness, and Microhardness of Cu-Al-Ni-Fe Alloys. Materials 2019, 12, 1267. [Google Scholar] [CrossRef]
- Wang, Q.; Chung, Y.-w. Encyclopedia of Tribology; Springer: New York, NY, USA, 2013. [Google Scholar]
- Zhou, Y.F.; Tian, Y.; Meng, S.; Zhang, S.L.; Xing, X.L.; Li, D.Y. Open-source tribometer with high repeatability: Development and performance assessment. Tribol. Int. 2023, 184, 108421. [Google Scholar] [CrossRef]
- Lancaster, J.K. Dry bearings: A survey of materials and factors affecting their performance. Tribology 1973, 6, 219–251. [Google Scholar] [CrossRef]
- Phoenix, T. TE67 Pin on Disc Machine. Available online: http://www.phoenix-tribology.com/at2/leaflet/te67 (accessed on 14 May 2024).
- Novak, R.; Polcar, T. Tribological analysis of thin films by pin-on-disc: Evaluation of friction and wear measurement uncertainty. Tribol. Int. 2014, 74, 154–163. [Google Scholar] [CrossRef]
- Taylor, B.N.; Kuyatt, C.E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, 1994 ed.; U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology: Gaithersburg, MD, USA, 1994; p. 20.
- Blau, P.J. Lessons learned from the test-to-test variability of different types of wear data. Wear 2017, 376, 1830–1840. [Google Scholar] [CrossRef]
- Bowden, F.P.; Ridler, K.E.W. Physical properties of surfaces-III—The surface temperature of sliding metals—The temperature of lubricated surfaces. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1997, 154, 640–656. [Google Scholar] [CrossRef]
- Kagnaya, T.; Boher, C.; Lambert, L.; Lazard, M.; Cutard, T. Friction at high sliding speed of WC-6Co pin versus steel disc AISI 1045: Estimation of the contact temperature. Int. J. Multiphysics 2009, 3, 141–153. [Google Scholar] [CrossRef]
- Alilat, N.; Baïri, A.; Laraqi, N. Three-dimensional calculation of temperature in a rotating disk subjected to an eccentric circular heat source and surface cooling. Numer. Heat Transf. Part A 2004, 46, 167–180. [Google Scholar] [CrossRef]
- Ashby, M.F.; Abulawi, J.; Kong, H.S. Temperature Maps for Frictional Heating in Dry Sliding. Tribol. Trans. 1991, 34, 577–587. [Google Scholar] [CrossRef]
- Federici, M.; Straffelini, G.; Gialanella, S. Pin-on-Disc Testing of Low-Metallic Friction Material Sliding Against HVOF Coated Cast Iron: Modelling of the Contact Temperature Evolution. Tribol. Lett. 2017, 65, 121. [Google Scholar] [CrossRef]
- Kennedy, F.E.; Lu, Y.; Baker, I. Contact temperatures and their influence on wear during pin-on-disk tribotesting. Tribol. Int. 2015, 82, 534–542. [Google Scholar] [CrossRef]
- Kuhlmannwilsdorf, D. Temperatures at Interfacial Contact Spots—Dependence on Velocity and on Role Reversal of 2 Materials in Sliding Contact. J. Tribol. 1987, 109, 321–329. [Google Scholar] [CrossRef]
- Laraqi, N.; Alilat, N.; de Maria, J.M.G.; Baïri, A. Temperature and division of heat in a pin-on-disc frictional device-Exact analytical solution. Wear 2009, 266, 765–770. [Google Scholar] [CrossRef]
- Lim, S.C.; Ashby, M.F. Overview no.55 Wear-Mechanism Maps. Acta Metall. Mater. 1987, 35, 1–24. [Google Scholar] [CrossRef]
- Straffelini, G.; Verlinski, S.; Verma, P.C.; Valota, G.; Gialanella, S. Wear and Contact Temperature Evolution in Pin-on-Disc Tribotesting of Low-Metallic Friction Material Sliding Against Pearlitic Cast Iron. Tribol. Lett. 2016, 62, 36. [Google Scholar] [CrossRef]
- Tian, X.F.; Kennedy, F.E. Contact Surface-Temperature Models for Finite Bodies in Dry and Boundary Lubricated Sliding. J. Tribol. 1993, 115, 411–418. [Google Scholar] [CrossRef]
- Wang, Y.; Rodkiewicz, C.M. Temperature Maps for Pin-on-Disk Configuration in Dry Sliding. Tribol. Int. 1994, 27, 259–266. [Google Scholar] [CrossRef]
- Yevtushenko, A.; Ukhanska, O.; Chapovska, R. Friction heat distribution between a stationary pin and a rotating disc. Wear 1996, 196, 219–225. [Google Scholar] [CrossRef]
- Kennedy, F.E. Thermal and thermomechanical effects in dry sliding. Wear 1984, 100, 453–476. [Google Scholar] [CrossRef]
- Singh, J.; Alpas, A.T. High-temperature wear and deformation processes in metal matrix composites. Metall. Mater. Trans. A 1996, 27, 3135–3148. [Google Scholar] [CrossRef]
- Alpas, A.T.; Hu, H.; Zhang, J. Plastic-Deformation and Damage Accumulation Below the Worn Surfaces. Wear 1993, 162, 188–195. [Google Scholar] [CrossRef]
- Dautzenberg, J.H.; Zaat, J.H. Quantitative-Determination of Deformation by Sliding Wear. Wear 1973, 23, 9–19. [Google Scholar] [CrossRef]
- Hughes, D.A.; Korellis, J.S. High load sliding, deformation microstructures, strength, and hardening for cutting and metal forming. Int. J. Mach. Tools Manuf. 2021, 168, 103766. [Google Scholar] [CrossRef]
- Menezes, P.L.; Kishore; Kailas, S.V. Subsurface deformation and the role of surface texture—A study with Cu pins and steel plates. Sadhana 2008, 33, 191–201. [Google Scholar] [CrossRef]
- Rice, S.L.; Nowotny, H.; Wayne, S.F. A Survey of the Development of Subsurface Zones in the Wear of Materials. Key Eng. Mater. 1991, 33, 77–100. [Google Scholar] [CrossRef]
- ASM. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Novelty, OH, USA, 1990. [Google Scholar]
Designation | Al | Ni | Fe | Pb | Zn | Sn | Cu |
---|---|---|---|---|---|---|---|
NAB | 11 | 4 | 5 | - | - | - | Remainder |
HLB | - | - | - | 15 | 8 | 4 | Remainder |
Test | W [N] | P [MPa] | V [m/s] | PV [MPa·m·s−1] | Test [s] | Sliding Distance [m] |
---|---|---|---|---|---|---|
Comparative | 580.07 | 20.52 | 0.11 | 2.2 | 3600 | 388.32 |
Test | W [N] | P [MPa] | V [m/s] | PV [MPa·m·s−1] | Test [s] | Sliding Distance [m] |
---|---|---|---|---|---|---|
PV-1.1L | 289.89 | 10.25 | 0.11 | 1.1 | 3600 | 388.32 |
PV-1.1M | 580.07 | 20.52 | 0.05 | 1.1 | 7200 | 388.32 |
PV-1.1H | 755.37 | 26.72 | 0.04 | 1.1 | 9381 | 388.31 |
PV-2.2L | 289.89 | 10.25 | 0.21 | 2.2 | 1800 | 388.32 |
PV-2.2M | 580.07 | 20.52 | 0.11 | 2.2 | 3600 | 388.32 |
PV-2.2H | 755.37 | 26.72 | 0.08 | 2.2 | 4691 | 388.36 |
PV-2.9L | 289.89 | 10.25 | 0.28 | 2.9 | 1382 | 388.52 |
PV-2.9M | 580.07 | 20.52 | 0.14 | 2.9 | 2764 | 388.33 |
PV-2.0H | 755.37 | 26.72 | 0.11 | 2.9 | 3600 | 388.32 |
PV-4.0M | 580.07 | 20.52 | 0.19 | 4.0 | 2011 | 388.29 |
PV-4.0H | 755.37 | 26.72 | 0.15 | 4.0 | 2618 | 388.29 |
PV-5.0M | 580.07 | 20.52 | 0.24 | 5.0 | 1609 | 388.33 |
PV-5.0H | 755.37 | 26.72 | 0.19 | 5.0 | 2095 | 388.40 |
Uncertainty Component | a [kg] | Probability Distribution | Coverage Factor | u(xi) [kg] |
---|---|---|---|---|
Type A uncertainty | 0.009616 | Normal | 1 | 0.009616 |
Comprehensive error | 0.04 | Rectangular | 0.023094011 | |
Output error | 0.04 | Rectangular | 0.023094011 | |
Nonlinearity error | 0.04 | Rectangular | 0.023094011 | |
Instrument resolution | 0.01 | Rectangular | 0.005773503 |
Uncertainty Component | a [kg] | Probability Distribution | Coverage Factor | u(xi) [kg] |
---|---|---|---|---|
Type A uncertainty | 0.006295 | Normal | 1 | 0.006295 |
Comprehensive error | 0.04 | Rectangular | 0.023094011 | |
Output error | 0.04 | Rectangular | 0.023094011 | |
Nonlinearity error | 0.04 | Rectangular | 0.023094011 | |
Instrument resolution | 0.01 | Rectangular | 0.005773503 |
Test | µ Mean | µ Relative Standard Deviation | Difference between Group Means | Specific Wear Rate | Difference between Group Means |
---|---|---|---|---|---|
HLB–Ref. | 0.127 | 7.1% | - | 3.9 × 10−7 | - |
HLB–T.W. | 0.134 | 4.5% | 5.5% | 3.5 × 10−7 | 11% |
NAB–Ref. | 0.247 | 5.7% | - | 9.1 × 10−8 | - |
NAB–T.W. | 0.254 | 7.9% | 2.8% | 5.6 × 10−8 | 38% |
Material | Hardness [HV10] | Density [kgm−3] | Thermal Conductivity [W m−1 K−1] |
---|---|---|---|
HLB | 65.2 | 9210 | 52 |
NAB | 193.8 | 7510 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, M.R.; dos Santos, V.T.; Lobo, F.G.; Seixas, D.A.; Machado, I.F. Copper Alloys Performance in High-Pressure and Low-Velocity Conditions Using a Custom Tribometer. Appl. Sci. 2024, 14, 6001. https://doi.org/10.3390/app14146001
da Silva MR, dos Santos VT, Lobo FG, Seixas DA, Machado IF. Copper Alloys Performance in High-Pressure and Low-Velocity Conditions Using a Custom Tribometer. Applied Sciences. 2024; 14(14):6001. https://doi.org/10.3390/app14146001
Chicago/Turabian Styleda Silva, Márcio Rodrigues, Vinícius Torres dos Santos, Flávia Gonçalves Lobo, Daniel Ayarroio Seixas, and Izabel Fernanda Machado. 2024. "Copper Alloys Performance in High-Pressure and Low-Velocity Conditions Using a Custom Tribometer" Applied Sciences 14, no. 14: 6001. https://doi.org/10.3390/app14146001
APA Styleda Silva, M. R., dos Santos, V. T., Lobo, F. G., Seixas, D. A., & Machado, I. F. (2024). Copper Alloys Performance in High-Pressure and Low-Velocity Conditions Using a Custom Tribometer. Applied Sciences, 14(14), 6001. https://doi.org/10.3390/app14146001