Optimization of Industrial-Scale Cultivation Conditions to Enhance the Nutritional Composition of Nontoxic Cyanobacterium Leptolyngbya sp. KIOST-1
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Conditions
2.2. Growth Measurement and Microscopic Observation
2.3. Cell Harvesting and Bio- and Phytochemical Analysis
2.4. Screening of Culture Medium
2.5. Scale-Up Cultivations
2.6. Optimal Culture Medium with Different Experimental Conditions
2.7. Statistical Analysis
3. Results
3.1. Growth of Leptolyngbya sp. KIOST-1 in Different Media
3.2. Scale-Up Cultivation Using Selected Culture Media
3.3. Growth of Leptolyngbya sp. KIOST-1 under Different Environmental Regimes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Department of Economic and Social Affairs, U.N. World Population Prospects 2019: Highlights. Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 8 April 2020).
- Wu, G.; Fanzo, J.; Miller, D.D.; Pingali, P.; Post, M.; Steiner, J.L.; Thalacker-Mercer, A.E. Production and supply of high-quality food protein for human consumption: Sustainability, challenges, and innovations. Ann. N.Y. Acad. Sci. 2014, 1321, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.D.D.; Welch, R.M. Food system strategies for preventing micronutrient malnutrition. Food Policy 2013, 42, 115–128. [Google Scholar] [CrossRef]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res. Int. 2017, 99, 1066–1083. [Google Scholar] [CrossRef] [PubMed]
- Hosseinkhani, N.; McCauley, J.I.; Ralph, P.J. Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Res. 2022, 64, 102696. [Google Scholar] [CrossRef]
- Geada, P.; Moreira, C.; Silva, M.; Nunes, R.; Madureira, L.; Rocha, C.M.R.; Pereira, R.N.; Vicente, A.A.; Teixeira, J.A. Algal proteins: Production strategies and nutritional and functional properties. Bioresour. Technol. 2021, 332, 125125. [Google Scholar] [CrossRef] [PubMed]
- Kusmayadi, A.; Leong, Y.K.; Yen, H.W.; Huang, C.Y.; Chang, J.S. Microalgae as sustainable food and feed sources for animals and humans—Biotechnological and environmental aspects. Chemosphere 2021, 271, 129800. [Google Scholar] [CrossRef] [PubMed]
- Milledge, J.J. Commercial application of microalgae other than as biofuels: A brief review. Rev. Environ. Sci. Biotechnol. 2011, 10, 31–41. [Google Scholar] [CrossRef]
- Vonshak, A.; Richmond, A. Mass production of the blue-green alga Spirulina: An overview. Biomass 1988, 15, 233–247. [Google Scholar] [CrossRef]
- Becker, E.W. Micro-algae as a source of protein. Biotechnol. Adv. 2007, 25, 207–210. [Google Scholar] [CrossRef]
- Caporgno, M.P.; Mathys, A. Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 2018, 5, 58. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, W.; Jeon, S.M.; Kim, T.; Park, A.; Kim, J.; Heo, S.J.; Oh, C.; Shim, W.B.; Kang, D.H. Isolation and characterization of Leptolyngbya sp. KIOST-1, a basophilic and euryhaline filamentous cyanobacterium from an open paddle-wheel raceway Arthrospira culture pond in Korea. J. Appl. Microbiol. 2015, 119, 1597–1612. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kang, D.H. Draft genome sequence of Leptolyngbya sp. KIOST-1, a filamentous cyanobacterium with biotechnological potential for alimentary purposes. Genome Announc. 2016, 4, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, T.; Lee, W.K.; Ryu, Y.K.; Kim, J.H.; Jeong, Y.; Park, A.; Lee, Y.J.; Oh, C.; Kang, D.H. The first report to evaluate safety of cyanobacterium Leptolyngbya sp. KIOST-1 for use as a food ingredient: Oral acute toxicity and genotoxicity study. J. Microbiol. Biotechnol. 2021, 31, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Borowitzka, M.A.; Vonshak, A. Scaling up microalgal cultures to commercial scale. Eur. J. Phycol. 2017, 52, 407–418. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the Association of Analytical Chemists, 19th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Bradstreet, R.B. Kjeldahl method for organic nitrogen. Anal. Chem. 1954, 26, 185–187. [Google Scholar] [CrossRef]
- Li, Y.; Ghasemi Naghdi, F.; Garg, S.; Adarme-Vega, T.C.; Thurecht, K.J.; Ghafor, W.A.; Tannock, S.; Schenk, P.M. A comparative study: The impact of different lipid extraction methods on current microalgal lipid research. Microb. Cell Fact. 2014, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, R.J. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth. Res. 2006, 89, 27–41. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef]
- James, C.S. Analytical Chemistry of Foods; Springer Science and Business Media: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Allen, M.B.; Arnon, D.I. Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol. 1955, 30, 366–372. [Google Scholar] [CrossRef]
- Williams, S.K.; Kempton, J.; Wilde, S.B.; Lewitus, A. A novel epiphytic cyanobacterium associated with reservoirs affected by avian vacuolar myelinopathy. Harmful Algae 2007, 6, 343–353. [Google Scholar] [CrossRef]
- Atlas, R.M. Handbook of Microbiological Media; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Stanier, R.Y.; Deruelles, J.; Rippka, R.; Herdman, M.; Waterbury, J.B. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 1979, 111, 1–61. [Google Scholar] [CrossRef]
- Castenholz, R.W. Culturing methods for cyanobacteria. In Methods in Enzymol; Academic Press: Cambridge, MA, USA, 1988; Volume 167, pp. 68–93. [Google Scholar]
- Chu, S.P. The influence of the mineral composition of the medium on the growth of planktonic algae: Part I. Methods and culture media. J. Ecol. 1942, 30, 284–325. [Google Scholar] [CrossRef]
- David, K.A.V.; Thomas, J. Extracellular polypeptides of Anabaena L-31: Evidence for their role in regulation of heterocyst formation. J. Biosci. 1979, 1, 447–455. [Google Scholar] [CrossRef]
- Corbett, L.L.; Parker, D.L. Viability of lyophilized cyanobacteria (blue-green algae). Appl. Environ. Microbiol. 1976, 32, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T. Studies on the growth of Spirulina platensis (I). On the pure culture of Spirulina platensis. J. Ferment. Tecnol. 1970, 48, 361–367. [Google Scholar]
- Marzorati, S.; Schievano, A.; Idà, A.; Verotta, L. Carotenoids, Chlorophylls and Phycocyanin from Spirulina: Supercritical CO2 and Water Extraction Methods for Added Value Products Cascade. Green Chem. 2020, 22, 187–196. [Google Scholar] [CrossRef]
- Kim, T.; Choi, W.-S.; Ye, B.-R.; Heo, S.-J.; Oh, D.; Kim, S.; Choi, K.-S.; Kang, D.-H. Cultivating Spirulina maxima: Innovative Approaches. In Cyanobacteria; Intech: London, UK, 2018; Volume 61, pp. 61–83. [Google Scholar]
- Schipper, K.; Das, P.; Al Muraikhi, M.; AbdulQuadir, M.; Thaher, M.I.; Al Jabri, H.M.S.J.; Wijffels, R.H.; Barbosa, M.J. Outdoor scale-up of Leptolyngbya sp.: Effect of light intensity and inoculum volume on photoinhibition and -oxidation. Biotechnol. Bioeng. 2021, 118, 2368–2379. [Google Scholar] [CrossRef]
- Thevarajah, B.; Nishshanka, G.K.S.H.; Premaratne, M.; Nimarshana, P.H.V.; Nagarajan, D.; Chang, J.-S.; Ariyadasa, T.U. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem. Eng. J. 2022, 185, 108541. [Google Scholar] [CrossRef]
- Christenson, L.; Sims, R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef]
- Mooij, P.R.; Stouten, G.R.; van Loosdrecht, M.C.M.; Kleerebezem, R. Ecology-Based Selective Environments as Solution to Contamination in Microalgal Cultivation. Curr. Opin. Biotechnol. 2015, 33, 46–51. [Google Scholar] [CrossRef]
- Piazzi, L.; Ceccherelli, G. Effects of competition between two introduced Caulerpa. Mar. Ecol. Prog. Ser. 2002, 225, 189–195. [Google Scholar] [CrossRef]
- Yuan, D.; Zhan, X.; Wang, M.; Wang, X.; Feng, W.; Gong, Y.; Hu, Q. Biodiversity and Distribution of Microzooplankton in Spirulina (Arthrospira) platensis Mass Cultures Throughout China. Algal Res. 2018, 30, 38–49. [Google Scholar] [CrossRef]
- Twiner, M.J.; Dixon, S.J.; Trick, C.G. Toxic effects of Heterosigma akashiwo do not appear to be mediated by hydrogen peroxide. Limnol. Oceanogr. 2001, 46, 1400–1405. [Google Scholar] [CrossRef]
- Twiner, M.J.; Chidiac, P.; Dixon, S.J.; Trick, C.G. Extracellular organic compounds from the ichthyotoxic red tide alga Heterosigma akashiwo elevate cytosolic calcium and induce apoptosis in Sf9 cells. Harmful Algae 2005, 4, 789–800. [Google Scholar] [CrossRef]
- Yamasaki, Y.; Nagasoe, S.; Matsubara, T.; Shikata, T.; Shimasaki, Y.; Oshima, Y.; Honjo, T. Growth inhibition and formation of morphologically abnormal cells of Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup by cell contact with Cochlodinium polykrikoides Margalef. Mar. Biol. 2007, 152, 157–163. [Google Scholar] [CrossRef]
- Gilroy, D.J.; Kauffman, K.W.; Hall, R.A.; Huang, X.; Chu, F.S. Assessing potential health risks from microcystin toxins in blue-green algae dietary supplements. Environ. Health Perspect. 2000, 108, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Xie, P.; Chen, J.; Liang, G. Detection of the hepatotoxic microcystins in 36 kinds of cyanobacteria Spirulina food products in China. Food Addit. Contam. 2008, 25, 885–894. [Google Scholar] [CrossRef]
- Richmond, A. Handbook of Microalgal Culture: Biotechnology and Applied Phycology; Wiley Online Library: Hoboken, NJ, USA, 2004; Volume 577. [Google Scholar]
- Hotos, G.N.; Avramidou, D.; Samara, A. The effect of salinity and light intensity on the batch cultured cyanobacteria Anabaena sp. and Cyanothece sp. Hydrobiology 2022, 1, 278–287. [Google Scholar] [CrossRef]
- Vadlamani, A.; Viamajala, S.; Pendyala, B.; Varanasi, S. Cultivation of microalgae at extreme alkaline pH conditions: A novel approach for biofuel production. ACS Sustain. Chem. Eng. 2017, 5, 7284–7294. [Google Scholar] [CrossRef]
- Lee, W.K.; Ryu, Y.K.; Choi, W.Y.; Kim, T.; Park, A.; Lee, Y.J.; Jeong, Y.; Lee, C.G.; Kang, D.H. Year-round cultivation of Tetraselmis sp. for essential lipid production in a semi-open raceway system. Mar. Drugs 2021, 19, 314. [Google Scholar] [CrossRef]
- Yodsuwan, N.; Sawayama, S.; Sirisansaneeyakul, S. Effect of nitrogen concentration on growth, lipid production and fatty acid profiles of the marine diatom Phaeodactylum tricornutum. Agric. Nat. Resour. 2017, 51, 190–197. [Google Scholar] [CrossRef]
- Khazi, M.I.; Demirel, Z.; Dalay, M.C. Evaluation of growth and phycobiliprotein composition of cyanobacteria isolates cultivated in different nitrogen sources. J. Appl. Phycol. 2018, 30, 1513–1523. [Google Scholar] [CrossRef]
- Zhu, C.; Zhai, X.; Wang, J.; Han, D.; Li, Y.; Xi, Y.; Tang, Y.; Chi, Z. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Appl. Microbiol. Biotechnol. 2018, 102, 8979–8987. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Che, J.; Zhai, X.; Wang, J.; Kong, F.; Chi, Z. Cost-effective and efficient production of carbohydrates from an alkalihalophilic Leptolyngbya sp. in a photobioreactor with periodical mixing. ACS Sustain. Chem. Eng. 2020, 8, 15310–15316. [Google Scholar] [CrossRef]
- Price, G.D.; Badger, M.R.; Woodger, F.J.; Long, B.M. Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): Functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 2008, 59, 1441–1461. [Google Scholar] [CrossRef] [PubMed]
- Chi, Z.; Elloy, F.; Xie, Y.; Hu, Y.; Chen, S. Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Appl. Biochem. Biotechnol. 2014, 172, 447–457. [Google Scholar] [CrossRef]
- Bergman, B.; Gallon, J.R.; Rai, A.N.; Stal, L.J. N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 1997, 19, 139–185. [Google Scholar] [CrossRef]
- Yoon, K.S.; Nguyen, N.T.; Tran, K.T.; Tsuji, K.; Ogo, S. Nitrogen fixation genes and nitrogenase activity of the non-heterocystous cyanobacterium Thermoleptolyngbya sp. O-77. Microbes Environ. 2017, 32, 324–329. [Google Scholar] [CrossRef]
- Kumar Saha, S.; Uma, L.; Subramanian, G. Nitrogen stress induced changes in the marine cyanobacterium Oscillatoria willei BDU 130511. FEMS Microbiol. Ecol. 2003, 45, 263–272. [Google Scholar] [CrossRef]
Number | Culture Media | Note | Reference |
---|---|---|---|
1 | ATCC 1142 | [22] | |
2 | CRBIP 1538 | - | |
3 | ATCC 819 | Blue-green nitrogen-fixing medium | [23] |
4 | ATCC 1077 | Nitrogen-fixing marine medium | [24] |
5 | ATCC 616 | BG-11 | [25] |
6 | CRBIP 1547 | BG-11 + NaHCO3 | - |
7 | Castenholtz D | [26] | |
8 | ATCC 341 | Chu’s #10 | [27] |
9 | Cyanophycean | [28] | |
10 | Parker’s J (Jansen) | [29] | |
11 | SOT | [30] |
1st Trial | 2nd Trial | |
---|---|---|
Culture period (days) | 13 | 13 |
Final biomass production (g L−1) | 1.21 ± 0.12 | 1.01 ± 0.08 |
Proximate composition (%) | ||
Protein | 66.15 ± 0.30 | 67.38 ± 0.58 |
Lipid | 12.82 ± 0.18 | 11.98 ± 0.32 |
Carbohydrate | 7.69 ± 1.21 | 9.19 ± 0.83 |
Moisture | 2.45 ± 0.48 | 2.12 ± 0.06 |
Ash | 10.89 ± 1.21 | 9.33 ± 0.12 |
Photosynthetic pigments (mg g−1) | ||
C-phycocyanin | 28.88 ± 0.69 a | 22.87 ± 0.02 b |
Allo-phycocyanin | 17.59 ± 2.83 | 8.91 ± 3.28 |
Phycoerythrin | 8.07 ± 0.96 a | 3.03 ± 0.85 b |
Chlorophyll-a | 6.85 ± 0.51 | 5.62 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-K.; Ryu, Y.-K.; Kim, T.; Park, A.; Lee, Y.-J.; Lee, Y.; Kim, J.H.; Oh, C.; Kang, D.-H.; Choi, W.-Y. Optimization of Industrial-Scale Cultivation Conditions to Enhance the Nutritional Composition of Nontoxic Cyanobacterium Leptolyngbya sp. KIOST-1. Appl. Sci. 2024, 14, 282. https://doi.org/10.3390/app14010282
Lee W-K, Ryu Y-K, Kim T, Park A, Lee Y-J, Lee Y, Kim JH, Oh C, Kang D-H, Choi W-Y. Optimization of Industrial-Scale Cultivation Conditions to Enhance the Nutritional Composition of Nontoxic Cyanobacterium Leptolyngbya sp. KIOST-1. Applied Sciences. 2024; 14(1):282. https://doi.org/10.3390/app14010282
Chicago/Turabian StyleLee, Won-Kyu, Yong-Kyun Ryu, Taeho Kim, Areumi Park, Yeon-Ji Lee, Youngdeuk Lee, Ji Hyung Kim, Chulhong Oh, Do-Hyung Kang, and Woon-Yong Choi. 2024. "Optimization of Industrial-Scale Cultivation Conditions to Enhance the Nutritional Composition of Nontoxic Cyanobacterium Leptolyngbya sp. KIOST-1" Applied Sciences 14, no. 1: 282. https://doi.org/10.3390/app14010282
APA StyleLee, W.-K., Ryu, Y.-K., Kim, T., Park, A., Lee, Y.-J., Lee, Y., Kim, J. H., Oh, C., Kang, D.-H., & Choi, W.-Y. (2024). Optimization of Industrial-Scale Cultivation Conditions to Enhance the Nutritional Composition of Nontoxic Cyanobacterium Leptolyngbya sp. KIOST-1. Applied Sciences, 14(1), 282. https://doi.org/10.3390/app14010282