Evaluation of Radioactivity and Heavy Metals Content in a Basalt Aggregate for Concrete from Sicily, Southern Italy: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. HPGE γ-ray Spectrometry Measurements
2.3. Evaluation of the Radiological Health Risk
2.3.1. Alpha Index
2.3.2. Radium Equivalent Activity
2.3.3. Absorbed γ-Dose Rate
2.3.4. Annual Effective Dose Equivalent Outdoor and Indoor
2.4. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Measurements
2.5. Evaluation of the Level of Heavy Metals Contamination
2.5.1. The Enrichment Factor
2.5.2. The Geo-Accumulation Index
2.5.3. The Contamination Factor
2.5.4. The Pollution Load Index
2.6. XRD Analysis
3. Results and Discussion
3.1. The Specific Activity of the Radioisotopes
3.2. Radiological Hazard Effects Assessment
3.3. Heavy Metals Content
3.4. Evaluation of the Heavy Metals Contamination Level
3.4.1. EF
3.4.2. Igeo
- Igeo ≤ 0 denotes no contamination;
- For 0 < Igeo ≤ 1, no/a medium degree of contamination;
- For 1 < Igeo ≤ 2, a medium degree of contamination;
- For 2 < Igeo ≤ 3, a medium/high degree of contamination;
- For 3 < Igeo ≤ 4, a high degree of contamination;
- For 4 < Igeo ≤ 5, a high/very high degree of contamination;
- Igeo > 5, a very high degree of contamination.
3.4.3. CF
3.4.4. PLI
3.5. XRD Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Reino, W.; Pucha, G.; Recalde, C.; Tene, T.; Cadena, P. Occurrence of radioactive materials in pyroclastic flows of Tungurahua volcano using gamma spectrometry. AIP Conf. Proc. 2018, 2003, 020014. [Google Scholar] [CrossRef]
- Kerur, B.; Tanakanti, R.; Basappa, D.; Kumar, A.; Narayani, K.; Rekha, A.; Hanumaiah, B. Radioactivity levels in rocks of North Karnataka, India. Indian J. Pure Appl. Phys. 2010, 48, 809–812. [Google Scholar]
- Malczewski, D.; Dziurowicz, M.; Kalab, Z.; Rösnerová, M. Natural radioactivity of rocks from the historic Jeroným Mine in the Czech Republic. Environ. Earth Sci. 2021, 80, 650. [Google Scholar] [CrossRef]
- Faanu, A.; Adukpo, O.K.; Tettey-Larbi, L.; Lawluvi, H.; Kpeglo, D.O.; Darko, E.O.; Emi-Reynolds, G.; Awudu, R.A.; Kansaana, C.; Amoah, P.A.; et al. Natural radioactivity levels in soils, rocks and water at a mining concession of Perseus gold mine and surrounding towns in Central Region of Ghana. Springerplus 2016, 5, 98. [Google Scholar] [CrossRef] [Green Version]
- Conceição, L.T.; Silva, G.N.; Holsback, H.M.S.; Oliveira, C.d.F.; Marcante, N.C.; Martins, É.d.S.; Santos, F.L.d.S.; Santos, E.F. Potential of basalt dust to improve soil fertility and crop nutrition. J. Agric. Food Res. 2022, 10, 100443. [Google Scholar] [CrossRef]
- Caridi, F.; Torrisi, L.; Mezzasalma, A.M.; Mondio, G.; Borrielli, A. Al2O3 plasma production during pulsed laser deposition. Eur. Phys. Journ. D 2009, 54, 467–472. [Google Scholar] [CrossRef]
- Zagorodnyuk, L.H.; Mestnikov, A.E.; Makhortov, D.S.; Akhmed, A.A.A. Mixed binders with the use of volcanic ash. Lect. Notes Civ. Eng. 2021, 95, 9–15. [Google Scholar] [CrossRef]
- Ahmedai, M.A.; Ahmed, S.A.; Ahmed, Y.H.; Ibrahiem, E.S.M. Tagabo Volcanic Ash as Cement Replacing Materials. FES J. Eng. Sci. 2021, 9, 35–39. [Google Scholar] [CrossRef]
- Chester, D.K.; Duncan, A.M.; Guest, J.E.; Kilburn, C.R.J. Mount Etna. The Anatomy of a Volcano. Geol. Mag. 1986, 123, 463–464. [Google Scholar] [CrossRef]
- Tanguy, J.-C.; Condomines, M.; Kieffer, G. Evolution of the Mount Etna magma: Constraints on the present feeding system and eruptive mechanism. J. Volcanol. Geotherm. Res. 1997, 75, 221–250. [Google Scholar] [CrossRef]
- Gvirtzman, Z.; Nur, A. The formation of Mount Etna as the consequence of slab rollback. Nature 1999, 401, 782–785. [Google Scholar] [CrossRef]
- Kozłowska, B.; Walencik-łata, A.; Giammanco, S.; Immè, G.; Catalano, R.; Mangano, G. Radioactivity of mt. Etna volcano and radionuclides transfer to groundwater. Ann. Geophys. 2019, 62, 1–12. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Messina, M.; Marcianò, G.; Grioli, L.; Belvedere, A.; Marguccio, S.; Belmusto, G. Lichens as environmental risk detectors. Eur. Phys. J. Plus 2017, 132, 189. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G. Radon radioactivity in groundwater from the Calabria region, south of Italy. J. Instrum. 2016, 11, P05012. [Google Scholar] [CrossRef]
- Avwiri, G.O.; Egieya, J.M. Radiometric assay of hazard indices and excess lifetime cancer risk due to natural radioactivity in soil profile in Ogba/Egbema/Ndoni local government area of Rivers state, Nigeria. Acad. Res. Int. 2013, 4, 54–65. [Google Scholar]
- Italian Legislation D.Lgs. 101/20. Available online: https://www.normattiva.it/ (accessed on 20 February 2023).
- Caridi, F.; Messina, M.; D’Agostino, M. An investigation about natural radioactivity, hydrochemistry, and metal pollution in groundwater from Calabrian selected areas, southern Italy. Environ. Earth Sci. 2017, 76, 668. [Google Scholar] [CrossRef]
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect. Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
- Stewart, C.; Horwell, C.; Plumlee, G.; Cronin, S.; Delmelle, P.; Baxter, P.; Calkins, J.; Damby, D.; Morman, S.; Oppenheimer, C. Protocol for Analysis of Volcanic Ash Samples for Assessment of Hazards from Leachable Elements; International Volcanic Health Hazard Network Publisher: Durham, UK, 2013; pp. 1–22. [Google Scholar]
- Agarwal, C.; Chaudhury, S.; Goswami, A.; Gathibandhe, M. True coincidence summing corrections in point and extended sources. J. Radioanal. Nucl. Chem. 2011, 289, 773–780. [Google Scholar] [CrossRef]
- Available online: https://efftran.github.io/ (accessed on 20 February 2023).
- Caridi, F.; Marguccio, S.; Durante, G.; Trozzo, R.; Fullone, F.; Belvedere, A.; D’Agostino, M.; Belmusto, G. Natural radioactivity measurements and dosimetric evaluations in soil samples with a high content of NORM. Eur. Phys. J. Plus 2017, 132, 56. [Google Scholar] [CrossRef]
- Caridi, F.; Messina, M.; Belvedere, A.; D’Agostino, M.; Marguccio, S.; Settineri, L.; Belmusto, G. Food salt characterization in terms of radioactivity and metals contamination. Appl. Sci. 2019, 9, 2882. [Google Scholar] [CrossRef] [Green Version]
- Caridi, F.; Di Bella, M.; Sabatino, G.; Belmusto, G.; Fede, M.R.; Romano, D.; Italiano, F.; Mottese, A.F. Assessment of Natural Radioactivity and Radiological Risks in River Sediments from Calabria (Southern Italy). Appl. Sci. 2021, 11, 1729. [Google Scholar] [CrossRef]
- Caridi, F.; Marguccio, S.; Belvedere, A.; D’Agostino, M.; Belmusto, G. A methodological approach to a radioactive sample analysis with low-level γ-ray spectrometry. J. Instrum. 2018, 13, P09022. [Google Scholar] [CrossRef]
- Torrisi, L.; Caridi, F.; Margarone, D.; Borrielli, A. Plasma-laser characterization by electrostatic mass quadrupole analyzer. Nucl. Instr. Meth. Phys. Res. B. 2008, 266, 308–315. [Google Scholar] [CrossRef]
- ACCREDIA. Available online: https://www.accredia.it/ (accessed on 13 February 2023).
- Caridi, F.; D’Agostino, M.; Belvedere, A. Radioactivity in calabrian (Southern Italy) wild boar meat. Appl. Sci. 2020, 10, 3580. [Google Scholar] [CrossRef]
- Xinwei, L. Radioactivity level in Chinese building ceramic tile. Radiat. Prot. Dosim. 2004, 112, 323–327. [Google Scholar] [CrossRef]
- Caridi, F.; Testagrossa, B.; Acri, G. Elemental composition and natural radioactivity of refractory materials. Environ. Earth Sci. 2021, 80, 170. [Google Scholar] [CrossRef]
- Caridi, F.; Paladini, G.; Venuti, V.; Crupi, V.; Procopio, S.; Belvedere, A.; D’agostino, M.; Faggio, G.; Grillo, R.; Marguccio, S.; et al. Radioactivity, metals pollution and mineralogy assessment of a beach stretch from the ionian coast of calabria (Southern italy). Int. J. Environ. Res. Public Health 2021, 18, 12147. [Google Scholar] [CrossRef]
- United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation: Report to the General Assembly, with Scientific Annexes; United Nations Scientific Committee on the Effects of Atomic Radiation: Vienna, Austria, 2000; Volume I, ISBN 92-1-142238-8. [Google Scholar]
- Caridi, F.; Marguccio, S.; Belvedere, A.; Belmusto, G.; Marcianò, G.; Sabatino, G.; Mottese, A. Natural radioactivity and elemental composition of beach sands in the Calabria region, south of Italy. Environ. Earth Sci. 2016, 75, 629. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Belvedere, A.; Marguccio, S.; Belmusto, G.; Gatto, M.F. Diagnostics techniques and dosimetric evaluations for environmental radioactivity investigations. J. Instrum. 2016, 11, C10012. [Google Scholar] [CrossRef]
- Hassan, N.M.; Rasmussen, P.E.; Dabek-Zlotorzynska, E.; Celo, V.; Chen, H. Analysis of Environmental Samples Using Microwave-Assisted Acid Digestion and Inductively Coupled Plasma Mass Spectrometry: Maximizing Total Element Recoveries. Water. Air. Soil Pollut. 2007, 178, 323–334. [Google Scholar] [CrossRef]
- Thermo Fisher. iCAP Q Operating Manual; Thermo Fisher: Waltham, MS, USA, 2012. [Google Scholar]
- Turekian, K.K.; Haven, N.; Hans, K.; Universitat, W.M. Der Distribution of the Elements in Some Major Units of the Earth’s Crust. America 1961, 72, 175–192. [Google Scholar]
- Håkanson, L. An Ecological Risk Index for Aquatic Pollution Control—A Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K.K.; Prasad, M.V.R.; Kanagasabapathy, K.V. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India–Spectroscopical approach. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 589–600. [Google Scholar] [CrossRef]
- Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl. Radiat. Isot. 2011, 69, 1466–1474. [Google Scholar] [CrossRef]
- Malvern Panalytical. Empyrean Diffractometer User Manual; Malvern Panalytical: Malvern, UK, 2013. [Google Scholar]
- Available online: https://rruff.info (accessed on 20 February 2023).
- Morelli, D.; Immé, G.; Cammisa, S.; Catalano, R.; Mangano, G.; La Delfa, S.; Patanè, G. Radioactivity measurements in volcano-tectonic area for geodynamic process study. Eur. Phys. J. Web Conf. 2012, 24, 05009. [Google Scholar]
- D. Lgs. 152/2006. Available online: https://www.normattiva.it/ (accessed on 20 February 2023).
- Zheng, L.-G.; Liu, G.-J.; Kang, Y.; Yang, R.-K. Some potential hazardous trace elements contamination and their ecological risk in sediments of western Chaohu Lake, China. Environ. Monit. Assess. 2010, 166, 379–386. [Google Scholar] [CrossRef]
- Karimi, B.; Masson, V.; Guilland, C.; Leroy, E.; Pellegrinelli, S.; Giboulot, E.; Maron, P.-A.; Ranjard, L. Ecotoxicity of copper input and accumulation for soil biodiversity in vineyards. Environ. Chem. Lett. 2021, 19, 2013–2030. [Google Scholar] [CrossRef]
- Pietrzak, U.; McPhail, D.C. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma 2004, 122, 151–166. [Google Scholar] [CrossRef]
- Naji, A.; Ismail, A. Assessment of Metals Contamination in Klang River Surface Sediments by using Different Indexes. Environ. Asia 2011, 4, 30–38. [Google Scholar] [CrossRef]
- Gołuchowska, K.; Barker, A.K.; Manecki, M.; Majka, J.; Kośmińska, K.; Ellam, R.M.; Bazarnik, J.; Faehnrich, K.; Czerny, J. The role of crustal contamination in magma evolution of Neoproterozoic metaigneous rocks from Southwest Svalbard. Precambrian Res. 2022, 370, 106521. [Google Scholar] [CrossRef]
- Catalano, S.; Torrisi, S.; Ferlito, C. The relationship between Late Quaternary deformation and volcanism of Mt. Etna (eastern Sicily): New evidence from the sedimentary substratum in the Catania region. J. Volcanol. Geotherm. Res. 2004, 132, 311–334. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Bader, T.; Mo, X.; Scheltens, M.; Chen, Z.; Xu, J.; Yu, X.; Huang, X. Evidence for crustal contamination in intra-continental OIB-like basalts from West Qinling, central China: A Re–Os perspective. J. Asian Earth Sci. 2015, 98, 436–445. [Google Scholar] [CrossRef]
HPGe GEM | |
---|---|
Parameter | Value |
Full Width at Half Maximum | 1.85 keV |
Peak-to-Compton ratio | 64:1 |
Relative Efficiency | 40% (at the 1.33 MeV 60Co γ-line) |
Bias Voltage | 4500 V |
Energy Range | 50 keV–2 MeV |
Aliquot ID | CRa (Bq kg−1 d.w.) | CTh (Bq kg−1 d.w.) | CK (Bq kg−1 d.w.) | CCs (Bq kg−1 d.w.) |
---|---|---|---|---|
1 | 53.6 ± 6.1 | 36.4 ± 4.9 | 498 ± 57 | <0.18 |
2 | 63.6 ± 7.1 | 44.9 ± 5.7 | 510 ± 66 | <0.24 |
3 | 58.6 ± 6.6 | 35.7 ± 5.1 | 491 ± 50 | <0.21 |
4 | 61.9 ± 6.8 | 45.7 ± 5.5 | 505 ± 64 | <0.27 |
5 | 55.3 ± 6.4 | 40.7 ± 5.3 | 486 ± 48 | <0.30 |
Average | 58.6 ± 6.6 | 40.7 ± 5.3 | 498 ± 57 | <0.24 |
ICP-MS Analysis | ||
---|---|---|
Threshold limit | ||
CAs | 0.87 | 20 |
CCd | 0.03 | 2 |
CCu | 70.8 | 120 |
CHg | 0.04 | 1 |
CNi | 9.09 | 120 |
CPb | 8.90 | 100 |
CSb | 0.06 | 10 |
CTl | 0.02 | 1 |
CZn | 50.1 | 150 |
Metal | Index of Contamination | |||
---|---|---|---|---|
EF | Igeo | CF | PLI | |
As | 0.07 | −4.49 | 0.07 | 0.14 |
Cd | 0.10 | −3.91 | 0.10 | |
Cu | 1.58 | 0.07 | 1.57 | |
Hg | 0.10 | −3.91 | 0.10 | |
Ni | 0.13 | −3.49 | 0.13 | |
Pb | 0.45 | −1.75 | 0.45 | |
Sb | 0.04 | −5.23 | 0.04 | |
Tl | 0.01 | −6.71 | 0.01 | |
Zn | 0.53 | −1.51 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caridi, F.; Paladini, G.; Marguccio, S.; Belvedere, A.; D’Agostino, M.; Messina, M.; Crupi, V.; Venuti, V.; Majolino, D. Evaluation of Radioactivity and Heavy Metals Content in a Basalt Aggregate for Concrete from Sicily, Southern Italy: A Case Study. Appl. Sci. 2023, 13, 4804. https://doi.org/10.3390/app13084804
Caridi F, Paladini G, Marguccio S, Belvedere A, D’Agostino M, Messina M, Crupi V, Venuti V, Majolino D. Evaluation of Radioactivity and Heavy Metals Content in a Basalt Aggregate for Concrete from Sicily, Southern Italy: A Case Study. Applied Sciences. 2023; 13(8):4804. https://doi.org/10.3390/app13084804
Chicago/Turabian StyleCaridi, Francesco, Giuseppe Paladini, Santina Marguccio, Alberto Belvedere, Maurizio D’Agostino, Maurizio Messina, Vincenza Crupi, Valentina Venuti, and Domenico Majolino. 2023. "Evaluation of Radioactivity and Heavy Metals Content in a Basalt Aggregate for Concrete from Sicily, Southern Italy: A Case Study" Applied Sciences 13, no. 8: 4804. https://doi.org/10.3390/app13084804
APA StyleCaridi, F., Paladini, G., Marguccio, S., Belvedere, A., D’Agostino, M., Messina, M., Crupi, V., Venuti, V., & Majolino, D. (2023). Evaluation of Radioactivity and Heavy Metals Content in a Basalt Aggregate for Concrete from Sicily, Southern Italy: A Case Study. Applied Sciences, 13(8), 4804. https://doi.org/10.3390/app13084804