Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart
Abstract
1. Introduction
2. Materials and Methods
2.1. Dust Source Upgrade
2.2. Focusing System Upgrade
2.3. Dust Detector Upgrade
2.4. Particle Selection Unit
2.5. Post-Stage Linac
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Analog–digital converters |
ASIC | Application-Specific Integrated Circuit |
CSA | Charge-sensitive amplifier |
EMC | Electromagnetic compatibility |
FPGA | Field-programmable gate array |
MOSFET | Metal-Oxide-Semiconductor Field-effect Transitor |
PSU | Particle-selection unit |
PTFE | Polytetrafluorethylen |
TTL | Transistor–Transistor Logic |
Appendix A
Material | Supplier | Shape | Composition |
---|---|---|---|
Iron | ThermoFisher | Spherical | Iron 98.19%, Carbon 0.68%, Oxygen 0.46% and Nitrogen 0.67% |
Copper | ThermoFisher | Spherical | Copper 99.9%, Sliver < 10 ppm, Al < 10 ppm, Carbon 19 ppm, Iron < 10 ppm, Nickel < 10 ppm, O2 4650 ppm, Lead < 20 ppm, Silicon < 20 ppm, Tin < 20 ppm and Zinc < 20 ppm |
References
- Ticos, C.M.; Wang, Z.H.; Wurden, G.A.; Kline, J.L.D.; Montgomery, S.; Dorf, L.A.; Shuklaand, P.K. Experimental demonstration of plasma-drag acceleration of a dust cloud to hypervelocities. Phys. Rev. Lett. 2008, 100, 155002. [Google Scholar]
- Klein, T.; Wolf, E.; Wu, R.; Sanford, J.C. High-velocity microprojectiles for delivering nucleic acids into living cells. Nature 1987, 327, 70–73. [Google Scholar] [CrossRef]
- Menezes, V.; Takayama, K.; Ohki, T.; Gopalan, J. Laser-ablation-assisted microparticle acceleration for drug delivery. Appl. Phys. Lett. 2005, 87, 163504. [Google Scholar] [CrossRef]
- Shelton, H.; Hendricks, C.; Wuerker, R. Electrostatic acceleration of microparticles to hypervelocities. J. Appl. Phys. 1960, 31, 1243–1246. [Google Scholar] [CrossRef]
- Friichtenicht, J. Micrometeroid simulation using nuclear accelerator techniques. Nucl. Instrum. Methods 1964, 28, 70–78. [Google Scholar] [CrossRef]
- Mocker, A.; Bugiel, S.; Auer, S.; Baust, G.; Colette, A.; Drake, K.; Fiege, K.; Grün, E.; Heckmann, F.; Helfert, S.; et al. A 2 mv van de graaff accelerator as a tool for planetary and impact physics research. Rev. Sci. Instrum. 2011, 82, 095111. [Google Scholar] [CrossRef] [PubMed]
- Burchell, M.J.; Cole, M.J.; McDonnell, J.A.; Zarnecki, J.C.J. Hypervelocity impact studies using the 2 MV Van de Graaff accelerator and two-stage light gas gun of the University of Kent at Canterbury. Meas. Sci. Technol. 1999, 10, 41. [Google Scholar] [CrossRef]
- Shibata, H.; Kobayashi, K.; Iwai, T.; Hamaba, Y.; Sasaki, S.; Hasegawa, S.; Yano, H.; Fujiwara, A.; Ohashi, H.; Kawamura, T.; et al. Microparticle acceleration by a Van de Graaff accelerator and application to space and material sciences. Radiat. Phys. Chem. 2001, 60, 277–282. [Google Scholar] [CrossRef]
- Shu, A.; Collette, A.; Drake, K.; Grün, E.; Horányi, M.; Kempf, S.; Mocker, A.; Munsat, T.; Northway, P.; Srama, R.; et al. 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. Rev. Sci. Instrum. 2012, 83, 075108. [Google Scholar] [CrossRef]
- Wang, X.; Schwan, J.; Hsu, H.-W.; Grün, E.; Horányi, M. Dust charging and transport on airless planetary bodies. Geophys. Res. Lett. 2016, 43, 6103–6110. [Google Scholar] [CrossRef]
- Colwell, J.E.; Batiste, S.; Horányi, M.; Robertson, S.R.; Sture, S. Lunar surface: Dust dynamics and regolith mechanics. Rev. Geophys. 2007, 45, RG2006. [Google Scholar] [CrossRef]
- Colwell, J.E.; Robertson, S.R.; Horányi, M.; Wang, X.; Poppe, A.; Wheeler, P. Lunar dust levitation. J. Aerosp. Eng. 2009, 22, 2–9. [Google Scholar] [CrossRef]
- Horányi, M.; Szalay, J.R.; Kempf, S.; Schmidt, J.; Grün, E.; Srama, R.; Sternovsky, Z. A permanent, asymmetric dust cloud around the Moon. Nature 2015, 522, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Crawford, I.; Anand, M.; Cockell, C.; Falcke, H.; Green, D.; Jaumann, R.; Wieczorek, M. Back to the moon: The scientific rationale for resuming lunar surface exploration. Planet. Space Sci. 2012, 74, 3–14. [Google Scholar]
- Christoffersen, R.; Lindsay, J.; Noble, S.; Meador, M.; Kosmo, J.; Lawrence, J.; Brostoff, L.; Young, A.; McCue, T. Lunar Dust Effects on Spacesuit Systems-Insights from the Apollo Spacesuits. NASA/TP-2009-2014786. 2009. Available online: https://repository.hou.usra.edu/handle/20.500.11753/1329 (accessed on 19 February 2023).
- Sternovsky, Z.; Horányi, M.; Robertson, S. Charging of dust particles on surfaces. J. Vac. Sci. Technol. A Vacuum Surfaces Film. 2001, 19, 2533–2541. [Google Scholar] [CrossRef]
- Stübig, M.; Schäfer, G.; Ho, T.M.; Srama, R.; Grün, E. Laboratory simulation improvements for hypervelocity micrometeorite impacts with a new dust particle source. Planet. Space Sci. 2001, 49, 853–858. [Google Scholar] [CrossRef]
- Srama, S.; Auer, S. Low-charge detector for the monitoring of hyper-velocity micron-sized dust particles. Meas. Sci. Technol. 2008, 19, 055203. [Google Scholar] [CrossRef]
- Kelz, S.; Veigel, T.; Grözing, M.; Berroth, M. A fully differential charge-sensitive amplifier for dust-particle detectors. In Proceedings of the 14th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME), Prague, Czech Republic, 2–5 July 2018; pp. 13–16. [Google Scholar]
- Müller, W.E. Field Desorption. Phys. Rev. J. 1956, 102, 618. [Google Scholar] [CrossRef]
Previous Setup | New Setup | |
---|---|---|
Total length | 1.5 m | Up to 4.5 m |
Focusing system | Single cylinder | Einzel lens |
Acceleration voltage | Up to 20 kV | Up to 30 kV (+120 kV) |
Particle speed detection range | Above 100 m/s | 10 m/s to 10 km/s |
Test chamber | ∅ 100 mm | ∅ 100 mm and ∅ 300 mm |
Operation mode | Continuous mode | Continuous and single mode |
Parameter | Description | Value |
---|---|---|
Length × Diameter | 127 mm × 127 mm | |
Size | Reservoir | = 12 mm, length = 25 mm |
Distance (Needle-extraction hole) | 2.5–4 mm | |
Chassis | Stainless steel | |
Material | Insulators | PEEK |
Needle | Tungsten | |
HV feedthrough (40 kV) | Alumina ceramic | |
Voltage | Needle | 0–30 kV, fixed |
Reservoir | same as needle, pulsed | |
Pulses | Duration | 1–255 ms, adjustable |
Repetition | 1–255 ms, adjustable |
Lens | Focusing Voltage | Acceleration Voltage | Focal Length |
---|---|---|---|
10 kV | 15 kV | beyond beam (5 m) | |
10.745 kV | 15 kV | 3000 mm | |
Einzel lens | 10.94 kV | 15 kV | 1500 mm |
11 kV | 15 kV | 1327 mm | |
12 kV | 15 kV | 467 mm | |
10 kV | 15 kV | beyond beam (5 m) | |
11 kV | 15 kV | beyond beam (5 m) | |
Single-cylinder | 11.15 kV | 15 kV | 3000 mm |
11.18 kV | 15 kV | 1500 mm | |
12 kV | 15 kV | 250 mm |
Material | Supplier | , kV | Event Number | Grain Size, m | Velocity, m/s |
---|---|---|---|---|---|
Iron | ThermoFisher | 7–20 | 16,218 | 0.02–10 | 11–7140 |
Copper | ThermoFisher | 9–12 | 20,081 | 0.02–10 | 12–6667 |
Carbon | ThermoFisher | 3–12 | 2570 | 0.4–12 | 10–1530 |
SiO2 1 | Dr. V. Steck 2 | 3–9 | 810 | 0.4–0.9 | 10–1470 |
Peridot 3 | Dr. J. Hiller 2 | 15 | 761 | 0.7–3 | 17–939 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Bauer, M.; Kelz, S.; Strack, H.; Simolka, J.; Mazur, C.; Sommer, M.; Mocker, A.; Srama, R. Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart. Appl. Sci. 2023, 13, 4441. https://doi.org/10.3390/app13074441
Li Y, Bauer M, Kelz S, Strack H, Simolka J, Mazur C, Sommer M, Mocker A, Srama R. Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart. Applied Sciences. 2023; 13(7):4441. https://doi.org/10.3390/app13074441
Chicago/Turabian StyleLi, Yanwei, Marcel Bauer, Sebastian Kelz, Heiko Strack, Jonas Simolka, Christian Mazur, Maximilian Sommer, Anna Mocker, and Ralf Srama. 2023. "Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart" Applied Sciences 13, no. 7: 4441. https://doi.org/10.3390/app13074441
APA StyleLi, Y., Bauer, M., Kelz, S., Strack, H., Simolka, J., Mazur, C., Sommer, M., Mocker, A., & Srama, R. (2023). Upgrades of a Small Electrostatic Dust Accelerator at the University of Stuttgart. Applied Sciences, 13(7), 4441. https://doi.org/10.3390/app13074441