Two Gracilioethers Containing a [2(5H)-Furanylidene]ethanoate Moiety and 9,10-Dihydroplakortone G: New Polyketides from the Caribbean Marine Sponge Plakortis halichondrioides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Material
2.2. General Experimental Procedures
2.3. Extraction and Isolation
2.4. Catalytic Hydrogenation of a Mixture of 9,10-Dihydroplakortone G (8)/plakortone G (9)
2.5. Catalytic Hydrogenation of Gracilioether M (6)
2.6. Pyridinium Chlorochromate (PCC) Oxidative Cleavage of Gracilioether M (6)
2.7. Pyridinium Chlorochromate (PCC) Oxidative Cleavage of 11,12-Dihydrogracilioether M (7)
2.8. Antiplasmodial Activity against the Parasite Plasmodium Berghei
2.9. In Vitro Cell Viability Assay
3. Results
3.1. Chemical Structural Analysis
3.2. In Vitro Drug Luminescence Assay against Plasmodium Berghei
3.3. In Vitro Cytotoxicity Assay against MCF-7 Cell Line
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Marine Natural Products and Related Compounds in Clinical and Advanced Preclinical Trials. J. Nat. Prod. 2004, 67, 1216–1238. [Google Scholar] [CrossRef] [PubMed]
- Altmann, K.H. Drugs from the Oceans: Marine Natural Products as Leads for Drug Discovery. Chimia 2017, 71, 646–651. [Google Scholar] [CrossRef] [PubMed]
- Montaser, R.; Luesch, H. Marine Natural Products: A New Wave of Drugs? Future Med. Chem. 2011, 3, 1475–1489. [Google Scholar] [CrossRef]
- Mayer, A.M.S.; Pierce, M.L.; Howe, K.; Rodríguez, A.D.; Taglialatela-Scafati, O.; Nakamura, F.; Fusetani, N. Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Pharmacol. Res. 2022, 183, 106391. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Lewis, K. Platforms for Antibiotic Discovery. Nat. Rev. Drug Discov. 2013, 12, 371–387. [Google Scholar] [CrossRef]
- Wright, A.D.; König, G.M.; Angerhofer, C.K.; Greenidge, P.; Linden, A.; Desqueyroux-Faúndez, R. Antimalarial Activity: The Search for Marine-Derived Natural Products with Selective Antimalarial Activity. J. Nat. Prod. 1996, 59, 710–716. [Google Scholar] [CrossRef]
- Fattorusso, E.; Taglialatela-Scafati, O. Marine Antimalarials. Mar. Drugs 2009, 7, 130–152. [Google Scholar] [CrossRef]
- Karns, A.S.; Ellis, B.D.; Roosen, P.C.; Chahine, Z.; Le Roch, K.G.; Vanderwal, C.D. Concise Synthesis of the Antiplasmodial Isocyanoterpene 7,20-Diisocyanoadociane. Angew. Chem. Int. Ed. 2019, 58, 13749–13752. [Google Scholar] [CrossRef]
- Rahm, F.; Hayes, P.Y.; Kitching, W. Metabolites from Marine Sponges of the Genus Plakortis. Heterocycles 2004, 64, 523–575. [Google Scholar] [CrossRef]
- Chianese, G.; Yu, H.B.; Yang, F.; Sirignano, C.; Luciano, P.; Han, B.N.; Khan, S.; Lin, H.W.; Taglialatela-Scafati, O. PPAR Modulating Polyketides from a Chinese Plakortis simplex and Clues on the Origin of Their Chemodiversity. J. Org. Chem. 2016, 81, 5135–5143. [Google Scholar] [CrossRef] [PubMed]
- Batista, A.N.L.; Dos Santos, F.M.; Valverde, A.L.; Batista, J.M. Stereochemistry of Spongosoritins: Beyond Optical Rotation. Org. Biomol. Chem. 2019, 17, 9772–9777. [Google Scholar] [CrossRef] [PubMed]
- Kossuga, M.H.; Nascimento, A.M.; Reimão, J.Q.; Tempone, A.G.; Taniwaki, N.N.; Veloso, K.; Ferreira, A.G.; Cavalcanti, B.C.; Pessoa, C.; Moraes, M.O.; et al. Antiparasitic, Antineuroinflammatory, and Cytotoxic Polyketides from the Marine Sponge Plakortis angulospiculatus Collected in Brazil. J. Nat. Prod. 2008, 71, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Romero, C.; Rodríguez, A.D.; Nam, S. Plakortinic Acids A and B: Cytotoxic Cycloperoxides with a Bicyclo[4.2.0]Octene Unit from Sponges of the Genera Plakortis and Xestospongia. Org. Lett. 2017, 19, 1486–1489. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Romero, C.; Amador, L.A.; Rodríguez, A.D. Plakortinic Acids C and D: A Pair of Peroxide-Polyketides Possessing a Rare 7,8-Dioxatricyclo[4.2.2.02,5]Dec-9-Ene Core from a Two-Sponge Association of Plakortis symbiotica–Xestospongia deweerdtae. Tetrahedron Lett. 2021, 66, 3–6. [Google Scholar] [CrossRef]
- Wei, X.; Ding, Y.; An, F. A New Polyketide from Marine-Derived Paraconiothyrium sp. Nat. Prod. Commun. 2022, 17, 1934578X221075986. [Google Scholar] [CrossRef]
- Capon, R.J.; Singh, S.; Ali, S.; Sotheeswarun, S. Spongosoritin A: A New Polyketide from a Fijian Marine Sponge, Spongosorites sp. Aust. J. Chem. 2005, 58, 18–20. [Google Scholar] [CrossRef]
- Epifanio, R.D.A.; Pinheiro, L.S.; Alves, N.C. Polyketides from the Marine Sponge Plakortis angulospiculatus. J. Braz. Chem. Soc. 2005, 16, 1367–1371. [Google Scholar] [CrossRef]
- Ueoka, R.; Nakao, Y.; Kawatsu, S.; Yaegashi, J.; Matsumoto, Y.; Matsunaga, S.; Furihata, K.; Van Soest, R.W.M.; Fusetani, N. Gracilioethers A-C, Antimalarial Metabolites from the Marine Sponge Agelas gracilis. J. Org. Chem. 2009, 74, 4203–4207. [Google Scholar] [CrossRef]
- Duggan, B.M.; Cullum, R.; Fenical, W.; Amador, L.A.; Rodríguez, A.D.; La Clair, J.J. Searching for Small Molecules with an Atomic Sort. Angew. Chem. Int. Ed. 2020, 59, 1144–1148. [Google Scholar] [CrossRef]
- Norris, M.D.; Perkins, M.V. A Biomimetic Cascade for the Formation of the Methyl [2(5H)-Furanylidene] Ethanoate Core of Spongosoritin A and the Gracilioethers. Tetrahedron 2013, 69, 9813–9818. [Google Scholar] [CrossRef]
- Gochfeld, D.J.; Hamann, M.T. Isolation and Biological Evaluation of Filiformin, Plakortide F, and Plakortone G from the Caribbean Sponge Plakortis sp. J. Nat. Prod. 2001, 64, 1477–1479. [Google Scholar] [CrossRef] [PubMed]
- Norris, M.D.; Perkins, M.V. Total Synthesis of Plakilactones C, B and Des-Hydroxyplakilactone B by the Oxidative Cleavage of Gracilioether Furanylidenes. J. Org. Chem. 2016, 81, 6848–6854. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Sajid, M.; Ramesar, J.; Khan, S.M.; Janse, C.J.; Franke-Fayard, B. Screening Inhibitors of P. berghei Blood Stages Using Bioluminescent Reporter Parasites. Methods Mol. Biol. 2012, 923, 507–522. [Google Scholar]
- Colón-Lorenzo, E.E.; Colón-López, D.D.; Vega-Rodríguez, J.; Dupin, A.; Fidock, D.A.; Baerga-Ortiz, A.; Ortiz, J.G.; Bosch, J.; Serrano, A.E. Structure-Based Screening of Plasmodium Berghei Glutathione S-Transferase Identifies CB-27 as a Novel Antiplasmodial Compound. Front. Pharmacol. 2020, 11, 246. [Google Scholar] [CrossRef]
- Carmona-Sarabia, L.; Quiñones Vélez, G.; Escalera-Joy, A.M.; Mojica-Vázquez, D.; Esteves-Vega, S.; Peterson-Peguero, E.A.; López-Mejías, V. Design of Extended Bisphosphonate-Based Coordination Polymers as Bone-Targeted Drug Delivery Systems for Breast Cancer-Induced Osteolytic Metastasis and Other Bone Therapies. Inorg. Chem. 2023, 62, 9440–9453. [Google Scholar] [CrossRef]
- Carmona-sarabia, L.; Quiñones Vélez, G.; Mojica-Vázquez, D.; Escalera-Joy, A.; Esteves-Vega, S.; Peterson, E.A.; Lopez-Mejias, V. High-Affinity Extended Bisphosphonate-Based Coordination Polymers as Promising Candidates for Bone-Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2023, 15, 33397–33412. [Google Scholar] [CrossRef]
- Raether, W.; Enders, B.; Hofmann, J.; Schwannecke, U.; Seidenath, H.; Hänel, H.; Uphoff, M. Antimalarial Activity of New Floxacrine-related Acridinedione derivatives: Studies on Blood Schizontocidal Action of Potenctial Candidates Against P. berghei in Mice and P. falciparum in vivo and in vitro. Parasitol. Res. 1989, 75, 619–626. [Google Scholar] [CrossRef]
- Smith, P.W.; Diagana, T.T.; Yeung, B.K.S. Progressing the Global Antimalarial portfolio: Finding Drugs with Target Multiple Plasmodium Life Stages. Parasitology 2014, 141, 66–76. [Google Scholar] [CrossRef]
- Calit, J.; Araújo, J.E.; Deng, B.; Miura, K.; Gaitán, X.; da Silva Aráujo, M.; Medeiros, J.F.; Long, C.A.; Simeonov, A.; Eastman, R.T.; et al. Novel Transmission-Blocking Antimalarials Identified by High-Throughput Screening of Plasmodium berghei Oocluc. Antimicrob. Agents Chemother. 2023, 67, e014655-22. [Google Scholar] [CrossRef]
- Rathnapala, U.L.; Goodman, C.D.; McFadden, G.I. A Novel Genetic Technique in Plasmodium berghei Allows Liver Stage Analysis of Genes Required for Mosquito Stage Development and Demonstrates that the novo Heme Synthesis is Essential for Liver Stage Development in the Malaria Parasite. PLoS Pathog. 2017, 13, e1006396. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, H.; Oshaghi, M.A.; Mosa-Kazemi, S.H.; Abai, M.R.; Rafie, F.; Nateghpour, M.; Mohammadzadeh, H.; Farivar, L.; Mohammadi Bavani, M. Experimental Study of Plasmodium berghei, Anopheles stephensi, and BALB/c Mouse System: Implications for Malaria Transmission Blocking Assays. Iran J. Parasitol. 2018, 13, 549–559. [Google Scholar] [PubMed]
- O’Neill, M.J.; Bray, D.H.; Boardman, P.; Chan, K.L.; Phillipson, J.D.; Warhurst, D.C.; Peters, W. Plants as Sources of Antimalarial Drugs, Part 4: Activity of Brucea javanica Fruits against Chloroquine-Resistant Plasmodium falciparum in vitro and against Plasmodium berghei in vivo. J. Nat. Prod. 1987, 50, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Rucci, N.; Ricevuto, E.; Ficorella, C.; Longo, M.; Perez, M.; Di Giacinto, C.; Funari, A.; Teti, A.; Migliaccio, S. In Vivo Bone Metastases, Osteoclastogenic Ability, and Phenotypic Characterization of Human Breast Cancer Cells. Bone 2004, 34, 697–709. [Google Scholar] [CrossRef]
- Kowashi, S.; Ogamino, T.; Kamei, J.; Ishikawa, Y.; Nishiyama, S. The First Total Synthesis and Absolute Stereochemistry of Plakortone G from the Jamaican Sponge Plakortis sp. Tetrahedron Lett. 2004, 45, 4393–4396. [Google Scholar] [CrossRef]
- Jiménez-Romero, C.; Ortiz, I.; Vicente, J.; Vera, B.; Rodríguez, A.; Nam, S.; Jove, R. Bioactive Cycloperoxides Isolated from the Puerto Rican Sponge Plakortis halichondrioides. J. Nat. Prod. 2010, 73, 1694–1700. [Google Scholar] [CrossRef] [PubMed]
- Gushiken, M.; Kagiyama, I.; Kato, H.; Kuwana, T.; Losung, F.; Mangindaan, R.E.P.; De Voogd, N.J.; Tsukamoto, S. Manadodioxans A-E: Polyketide Endoperoxides from the Marine Sponge Plakortis bergquistae. J. Nat. Med. 2015, 69, 595–600. [Google Scholar] [CrossRef]
- Meshnick, S.R. Artemisinin: Mechanisms of Action, Resistance and Toxicity. Int. J. Parasitol. 2002, 32, 1655–1660. [Google Scholar] [CrossRef]
- Muregi, F.W.; Ishih, A. Next-Generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design. Drug Dev. Res. 2010, 71, 20–32. [Google Scholar] [CrossRef]
- Daskum, A.M.; Chessed, G.; Qadeer, M.A.; Mustapha, T. Antimalarial Chemotherapy, Mechanisms of Action and Resistance to Major Antimalarial Drugs in Clinical Use: A Review. Microbes Infect. Dis. 2021, 2, 130–142. [Google Scholar]
- White, N.J. Review Series Antimalarial Drug Resistance. Antimalar. Drug Resist. 2004, 113, 1084–1092. [Google Scholar]
- Casiolla, J.; Spinello, A.; Martini, S.; Bisi, A.; Zaffaroni, N.; Gobbi, S. Targeting Orthosteric and Allosteric Pockets of Aromatase via Dual-Mode Novel Azole Inhibitors. ACS Med. Chem. Lett. 2020, 11, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Fahy, E.; Potts, B.; Faulkner, J. 6-Bromotryptamine Derivatives from the Gulf of California Tunicate Didemnum candidum. J. Nat. Prod. 1991, 54, 564–569. [Google Scholar] [CrossRef]
- Chantana, C.; Sirion, U.; Iawsipo, P.; Jaratjaroonphong, J. Short Total Synthesis of (±)-Gelliusine e and 2,3′-Bis(Indolyl)Ethylamines via PTSA-Catalyzed Transindolylation. J. Org. Chem. 2021, 86, 13360–13370. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Bourguet-Kondracki, M.L.; Majeed, M.; Ibrahim, M.; Imran, M.; Yang, X.W.; Ahmed, I.; Altaf, A.A.; Khalil, A.A.; Rauf, A.; et al. Marine Life as a Source for Breast Cancer Treatment: A Comprehensive Review. Biomed. Pharmacother. 2023, 159, 114165. [Google Scholar] [CrossRef]
- Spinello, A.; Martini, S.; Berti, F.; Pennati, M.; Pavlin, M.; Sgrignani, J.; Grazioso, G.; Colombo, G.; Zaffaroni, N.; Magistrato, A. Rational Design of Allosteric Modulators of the Aromatase Enzyme: An Unprecedented Therapeutic Strategy to Fight Breast Cancer. Eur. J. Med. Chem. 2019, 168, 253–262. [Google Scholar] [CrossRef]
- Lau, Y.S.; Danks, L.; Sun, S.G.; Fox, S.; Sabokbar, A.; Harris, A.; Athanasou, N.A. RANKL-Dependent and RANKL-Independent Mechanisms of Macrophage-Osteoclast Differentiation in Breast Cancer. Breast Cancer Res. Treat. 2007, 105, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Xiao, X.; Huang, C.; Yuan, Y.; Tang, D.; Dai, X.; Zeng, X. Potent Aromatase Inhibitors and Molecular Mechanism of Inhibitory Action. Eur. J. Med. Chem. 2018, 143, 426–437. [Google Scholar] [CrossRef]
- Norris, M.D.; Perkins, M.V.; Sorensen, E.J. Biomimetic Total Synthesis of Gracilioethers B and C. Org. Lett. 2015, 17, 668–671. [Google Scholar] [CrossRef]
- Di Micco, S.; Zampella, A.; D’Auria, M.V.; Festa, C.; De Marino, S.; Riccio, R.; Butts, C.P.; Bifulco, G. Plakilactones G and H from a Marine Sponge. Stereochemical Determination of Highly Flexible Systems by Quantitative NMR-Derived Interproton Distances Combined with Quantum Mechanical Calculations of 13C Chemical Shifts. Beilstein J. Org. Chem. 2013, 9, 2940–2949. [Google Scholar] [CrossRef]
Atom | Compound 6 | Compound 7 | Compound 8 | |||
---|---|---|---|---|---|---|
δC a | δH b (J in Hz) | δC a | δH b (J in Hz) | δC a | δH b (J in Hz) | |
1 | 166.9, C | 166.9, C | 173.5, C | |||
2 | 83.4, CH | 4.81, s | 83.5, CH | 4.82, s | 135.8, C | |
3 | 171.9, C | 171.9, C | 150.1, CH | 6.83, ovlc | ||
4 | 139.9, C | 140.0, C | 89.3, C | |||
5 | 139.7, CH | 6.22, s | 139.7, CH | 6.23, s | 36.9, CH2 | 1.60, m 1.73, m |
6 | 98.0, C | 97.9, C | 20.6, CH2 | 1.10–1.38, ovl c | ||
7 | 38.1, CH2 | 1.65, m 1.78, m | 37.8, CH2 | 1.65, m 1.78, m | 33.3, CH2 | 1.10–1.38, ovl c 1.10–1.38, ovl c |
8 | 21.4, CH2 | 1.10–1.30, ovl c | 20.9, CH2 | 1.10–1.30, ovl c | 38.6, CH | 1.10–1.38, ovl c |
9 | 35.1, CH2 | 1.29, m 1.29, m | 33.1, CH2 | 1.10–1.30, ovl c 1.10–1.30, ovl c | 33.2, CH2 | 1.10–1.38, ovl c 1.10–1.38, ovl c |
10 | 44.3, CH | 1.72, m | 38.6, CH | 1.10–1.30, ovl c | 28.8, CH2 | 1.10–1.38, ovl c |
11 | 133.2, CH | 5.01, dd (8.8, 15.2) | 32.7, CH2 | 1.10–1.30, ovl c 1.10–1.30, ovl c | 23.0, CH2 | 1.10–1.38, ovlc |
12 | 132.1, CH | 5.33, m | 28.8, CH2 | 1.10–1.30, ovl c | 14.1, CH3 | 0.86, t (7.4) |
13 | 25.6, CH2 | 1.97, m | 23.0, CH2 | 1.10–1.30, ovl c | 18.5, CH2 | 2.28, m |
14 | 14.2, CH3 | 0.94, t (7.5) | 14.1, CH3 | 0.87, t (7.2) | 12.0, CH3 | 1.15, t (7.5) |
15 | 18.5, CH2 | 2.17, m | 18.5, CH2 | 2.17, m | 29.9, CH2 | 1.70, m 1.79, m |
16 | 12.0, CH3 | 1.15, t (7.5) | 12.0, CH3 | 1.15, t (7.5) | 7.7, CH3 | 0.80, m |
17 | 30.8, CH2 | 1.72, m 1.84, m | 30.8, CH2 | 1.75, m 1.84, m | 30.0, CH2 | 1.10–1.38, ovl c 1.10–1.38, br m |
18 | 8.0, CH3 | 0.79, m | 8.0, CH3 | 0.79, m | 10.7, CH3 | 0.80, m |
19 | 28.1, CH2 | 1.10–1.30, ovl c 1.10–1.30, ovl c | 30.9, CH2 | 1.10–1.30, ovl c 1.10–1.30, ovl c | ||
20 | 11.6, CH3 | 0.79, m | 10.7, CH3 | 0.79, m | ||
21 | 50.5, CH3 | 3.68, s | 50.5, CH3 | 3.68, s |
Concentration (µM) | Compound 6 | Compound 7 | Mixture of Compounds 8 and 9 | |||
---|---|---|---|---|---|---|
% Cell Viability | % CV | % Cell Viability | % CV | % Cell Viability | % CV | |
400 | 7 | 5 | 0 | 0 | 32 | 5 |
200 | 43 | 5 | 10 | 3 | 71 | 5 |
100 | 78 | 4 | 69 | 4 | 78 | 3 |
50 | 83 | 5 | 82 | 5 | 85 | 5 |
25 | 89 | 4 | 92 | 5 | 85 | 4 |
13 | 88 | 3 | 103 | 3 | 84 | 2 |
6 | 87 | 3 | 101 | 3 | 87 | 3 |
3 | 90 | 3 | 101 | 2 | 89 | 4 |
2 | 91 | 3 | 96 | 5 | 92 | 3 |
0 | 100 | 4 | 100 | 4 | 100 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador, L.A.; Rodríguez, A.D.; Carmona-Sarabia, L.; Colón-Lorenzo, E.E.; Serrano, A.E. Two Gracilioethers Containing a [2(5H)-Furanylidene]ethanoate Moiety and 9,10-Dihydroplakortone G: New Polyketides from the Caribbean Marine Sponge Plakortis halichondrioides. Appl. Sci. 2024, 14, 281. https://doi.org/10.3390/app14010281
Amador LA, Rodríguez AD, Carmona-Sarabia L, Colón-Lorenzo EE, Serrano AE. Two Gracilioethers Containing a [2(5H)-Furanylidene]ethanoate Moiety and 9,10-Dihydroplakortone G: New Polyketides from the Caribbean Marine Sponge Plakortis halichondrioides. Applied Sciences. 2024; 14(1):281. https://doi.org/10.3390/app14010281
Chicago/Turabian StyleAmador, Luis A., Abimael D. Rodríguez, Lesly Carmona-Sarabia, Emilee E. Colón-Lorenzo, and Adelfa E. Serrano. 2024. "Two Gracilioethers Containing a [2(5H)-Furanylidene]ethanoate Moiety and 9,10-Dihydroplakortone G: New Polyketides from the Caribbean Marine Sponge Plakortis halichondrioides" Applied Sciences 14, no. 1: 281. https://doi.org/10.3390/app14010281
APA StyleAmador, L. A., Rodríguez, A. D., Carmona-Sarabia, L., Colón-Lorenzo, E. E., & Serrano, A. E. (2024). Two Gracilioethers Containing a [2(5H)-Furanylidene]ethanoate Moiety and 9,10-Dihydroplakortone G: New Polyketides from the Caribbean Marine Sponge Plakortis halichondrioides. Applied Sciences, 14(1), 281. https://doi.org/10.3390/app14010281