Dual Enhancement Network for Infrared Small Target Detection
Abstract
:1. Introduction
- To address the problem of complex backgrounds in infrared images, we propose the residual sparse enhancement (RSE) module, which sparsely selects a number of representative pixels for semantic information propagation, thereby innovatively suppressing background noise.
- To address the problem of unusually faint and small infrared targets, we propose a task-specific module, the spatial attention enhancement (SAE) module, which adaptively enhances and highlights dim and small target features, thus effectively improving the performance of dim and small target detection.
- Extensive experiments demonstrated that our method outperforms the state-of-the-art (SOTA) method, and ablation studies fully validate the effectiveness of each component of our proposed method.
2. Related Work
3. The Proposed Dual Enhancement Network
3.1. Residual Sparse Enhancement Module
3.2. Spatial Attention Enhancement Module
3.3. Loss Function
4. Experiment
4.1. Datasets
4.2. Performance Comparisons
4.3. Ablation Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thanh, N.T.; Sahli, H.; Hao, D.N. Infrared thermography for buried landmine detection: Inverse problem setting. IEEE Trans. Geosci. Remote. Sens. 2008, 46, 3987–4004. [Google Scholar] [CrossRef]
- Shao, X.; Fan, H.; Lu, G.; Xu, J. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system. Infrared Phys. Technol. 2012, 55, 403–408. [Google Scholar] [CrossRef]
- Cheney, M.; Borden, B. Fundamentals of Radar Imaging; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2009. [Google Scholar]
- Ma, T.; Yang, Z.; Wang, J.; Sun, S.; Ren, X.; Ahmad, U. Infrared small target detection network with generate label and feature mapping. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 6505405. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, C.; Fu, Q.; Han, Z. A novel pattern for infrared small target detection with generative adversarial network. IEEE Trans. Geosci. Remote. Sens. 2020, 59, 4481–4492. [Google Scholar] [CrossRef]
- Ying, X.; Wang, Y.; Wang, L.; Sheng, W.; Liu, L.; Lin, Z.; Zhou, S. Mocopnet: Exploring local motion and contrast priors for infrared small target super-resolution. arXiv 2022, arXiv:2201.01014. [Google Scholar]
- Wang, H.; Zhou, L.; Wang, L. Miss detection vs. false alarm: Adversarial learning for small object segmentation in infrared images. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8509–8518. [Google Scholar]
- Zhao, M.; Li, W.; Li, L.; Hu, J.; Ma, P.; Tao, R. Single-frame infrared small-target detection: A survey. IEEE Geosci. Remote. Sens. Mag. 2022, 10, 87–119. [Google Scholar] [CrossRef]
- Wang, X. Clutter-adaptive infrared small target detection in infrared maritime scenarios. Opt. Eng. 2011, 50, 067001. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, W. Infrared background suppression for segmenting and detecting small target. Acta Electron. Sin. 1999, 27, 47–51. [Google Scholar]
- Azimi-Sadjadi, M.R.; Pan, H. Two-dimensional block diagonal LMS adaptive filtering. IEEE Trans. Signal Process. 1994, 42, 2420–2429. [Google Scholar] [CrossRef]
- Chen, C.L.P.; Li, H.; Wei, Y.; Xia, T.; Tang, Y.Y. A local contrast method for small infrared target detection. IEEE Trans. Geosci. Remote. Sens. 2013, 52, 574–581. [Google Scholar] [CrossRef]
- Deng, H.; Sun, X.; Liu, M.; Ye, C.; Zhou, X. Infrared small-target detection using multiscale gray difference weighted image entropy. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 60–72. [Google Scholar] [CrossRef]
- Gao, C.; Meng, D.; Yang, Y.; Wang, Y.; Zhou, X.; Hauptmann, A.G. Infrared patch-image model for small target detection in a single image. IEEE Trans. Image Process. 2013, 22, 4996–5009. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Peng, Z.; Kong, D.; He, Y. Infrared dim and small target detection based on stable multisubspace learning in heterogeneous scene. IEEE Trans. Geosci. Remote. Sens. 2017, 55, 5481–5493. [Google Scholar] [CrossRef]
- Zhao, D.; Zhou, H.; Rang, S.; Jia, X. An adaptation of CNN for small target detection in the infrared. In Proceedings of the IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 669–672. [Google Scholar]
- Wang, K.; Li, S.; Niu, S.; Zhang, K. Detection of infrared small targets using feature fusion convolutional network. IEEE Access 2019, 7, 146081–146092. [Google Scholar] [CrossRef]
- Rivest, J.; Fortin, R. Detection of dim targets in digital infrared imagery by morphological image processing. Opt. Eng. 1996, 35, 1886–1893. [Google Scholar] [CrossRef]
- Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote. Sens. 2019, 11, 382. [Google Scholar] [CrossRef]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric contextual modulation for infrared small target detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Virtual, 5–9 January 2021; pp. 950–959. [Google Scholar]
- Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional local contrast networks for infrared small target detection. IEEE Trans. Geosci. Remote. Sens. 2021, 59, 9813–9824. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, R.; Yang, Y.; Bai, H.; Zhang, J.; Guo, J. Isnet: Shape matters for infrared small target detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 877–886. [Google Scholar]
- Wu, X.; Hong, D.; Chanussot, J. Uiunet: U-net in u-net for infrared small object detection. IEEE Trans. Image Process. 2022, 32, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target detection. IEEE Trans. Image Process. 2022, 32, 1745–1758. [Google Scholar] [CrossRef]
- Hou, Q.; Wang, Z.; Tan, F.; Zhao, Y.; Zheng, H.; Zhang, W. RISTDnet: Robust infrared small target detection network. IEEE Geosci. Remote. Sens. Lett. 2021, 19, 7000805. [Google Scholar] [CrossRef]
- Rawat, S.S.; Verma, S.K.; Kumar, Y. Review on recent development in infrared small target detection algorithms. Procedia Comput. Sci. 2020, 167, 2496–2505. [Google Scholar] [CrossRef]
- Li, X.; He, H.; Li, X.; Li, D.; Cheng, G.; Shi, J.; Weng, L.; Tong, Y.; Lin, Z. Pointflow: Flowing semantics through points for aerial image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4217–4226. [Google Scholar]
- Lin, T.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Ying, X.; Liu, L.; Wang, Y.; Li, R.; Chen, N.; Lin, Z.; Sheng, W.; Zhou, S. Mapping degeneration meets label evolution: Learning infrared small target detection with single point supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 15528–15538. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-andexcitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
Method | NUAA-SIRST [20] | NUDT-SIRST [24] | IRSTD-1K [22] | Average | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Top-Hat [18] | 7.143 | 79.84 | 1012 | 20.72 | 78.41 | 166.7 | 10.06 | 75.11 | 1432 | 12.64 | 77.79 | 870.2 |
IPI [14] | 25.67 | 85.55 | 11.47 | 17.76 | 74.49 | 41.23 | 27.92 | 81.37 | 16.18 | 23.78 | 80.47 | 22.96 |
PSTNN [19] | 22.40 | 77.95 | 29.11 | 14.85 | 66.13 | 44.17 | 24.57 | 71.99 | 35.26 | 20.61 | 72.02 | 36.18 |
MDvsFA [7] | 61.70 | 91.44 | 21.11 | 43.32 | 86.90 | 131.1 | 33.26 | 86.36 | 66.50 | 46.09 | 88.23 | 72.90 |
ACM [20] | 62.50 | 90.49 | 20.82 | 57.69 | 91.43 | 43.58 | 56.74 | 90.57 | 33.57 | 58.98 | 90.83 | 32.66 |
ALCNet [21] | 69.49 | 93.92 | 38.90 | 64.62 | 91.53 | 39.97 | 63.45 | 92.26 | 16.63 | 65.85 | 92.57 | 31.83 |
ISNet [22] | 71.11 | 92.78 | 40.57 | 69.09 | 94.39 | 55.30 | 63.05 | 93.27 | 33.35 | 67.75 | 93.48 | 43.07 |
UIUNet [23] | 69.73 | 95.18 | 51.44 | 76.16 | 97.61 | 17.63 | 61.19 | 92.86 | 27.53 | 69.03 | 95.22 | 32.20 |
DNA-Net [24] | 76.05 | 96.58 | 21.96 | 86.54 | 98.84 | 8.040 | 63.12 | 89.12 | 13.06 | 75.23 | 94.85 | 14.35 |
DENet (ours) | 77.55 | 98.10 | 13.50 | 89.66 | 99.26 | 2.987 | 64.78 | 93.94 | 11.41 | 77.33 | 97.30 | 9.299 |
Method | Abalation Module | MUAA-SIRST [20] | NUDT-SIRST [24] | IRSTD-1K [22] | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
baseline | × | × | × | 74.33 | 95.06 | 19.67 | 85.48 | 98.62 | 7.882 | 61.13 | 90.59 | 18.37 |
w/o R | × | ✓ | × | 75.63 | 96.90 | 17.77 | 86.91 | 98.91 | 4.667 | 62.58 | 91.93 | 17.30 |
w/o | ✓ | ✓ | × | 75.72 | 96.95 | 15.67 | 88.24 | 99.2 | 3.543 | 63.42 | 92.31 | 15.32 |
w/o S | ✓ | × | ✓ | 75.95 | 96.96 | 15.13 | 88.60 | 99.05 | 3.125 | 63.81 | 92.94 | 11.41 |
DENet (Ours) | ✓ | ✓ | ✓ | 77.55 | 98.10 | 13.50 | 89.66 | 99.26 | 2.987 | 64.78 | 93.94 | 10.65 |
0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | |
---|---|---|---|---|---|---|---|---|---|
76.23 | 77.13 | 75.62 | 76.83 | 75.46 | 77.28 | 76.56 | 77.55 | 71.63 | |
97.33 | 98.09 | 97.33 | 96.95 | 97.33 | 97.71 | 98.09 | 98.10 | 94.29 | |
20.36 | 17.73 | 24.62 | 21.36 | 22.17 | 18.44 | 21.77 | 13.50 | 21.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Hu, X.; Lu, H.; Li, C.; Zhang, L.; Huang, W. Dual Enhancement Network for Infrared Small Target Detection. Appl. Sci. 2024, 14, 4132. https://doi.org/10.3390/app14104132
Wu X, Hu X, Lu H, Li C, Zhang L, Huang W. Dual Enhancement Network for Infrared Small Target Detection. Applied Sciences. 2024; 14(10):4132. https://doi.org/10.3390/app14104132
Chicago/Turabian StyleWu, Xinyi, Xudong Hu, Huaizheng Lu, Chaopeng Li, Lei Zhang, and Weifang Huang. 2024. "Dual Enhancement Network for Infrared Small Target Detection" Applied Sciences 14, no. 10: 4132. https://doi.org/10.3390/app14104132
APA StyleWu, X., Hu, X., Lu, H., Li, C., Zhang, L., & Huang, W. (2024). Dual Enhancement Network for Infrared Small Target Detection. Applied Sciences, 14(10), 4132. https://doi.org/10.3390/app14104132