Performance Analysis of Different Gun Silencers
Abstract
:1. Introduction
2. Materials and Methods
- -
- values of sound pressure over time;
- -
- spectral distribution of sound pressure;
- -
- the effectiveness of the suppression in the zones.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
c | the speed of sound |
E0, E100, E200, E300 | the bullet energy, when the bullet speed is 0, 100, 200 and 300 m/s |
f | the frequency |
g | the bipolar source term, representing the acceleration per unit volume |
k | the wavelength |
q | the fluid density |
p | the sound pressure |
pi | the input pressure value |
TL | the transmission loss of the silencer |
V0, V100, V200, V300 | the bullet speeds |
win | the acoustics at the inlet of the silencer |
wout | the acoustics at the outlet of the silencer |
References
- Arslan, H.; Ranjbar, M.; Secgin, E.; Celik, V. Theoretical and Experimental Investigation of Acoustic Performance of Multi-Chamber Reactive Silencers. Appl. Acoust. 2020, 157, 106987. [Google Scholar] [CrossRef]
- Strong, B.L.; Ballard, S.-B.; Braund, W. The American College of Preventive Medicine Policy Recommendations on Reducing and Preventing Firearm-Related Injuries and Deaths. Am. J. Prev. Med. 2016, 51, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.; Lemeshow, S.; Saleska, J.L.; Brewer, B.; Strobino, K. Who Owns Guns and How Do They Keep Them? The Influence of Household Characteristics on Firearms Ownership and Storage Practices in the United States. Prev. Med. 2018, 116, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Junuzovic, M.; Midlöv, P.; Lönn, S.L.; Eriksson, A. Swedish Hunters’ Safety Behaviour and Experience of Firearm Incidents. Accid. Anal. Prev. 2013, 60, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.G.; Greene, N.T.; Ahroon, W.A. Human Middle-Ear Muscles Rarely Contract in Anticipation of Acoustic Impulses: Implications for Hearing Risk Assessments. Hear. Res. 2019, 378, 53–62. [Google Scholar] [CrossRef]
- Chau, J.K.; Cho, J.J.W.; Fritz, D.K. Evidence-Based Practice. Otolaryngol. Clin. N. Am. 2012, 45, 941–958. [Google Scholar] [CrossRef] [PubMed]
- Guida, H.L.; Taxini, C.L.; Gonçalves, C.G.d.O.; Valenti, V.E. Evaluation of Hearing Protection Used by Police Officers in the Shooting Range. Braz. J. Otorhinolaryngol. 2014, 80, 515–521. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Cheong, C.; Jeong, W.B. The Use of a Hybrid Model to Compute the Nonlinear Acoustic Performance of Silencers for the Finite Amplitude Acoustic Wave. J. Sound Vib. 2010, 329, 2158–2176. [Google Scholar] [CrossRef]
- Kirby, R.; Amott, K.; Williams, P.T.; Duan, W. On the Acoustic Performance of Rectangular Splitter Silencers in the Presence of Mean Flow. J. Sound Vib. 2014, 333, 6295–6311. [Google Scholar] [CrossRef]
- Davis, R.R.; Clavier, O. Impulsive Noise: A Brief Review. Hear. Res. 2017, 349, 34–36. [Google Scholar] [CrossRef]
- Miller, M.T. Crime Scene Reconstruction. In Crime Scene Investigation Laboratory Manual; Elsevier: Amsterdam, The Netherlands, 2018; pp. 191–200. ISBN 978-0-12-812845-9. [Google Scholar]
- Fairmont, I.; Duffy, J.; Portnuff, C.; Mann, S. Bullet Fragment in the Eustachian Tube Presenting as Conductive Hearing Loss and Lead Toxicity. Otolaryngol. Case Rep. 2021, 21, 100380. [Google Scholar] [CrossRef]
- Naranjo-Alcazar, J.; Perez-Castanos, S.; Zuccarello, P.; Torres, A.M.; Lopez, J.J.; Ferri, F.J.; Cobos, M. An Open-Set Recognition and Few-Shot Learning Dataset for Audio Event Classification in Domestic Environments. Pattern Recognit. Lett. 2022, 164, 40–45. [Google Scholar] [CrossRef]
- Meng, X.; Wang, Z.; Zhang, Z.; Wang, F. A Method for Monitoring the Underground Mining Position Based on the Blasting Source Location. Meas. Sci. Rev. 2013, 13, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Hristov, N.; Kari, A.; Jerković, D.; Savić, S.; Sirovatka, R. Simulation and Measurements of Small Arms Blast Wave Overpressure in the Process of Designing a Silencer. Meas. Sci. Rev. 2015, 15, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Brożek-Mucha, Z. A Study of Gunshot Residue Distribution for Close-Range Shots with a Silenced Gun Using Optical and Scanning Electron Microscopy, X-Ray Microanalysis and Infrared Spectroscopy. Sci. Justice 2017, 57, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Monturo, C. Ammunition. In Forensic Firearm Examination; Elsevier: Amsterdam, The Netherlands, 2019; pp. 21–71. ISBN 978-0-12-814539-5. [Google Scholar]
- Fang, Z.; Liu, C.Y. Semi-Weak-Form Mesh-Free Method for Acoustic Attenuation Analysis of Silencers with Arbitrary but Axially Uniform Transversal Sections. J. Sound Vib. 2019, 442, 752–769. [Google Scholar] [CrossRef]
- Kilikevicius, A.; Skeivalas, J.; Jurevicius, M.; Turla, V.; Kilikeviciene, K.; Bureika, G.; Jakstas, A. Experimental Investigation of Dynamic Impact of Firearm with Suppressor. Indian J. Phys. 2017, 91, 1077–1087. [Google Scholar] [CrossRef]
- Lu, Y.; Zhou, K.; He, L.; Li, J.; Huang, X. Research on the Floating Performance of a Novel Large Caliber Machine Gun Based on the Floating Principle with Complicated Boundary Conditions. Def. Technol. 2019, 15, 607–614. [Google Scholar] [CrossRef]
- Mäkinen, T.; Pertilä, P. Shooter Localization and Bullet Trajectory, Caliber, and Speed Estimation Based on Detected Firing Sounds. Appl. Acoust. 2010, 71, 902–913. [Google Scholar] [CrossRef]
- Xiao, W.; Andrae, M.; Gebbeken, N. Experimental and Numerical Investigations on the Shock Wave Attenuation Performance of Blast Walls with a Canopy on Top. Int. J. Impact Eng. 2019, 131, 123–139. [Google Scholar] [CrossRef]
- Mouritz, A.P. Advances in Understanding the Response of Fibre-Based Polymer Composites to Shock Waves and Explosive Blasts. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105502. [Google Scholar] [CrossRef]
- Hu, X.-D.; Zhao, G.-F.; Deng, X.-F.; Hao, Y.-F.; Fan, L.-F.; Ma, G.-W.; Zhao, J. Application of the Four-Dimensional Lattice Spring Model for Blasting Wave Propagation around the Underground Rock Cavern. Tunn. Undergr. Space Technol. 2018, 82, 135–147. [Google Scholar] [CrossRef]
- Carson, R.A.; Sahni, O. Numerical Investigation of Channel Leak Geometry for Blast Overpressure Attenuation in a Muzzle Loaded Large Caliber Cannon. J. Fluids Eng. 2014, 137, 021102. [Google Scholar] [CrossRef]
- Scaling of Air Blast Waves. Fundamental Studies in Engineering; Elsevier: Amsterdam, The Netherlands, 1991; Volume 12, pp. 49–69. ISBN 978-0-444-88156-4. [Google Scholar]
- Explosions and Pressure Waves. Industrial Safety Series; Elsevier: Amsterdam, The Netherlands, 1994; Volume 3, pp. 445–462. ISBN 978-0-444-89863-0. [Google Scholar]
- Phadnis, V.A.; Silberschmidt, V.V. 8.14 Composites Under Dynamic Loads at High Velocities. In Comprehensive Composite Materials II.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 262–285. ISBN 978-0-08-100534-7. [Google Scholar]
- Phadnis, V.A.; Roy, A.; Silberschmidt, V.V. Dynamic Damage in FRPs. In Dynamic Deformation, Damage and Fracture in Composite Materials and Structures; Elsevier: Amsterdam, The Netherlands, 2016; pp. 193–222. ISBN 978-0-08-100870-6. [Google Scholar]
- Fang, B.; Wang, Y.-G.; Zhao, Q. On Multi-Dimensional Linear Stability of Planar Shock Waves for Chaplygin Gases. Appl. Math. Lett. 2020, 102, 106085. [Google Scholar] [CrossRef]
- Yazdandoost, F.; Sadeghi, O.; Bakhtiari-Nejad, M.; Elnahhas, A.; Shahab, S.; Mirzaeifar, R. Energy Dissipation of Shock-Generated Stress Waves through Phase Transformation and Plastic Deformation in NiTi Alloys. Mech. Mater. 2019, 137, 103090. [Google Scholar] [CrossRef]
- Otsuka, F.; Matsukiyo, S.; Hada, T. PIC Simulation of a Quasi-Parallel Collisionless Shock: Interaction between Upstream Waves and Backstreaming Ions. High Energy Density Phys. 2019, 33, 100709. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Yao, A.; Yao, C. The Relief of Energy Convergence of Shock Waves by Using the Concave Combustion Chamber under Severe Knock. Energy Convers. Manag. 2018, 162, 293–306. [Google Scholar] [CrossRef]
- Tonicello, N.; Lodato, G.; Vervisch, L. Entropy Preserving Low Dissipative Shock Capturing with Wave-Characteristic Based Sensor for High-Order Methods. Comput. Fluids 2020, 197, 104357. [Google Scholar] [CrossRef]
- Selech, J.; Kilikevičius, A.; Kilikevičienė, K.; Borodinas, S.; Matijošius, J.; Vainorius, D.; Marcinkiewicz, J.; Staszak, Z. Force and Sound Pressure Sensors Used for Modeling the Impact of the Firearm with a Suppressor. Appl. Sci. 2020, 10, 961. [Google Scholar] [CrossRef] [Green Version]
- Carlucci, D.E.; Decker, R.; Vega, J.; Ray, D. Measurement of In-Bore Side Loads and Comparison to First Maximum Yaw. Def. Technol. 2016, 12, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Courtney, E.; Couvillion, R.; Courtney, A.; Courtney, M. Effects of Sound Suppressors on Muzzle Velocity, Bullet Yaw and Drag. In Proceedings of the 30th International Symposium on Ballistics, San Antonio, TX, USA, 18 December 2017; DEStech Publications, Inc: Lancaster, PA, USA. [Google Scholar]
- Mlynski, R.; Kozlowski, E. Selection of Level-Dependent Hearing Protectors for Use in An Indoor Shooting Range. IJERPH 2019, 16, 2266. [Google Scholar] [CrossRef] [Green Version]
- Murphy, W.J.; Tasko, S.M.; Finan, D.; Meinke, D.K.; Stewart, M.; Lankford, J.E.; Campbell, A.R.; Flamme, G. Referee Whistles Part II—Outdoor Sound Power Assessment. J. Acoust. Soc. Am. 2019, 145, 1816. [Google Scholar] [CrossRef]
- Skrodzka, E.; Wicher, A.; Gołe¸biewski, R. A Review of Gunshot Noise as Factor in Hearing Disorders. Acta Acust. United Acust. 2019, 105, 904–911. [Google Scholar] [CrossRef]
- Stewart, M. What to Know About Firearm Suppressors and Hearing Loss: Does a Firearm Suppressor Always Do Enough to Protect Hearing? No. Should Firearm Users Also Wear Hearing Protection? Yes. Leader 2018, 23, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Murphy, W.J.; Campbell, A.R.; Flamme, G.A.; Tasko, S.M.; Lankford, J.E.; Meinke, D.K.; Finan, D.S.; Stewart, M.; Zechmann, E.L. Developing a Method to Assess Noise Reduction of Firearm Suppressors for Small-Caliber Weapons. Proc. Mtgs. Acoust. 2018, 30, 040004. [Google Scholar]
- Murphy, W.J.; Campbell, A.R.; Flamme, G.A.; Tasko, S.M.; Lankford, J.E.; Meinke, D.K.; Finan, D.S.; Zechmann, E.L.; Stewart, M. The Attenuation of Firearm Suppressors as a Function of Angle and Bullet Velocity. In Proceedings of the National Hearing Conservation Association, Orlando, FL, USA; 2018. [Google Scholar] [CrossRef]
- Murphy, W.J.; Flamme, G.A.; Campbell, A.R.; Zechmann, E.L.; Tasko, S.M.; Lankford, J.E.; Meinke, D.K.; Finan, D.S.; Stewart, M. The Reduction of Gunshot Noise and Auditory Risk through the Use of Firearm Suppressors and Low-Velocity Ammunition. Int. J. Audiol. 2018, 57, S28–S41. [Google Scholar] [CrossRef]
- Fonseca de Lima, K.; Dea Cirino, P.; Maurios Legat Filho, N.L.; Barbieri, N. Multi-Frequency Sequential and Simultaneous Parametric Shape Optimization of Reactive Silencers. Appl. Acoust. 2021, 171, 107543. [Google Scholar] [CrossRef]
- Amuaku, R.; Amoah Asante, E.; Edward, A.; Bright Gyamfi, G. Effects of Chamber Perforations, Inlet and Outlet Pipe Diameter Variations on Transmission Loss Characteristics of a Muffler Using Comsol Multiphysics. AAS 2019, 4, 104. [Google Scholar] [CrossRef]
Speed, (m/s) | V0 | V100 | V200 | V300 |
805 | 730 | 660 | 560 | |
Energy, (J) | E0 | E100 | E200 | E300 |
3465 | 2860 | 2350 | 1915 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kilikevičius, A.; Giedraitis, V.; Kilikevičienė, K.; Matijošius, J.; Selech, J.; Buckiūnas, G.; Rucki, M. Performance Analysis of Different Gun Silencers. Appl. Sci. 2023, 13, 4426. https://doi.org/10.3390/app13074426
Kilikevičius A, Giedraitis V, Kilikevičienė K, Matijošius J, Selech J, Buckiūnas G, Rucki M. Performance Analysis of Different Gun Silencers. Applied Sciences. 2023; 13(7):4426. https://doi.org/10.3390/app13074426
Chicago/Turabian StyleKilikevičius, Artūras, Vytautas Giedraitis, Kristina Kilikevičienė, Jonas Matijošius, Jaroslaw Selech, Gytis Buckiūnas, and Mirosław Rucki. 2023. "Performance Analysis of Different Gun Silencers" Applied Sciences 13, no. 7: 4426. https://doi.org/10.3390/app13074426
APA StyleKilikevičius, A., Giedraitis, V., Kilikevičienė, K., Matijošius, J., Selech, J., Buckiūnas, G., & Rucki, M. (2023). Performance Analysis of Different Gun Silencers. Applied Sciences, 13(7), 4426. https://doi.org/10.3390/app13074426