Verification of Estimated Cosmic Neutron Intensities Using a Portable Neutron Monitoring System in Antarctica
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Locations of Measurements
2.2. Methods of Measurements
2.3. Model Calculation
3. Results and Discussions
3.1. Time Change of Neutron Dose Rates
3.2. Neutron Dose Rates as a Function of Atmospheric Pressure
3.3. Comparison with Model Calculation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asvestari, E.; Gil, A.; Kovaltsov, G.A.; Usoskin, I.G. Neutron monitors and cosmogenic isotopes as cosmic ray energy-integration detectors: Effective yield functions, effective energy, and its dependence on the local interstellar spectrum. J. Geophys. Res. Space Phys. 2017, 122, 9790–9802. [Google Scholar] [CrossRef]
- Palcsu, L.; Morgenstern, U.; Sültenfuss, J.; Koltai, G.; László, E.; Temovski, M.; Major, Z.; Nagy, J.T.; Papp, L.; Varlam, C.; et al. Modulation of cosmogenic tritium in meteoric precipitation by the 11-year cycle of solar magnetic field activity. Sci. Rep. 2018, 8, 12813. [Google Scholar] [CrossRef] [Green Version]
- Arce-Chamorro, C.; Sanjurjo-Sánchez, J.; Vidal-Romaní, J.R. Chronology of coastal alluvial deposits in the Ria de Coruña (NW Spain) linked to the upper pleistocene sea level regression. Appl. Sci. 2022, 12, 9982. [Google Scholar] [CrossRef]
- Narazaki, Y.; Sakoda, A.; Akata, N.; Itoh, H.; Momoshima, N. Analysis of Factors Contributing to the Increase in 7Be Activity Concentrations in the Atmosphere. Int. J. Environ. Res. Public Health 2022, 19, 10128. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, J.M.; Codilean, A.T.; Willenbring, J.K.; Lu, Z.-T.; Keisling, B.; Fülöp, R.-H.; Val, P. Cosmogenic nuclide techniques. Nat. Rev. Methods Prim. 2022, 2, 18. [Google Scholar] [CrossRef]
- Fourré, E.; Landais, A.; Cauquoin, A.; Jean-Baptiste, P.; Lipenkov, V.; Petit, J.R. Tritium records to trace stratospheric moisture inputs in Antarctica. J. Geophys. Res. Atmos. 2018, 123, 3009–3018. [Google Scholar] [CrossRef]
- Spector, P.; Balco, G. Exposure-age data from across Antarctica reveal mid-Miocene establishment of polar desert climate. Geology 2021, 49, 91–95. [Google Scholar] [CrossRef]
- Horiuchi, K.; Kato, S.; Ohtani, K.; Kurita, N.; Tsutaki, S.; Nakazawa, F.; Motoyama, H.; Kawamura, K.; Tazoe, H.; Akata, N.; et al. Spatial variations of 10Be in surface snow along the inland traverse route of Japanese Antarctic Research Expeditions. Nucl. Instrum. Methods Phys. Res. Sect. B 2022, 533, 61–65. [Google Scholar] [CrossRef]
- Fireman, E.L. Measurement of the (n, H3) cross section in nitrogen and its relationship to the tritium production in the atmosphere. Phys. Rev. 1953, 91, 922–926. [Google Scholar] [CrossRef]
- Nir, A.; Kruger, S.T.; Lingenfelter, R.E.; Flamm, E.J. Natural tritium. Rev. Geophys. 1966, 4, 441–456. [Google Scholar] [CrossRef]
- O’Brien, K. Secular variations in the production of cosmogenic isotopes in the Earth’s atmosphere. J. Geophys. Res. 1979, 84, 423–431. [Google Scholar] [CrossRef]
- Masarik, J.; Beer, J. Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 1999, 104, 12099–12112. [Google Scholar] [CrossRef] [Green Version]
- Webber, W.R.; Higbie, P.R.; McCracken, K.G. Production of the cosmogenic isotopes 3H, 7Be, 10Be, and 36Cl in the Earth's atmosphere by solar and galactic cosmic rays. J. Geophys. Res. 2007, 112, A10106. [Google Scholar] [CrossRef]
- Masarik, J.; Beer, J. An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J. Geophys. Res. 2009, 114, D11103. [Google Scholar] [CrossRef] [Green Version]
- Usoskin, I.G.; Kovaltsov, G.A.; Mironova, I.A. Cosmic ray induced ionization model CRAC: CRII: An extension to the upper atmosphere. J. Geophys. Res. 2010, 115, D10302. [Google Scholar] [CrossRef] [Green Version]
- Poluianov, S.V.; Kovaltsov, G.A.; Mishev, A.L.; Usoskin, I.G. Production of cosmogenic isotopes 7Be, 10Be, 14C, 22Na, and 36Cl in the atmosphere: Altitudinal profiles of yield functions. J. Geophys. Res. Atmos. 2016, 121, 8125–8136. [Google Scholar] [CrossRef] [Green Version]
- Poluianov, S.V.; Kovaltsov, G.A.; Usoskin, I.G. A New Full 3-D Model of Cosmogenic Tritium 3H production in the atmosphere (CRAC:3H). J. Geophys. Res. Atmos. 2020, 125, e2020JD033147. [Google Scholar] [CrossRef]
- Sato, T.; Yasuda, H.; Niita, K.; Endo, A.; Sihver, L. Development of PARMA: PHITS-based Analytical Radiation Model in the Atmosphere. Radiat. Res. 2008, 170, 244–259. [Google Scholar] [CrossRef] [PubMed]
- Sato, T. Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS. PLoS ONE 2015, 10, e0144679. [Google Scholar] [CrossRef] [Green Version]
- Velinov, P.I.Y.; Mateev, L. Analytical approach for cosmic ray proton ionization in the lower ionosphere and middle atmosphere. Comptes Rendus l’Academie Bulg. Sci. 2005, 58, 511–516. [Google Scholar]
- Calisto, M.; Usoskin, I.; Rozanov, E.; Peter, T. Influence of Galactic Cosmic Rays on atmospheric composition and dynamics. Atmos. Chem. Phys. 2011, 11, 4547–4556. [Google Scholar] [CrossRef] [Green Version]
- Semeniuk, K.; Fomichev, V.I.; McConnell, J.C.; Fu, C.; Melo, S.M.L.; Usoskin, I.G. Middle atmosphere response to the solar cycle in irradiance and ionizing particle precipitation. Atmos. Chem. Phys. 2011, 11, 5045–5077. [Google Scholar] [CrossRef] [Green Version]
- Mironova, I.A.; Aplin, K.L.; Arnold, F.; Bazilevskaya, G.A.; Harrison, R.G.; Krivolutsky, A.A.; Nicoll, K.A.; Rozanov, E.V.; Turunen, E.; Usoskin, I.G. Energetic Particle Influence on the Earth’s Atmosphere. Space Sci. Rev. 2015, 194, 1–96. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, E.; Mendoza, B.; Gay, C.; Mendoza, V.M.; Pazos, M.; Garduño, R. Simulation and Evaluation of the Radiation Dose Deposited in Human Tissues by Atmospheric Neutrons. Appl. Sci. 2021, 11, 8338. [Google Scholar] [CrossRef]
- International Commission on Radiological Protection (ICRP). 1990 Recommendations of the International Commission on Radiological Protection; ICRP Publication 60; Ann. ICRP 21, Pergamon Press: London, UK, 1991. [Google Scholar]
- International Commission on Radiological Protection (ICRP). The 2007 Recommendations of the International Commission on Radiological Protection; ICRP Publication 103; Ann. ICRP 37, Elsevier: London, UK, 2007. [Google Scholar]
- International Commission on Radiological Protection. Radiological Protection from Cosmic Radiation in Aviation; ICRP Publication 132; Ann. ICRP 45, SAGE: London, UK, 2016. [Google Scholar]
- Copeland, K. CARI-7A: Development and validation. Radiat. Prot. Dosim. 2017, 175, 419–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, B.J.; Bennett, L.G.I.; Green, A.R.; Butler, A.; Desormeaux, M.; Kitching, F.; McCall, M.J.; Ellaschuk, B.; Pierre, M. Aircrew dosimetry using the predictive code for aircrew radiation exposure (PCAIRE). Radiat. Prot. Dosim. 2005, 116, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Bottollier-Depois, J.F.; Blanchard, P.; Clairand, I.; Dessarps, P.; Fuller, N.; Lantos, P.; Saint-Lô, D.; Trompier, F. An operational approach for aircraft crew dosimetry: The SIEVERT system. Radiat. Prot. Dosim. 2007, 125, 421–424. [Google Scholar] [CrossRef] [PubMed]
- Latocha, M.; Beck, P.; Rollet, S. AVIDOS—A software package for European accredited aviation dosimetry. Radiat. Prot. Dosim. 2009, 136, 286–290. [Google Scholar] [CrossRef]
- Mares, V.; Maczka, T.; Leuthold, G.; Ruhm, W. Air crew dosimetry with a new version of EPCARD. Radiat. Prot. Dosim. 2009, 136, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Sato, T.; Yonehara, H.; Kosako, T.; Fujitaka, K.; Sasaki, Y. Management of cosmic radiation exposure for aircraft crew in Japan. Radiat. Prot. Dosim. 2011, 146, 123–125. [Google Scholar] [CrossRef]
- Makrantoni, P.; Tezari, A.; Stassinakis, A.N.; Paschalis, P.; Gerontidou, M.; Karaiskos, P.; Georgakilas, A.G.; Mavromichalaki, H.; Usoskin, I.G.; Crosby, N.; et al. Estimation of Cosmic-Ray-Induced Atmospheric Ionization and Radiation at Commercial Aviation Flight Altitudes. Appl. Sci. 2022, 12, 5297. [Google Scholar] [CrossRef]
- Mares, V.; Yasuda, H. Aviation route doses calculated with EPCARD.Net and JISCARD EX. Radiat. Meas. 2010, 45, 1553–1556. [Google Scholar] [CrossRef]
- Zhou, D.; O’Sullivan, D.; Xu, B.; Flood, E. Cosmic ray measurements at aircraft altitudes and comparison with predictions of computer codes. Adv. Space Res. 2003, 32, 47–52. [Google Scholar] [CrossRef]
- Chiang, Y.; Tan, C.M.; Chao, T.-C.; Lee, C.-C.; Tung, C.-J. Investigate the Equivalence of Neutrons and Protons in Single Event Effects Testing: A Geant4 Study. Appl. Sci. 2020, 10, 3234. [Google Scholar] [CrossRef]
- Leray, J.L. Effects of atmospheric neutrons on devices, at sea level and in avionics embedded systems. Microelectron. Reliab. 2007, 47, 1827–1835. [Google Scholar] [CrossRef]
- Bütikofer, R. Neutron Monitors–Study of Solar and Galactic Cosmic Rays; Activity Report; International Foundation HFSJG: Bern, Switzerland, 2018; pp. 50–52. [Google Scholar]
- Väisänen, P.; Usoskin, I.; Mursula, K. Seven Decades of Neutron Monitors (1951–2019): Overview and Evaluation of Data Sources. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028941. [Google Scholar] [CrossRef]
- Gillet, N.; Gerick, F.; Angappan, R.; Jault, D. A Dynamical Prospective on Interannual Geomagnetic Field Changes. Surv. Geophys. 2022, 43, 71–105. [Google Scholar] [CrossRef]
- Nicolas, Q.; Buffett, B. Excitation of high-latitude MAC waves in Earth’s core. Geophys. J. Int. 2023, 233, 1961–1973. [Google Scholar] [CrossRef]
- Olsher, R.H.; Hsu, H.-H.; Beverding, A.; Kleck, J.H.; Casson, W.H.; Vasilik, D.G.; Devine, R.T. WENDI: An improved neutron rem meter. Health Phys. 2000, 79, 170–181. [Google Scholar] [CrossRef]
- Olsher, R.H.; McLean, T.D. High-energy response of the PRESCILA and WENDI-II neutron rem meters. Radiat. Prot. Dosim. 2008, 130, 510–513. [Google Scholar] [CrossRef]
- Yasuda, H.; Yajima, K.; Sato, T.; Takada, M.; Nakamura, T. Responses Of Selected Neutron Monitors To Cosmic Radiation At Aviation Altitudes. Health Phys. 2009, 96, 655–660. [Google Scholar] [CrossRef]
- Yasuda, H.; Yajima, K. Characterization of Radiation Instruments at the Summit of Mt. Fuji. Radiat. Meas. 2010, 45, 1600–1604. [Google Scholar] [CrossRef]
- Yasuda, H.; Lee, J.; Yajima, K.; Hwang, J.A.; Sakai, K. Measurement of cosmic-ray neutron dose onboard a polar route flight from New York to Seoul. Radiat. Prot. Dosim. 2011, 146, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Yasuda, H.; Yajima, K.; Yoshida, S. Dosimetry of cosmic radiation in the troposphere based on the measurements at the summit of Mt. Fuji. Proc. Radiochem. 2011, 1, 67–70. [Google Scholar] [CrossRef]
- Yasuda, H.; Yajima, K. Verification of cosmic neutron doses in long-haul flights from Japan. Radiat. Meas. 2018, 119, 6–11. [Google Scholar] [CrossRef]
- Niita, K.; Sato, T.; Iwase, H.; Nose, H.; Nakashima, H.; Sihver, L. PHITS—A particle and heavy ion transport code system. Radiat. Meas. 2006, 41, 1080–1090. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kosako, K.; Kunieda, S.; Chiba, S.; Fujimoto, R.; Harada, H.; Kawai, M.; Maekawa, F.; Murata, T.; Nakashima, H.; et al. Status of JENDL High Energy File. J. Korean Phys. Soc. 2011, 59, 1040–1045. [Google Scholar] [CrossRef]
- Neutron Monitor Database (NMDB). NMDB Event Search Tool (NEST). Available online: https://www.nmdb.eu/nest/ (accessed on 24 February 2023).
- Kowatari, M.; Nagaoka, K.; Satoh, S.; Ohta, Y.; Abukawa, J.; Tachimori, S.; Nakamura, T. Evaluation of the altitude variation of the cosmic-ray induced environmental neutrons in the Mt. Fuji area. J. Nucl. Sci. Technol. 2005, 42, 495–502. [Google Scholar] [CrossRef]
Detector | ϕ2.5 cm 3He Proportional Counter |
---|---|
Moderator | Polyethylene with tungsten powder shell |
Applicable neutron energy | 0.025 eV to 5 GeV |
Applicable temperature range | −30 °C to 50 °C |
Applicable atmospheric pressure | 500 hPa to 1500 hPa |
Dimensions | ϕ23 cm × H32 cm |
Weight | 13.5 kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasuda, H.; Kurita, N.; Yajima, K. Verification of Estimated Cosmic Neutron Intensities Using a Portable Neutron Monitoring System in Antarctica. Appl. Sci. 2023, 13, 3297. https://doi.org/10.3390/app13053297
Yasuda H, Kurita N, Yajima K. Verification of Estimated Cosmic Neutron Intensities Using a Portable Neutron Monitoring System in Antarctica. Applied Sciences. 2023; 13(5):3297. https://doi.org/10.3390/app13053297
Chicago/Turabian StyleYasuda, Hiroshi, Naoyuki Kurita, and Kazuaki Yajima. 2023. "Verification of Estimated Cosmic Neutron Intensities Using a Portable Neutron Monitoring System in Antarctica" Applied Sciences 13, no. 5: 3297. https://doi.org/10.3390/app13053297
APA StyleYasuda, H., Kurita, N., & Yajima, K. (2023). Verification of Estimated Cosmic Neutron Intensities Using a Portable Neutron Monitoring System in Antarctica. Applied Sciences, 13(5), 3297. https://doi.org/10.3390/app13053297