Calculation of Dangerous Driving Index for Two-Wheeled Vehicles Using the Analytic Hierarchy Process
Abstract
:1. Introduction
2. Methods for Evaluating Driving Risk
2.1. Evaluation Items
2.2. Weight Derivation for Evaluation Items
- Create a hierarchy of evaluation items;
- Construct a pairwise comparison matrix based on the survey;
- Calculate the weight of the main criteria and sub criteria by comparison matrix for each respondent;
- Perform a consistency check and exclude inconsistent responses;
- Calculate the weight of each item for the entire response result.
2.3. Calculation of Dangerous Driving Index
3. Results and Application of Dangerous Driving Index
3.1. Weight for Evaluation Items
3.2. Dangerous Driving Index
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistics Korea. Available online: https://www.kostat.go.kr (accessed on 1 August 2023).
- Korean National Police Agency. Available online: https://www.police.go.kr (accessed on 1 August 2023).
- Dula, C.S.; Ballard, M.E. Development and evaluation of a measure of dangerous, aggressive, negative emotional, and risky driving. J. Appl. Soc. Psychol. 2003, 33, 263–282. [Google Scholar] [CrossRef]
- Zheng, W.; Nai, W.; Zhang, F.; Qin, W.; Dong, D. A Novel Set of Driving Style Risk Evaluation Index System For UBI-Based Differentiated Commercial Vehicle Insurance in China. In Proceedings of the CICTP 2015, Beijing, China, 24–27 July 2015. [Google Scholar] [CrossRef]
- Rouf, K.B.A.; Abdella, G.M.; Al-Khalifa, K.N.; Alhajyaseen, W. Ridge Penalization-Based Generalized Linear Model (GzLM) For Predicting Risky-Driving Index. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Washington, DC, USA, 27–29 September 2018. [Google Scholar]
- Yoo, J.; Choi, I.; Song, S. A Study on Prevention of Traffic Accidents Through Motorcycle Accident Characteristics Analysis. Transp. Technol. Policy 2020, 17, 29–36. [Google Scholar]
- Cook, L.J.; Kerns, T.; Burch, C.; Thomas, A.; Bell, E. Motorcycle Helmet Use and Head and Facial Injuries: Crash Outcomes in CODES-Linked Data (No. HS-811 208). 2009. Available online: https://trid.trb.org/view/904146 (accessed on 14 November 2023).
- Jung, S.; Xiao, Q.; Yoon, Y. Evaluation of motorcycle safety strategies using the severity of injuries. Accid. Anal. Prev. 2013, 59, 357–364. [Google Scholar] [CrossRef]
- Chung, Y.; Song, T.J. Safety analysis of motorcycle crashes in Seoul metropolitan area, South Korea: An application of nonlinear optimal scaling methods. Int. J. Environ. Res. Public. Health 2018, 15, 2702. [Google Scholar] [CrossRef]
- Vajari, M.A.; Aghabayk, K.; Sadeghian, M.; Shiwakoti, N. A multinomial logit model of motorcycle crash severity at Australian intersections. J. Saf. Res. 2020, 73, 17–24. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, G.; Jiang, Q.; Guo, Y. Mode Evaluation and Structure Design of Connection between Pole and Base of Roadside Breakaway Sign in China. Math. Probl. Eng. 2016, 2016, 9620493. [Google Scholar] [CrossRef]
- Nalmpantis, D.; Roukouni, A.; Genitsaris, E.; Stamelou, A.; Naniopoulos, A. Evaluation of Innovative Ideas for Public Transport Proposed by Citizens Using Multi-Criteria Decision Analysis (MCDA). Eur. Transp. Res. Rev. 2019, 11, 22. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Ameyaw, E.E.; Owusu, E.K.; Pärn, E.; Edwards, D.J. Review of Application of Analytic Hierarchy Process (AHP) in Construction. Int. J. Constr. Manag. 2019, 19, 436–452. [Google Scholar] [CrossRef]
- Van Hoang, T.; Chou, T.Y.; Fang, Y.M.; Nguyen, N.T.; Nguyen, Q.H.; Canh, P.X.; Toan, D.N.B.; Nguyen, X.L.; Meadows, M.E. Mapping forest fire risk and development of early warning system for NW vietnam using AHP and MCA/GIS methods. Appl. Sci. 2020, 10, 4348. [Google Scholar] [CrossRef]
- Traffic Accident Analysis System. Available online: https://taas.koroad.or.kr (accessed on 1 May 2023).
- Korea Transportation Safety Authority. Available online: https://www.kotsa.or.kr/main.do (accessed on 1 May 2023).
- Gokul, R.; Nirmal, A.; Bharath, K.M.; Pranesh, M.P.; Karthika, R. A Comparative Study Between State-Of-The-Art Object Detectors for Traffic Light Detection. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020. [Google Scholar] [CrossRef]
- Anand, S.R.; Kilari, N.; Kumar, D.U.S.R. Traffic Signal Violation Detection using Artificial Intelligence and Deep Learning. Int. J. Adv. Res. Eng. Technol. 2021, 12, 207–217. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Q.; Liang, X.; Wang, Y.; Zhou, C.; Mikulovich, V.I. Traffic lights detection and recognition method based on the improved YOLOv4 algorithm. Sensors 2022, 22, 200. [Google Scholar] [CrossRef]
- Jalayer, M.; Zhou, H.; Zhang, B. Evaluation of navigation performances of GPS devices near interchange area pertaining to wrong-way driving. J. Traffic Transp. Eng. (Engl. Ed.) 2016, 3, 593–601. [Google Scholar] [CrossRef]
- Gagneja, K.; Singh, K.J. Wrong Lane Driving Detection Using Satellite Navigation. In Proceedings of the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020. [Google Scholar] [CrossRef]
- Narote, S.P.; Bhujbal, P.N.; Narote, A.S.; Dhane, D.M. A review of recent advances in lane detection and departure warning system. Pattern Recognit. 2018, 73, 216–234. [Google Scholar] [CrossRef]
- Neven, D.; De Brabandere, B.; Georgoulis, S.; Proesmans, M.; Van Gool, L. Towards End-To-End Lane Detection: An Instance Segmentation Approach. In Proceedings of the 2018 IEEE intelligent vehicles symposium (IV), Changshu, China, 26–30 June 2018. [Google Scholar] [CrossRef]
- Tang, J.; Li, S.; Liu, P. A review of lane detection methods based on deep learning. Pattern Recognit. 2021, 111, 107623. [Google Scholar] [CrossRef]
- Mohamad, I.; Ali, M.A.M.; Ismail, M. Abnormal Driving Detection Using Real Time Global Positioning System Data. In Proceedings of the 2011 IEEE international conference on space science and communication (IconSpace), Penang, Malaysia, 12–13 July 2011. [Google Scholar] [CrossRef]
- Amin, M.S.; Jalil, J.; Reaz, M.B.I. Accident Detection And Reporting System Using GPS, GPRS And GSM Technology. In Proceedings of the 2012 International Conference on Informatics, Electronics & Vision (ICIEV), Dhaka, Bangladesh, 18–19 May 2012. [Google Scholar] [CrossRef]
- Kodali, R.K.; Sairam, M. Over Speed Monitoring System. In Proceedings of the 2016 2nd international conference on contemporary computing and informatics (ic3i), Greater Noida, India, 14–17 December 2016. [Google Scholar] [CrossRef]
- Dahiya, K.; Singh, D.; Mohan, C.K. Automatic Detection Of Bike-Riders Without Helmet Using Surveillance Videos In Real-Time. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016. [Google Scholar] [CrossRef]
- Long, X.; Cui, W.; Zheng, Z. Safety Helmet Wearing Detection Based On Deep Learning. In Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019. [Google Scholar] [CrossRef]
- Huang, L.; Fu, Q.; He, M.; Jiang, D.; Hao, Z. Detection algorithm of safety helmet wearing based on deep learning. Concurr. Comput. 2021, 33, e6234. [Google Scholar] [CrossRef]
- Charran, R.S.; Dubey, R.K. Two-Wheeler Vehicle Traffic Violations Detection and Automated Ticketing for Indian Road Scenario. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22002–22007. [Google Scholar] [CrossRef]
- Tahboub, K.; Güera, D.; Reibman, A.R.; Delp, E.J. Quality-Adaptive Deep Learning For Pedestrian Detection. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017. [Google Scholar] [CrossRef]
- Uçar, A.; Demir, Y.; Güzeliş, C. Object recognition and detection with deep learning for autonomous driving applications. Simulation 2017, 93, 759–769. [Google Scholar] [CrossRef]
- Brunetti, A.; Buongiorno, D.; Trotta, G.F.; Bevilacqua, V. Computer vision and deep learning techniques for pedestrian detection and tracking: A survey. Neurocomputing 2018, 300, 17–33. [Google Scholar] [CrossRef]
- Chen, Z.; Khemmar, R.; Decoux, B.; Atahouet, A.; Ertaud, J.Y. Real Time Object Detection, Tracking, And Distance And Motion Estimation Based On Deep Learning: Application To Smart Mobility. In Proceedings of the 2019 Eighth International Conference on Emerging Security Technologies (EST), Colchester, UK, 22–24 July 2019. [Google Scholar] [CrossRef]
- Rahmaniar, W.; Hernawan, A. Real-time human detection using deep learning on embedded platforms: A review. J. Robot. Control 2021, 2, 462–468. [Google Scholar] [CrossRef]
- Kang, B.; Scully, J.Y.; Stewart, O.; Hurvitz, P.M.; Moudon, A.V. Split-Match-Aggregate (SMA) algorithm: Integrating sidewalk data with transportation network data in GIS. Int. J. Geogr. Inf. Sci. 2015, 29, 440–453. [Google Scholar] [CrossRef]
- Saha, M.; Saugstad, M.; Maddali, H.T.; Zeng, A.; Holland, R.; Bower, S.; Dash, A.; Chen, S.; Li, A.; Hara, K.; et al. Project Sidewalk: A Web-Based Crowdsourcing Tool For Collecting Sidewalk Accessibility Data At Scale. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019. [Google Scholar] [CrossRef]
- Vaiana, R.; Iuele, T.; Astarita, V.; Caruso, M.V.; Tassitani, A.; Zaffino, C.; Giofrè, V.P. Driving behavior and traffic safety: An acceleration-based safety evaluation procedure for smartphones. Mod. Appl. Sci. 2014, 8, 88–96. [Google Scholar] [CrossRef]
- Wang, X.; Wang, X.; Cai, B.; Liu, J. Combined alignment effects on deceleration and acceleration: A driving simulator study. Transp. Res. Part C Emerg. Technol. 2019, 104, 172–183. [Google Scholar] [CrossRef]
- Yuan, J.; Abdel-Aty, M.; Cai, Q.; Lee, J. Investigating drivers’ mandatory lane change behavior on the weaving section of freeway with managed lanes: A driving simulator study. Transp. Res. Part F Traffic Psychol. Behav. 2019, 62, 11–32. [Google Scholar] [CrossRef]
- Gutiérrez-Moreno, R.; Barea, R.; López-Guillén, E.; Araluce, J.; Bergasa, L.M. Reinforcement Learning-Based Autonomous Driving at Intersections in CARLA Simulator. Sensors 2022, 22, 8373. [Google Scholar] [CrossRef]
- Malik, S.; Khan, M.A.; El-Sayed, H. CARLA: Car learning to act—An inside out. Procedia Comput. Sci. 2022, 198, 742–749. [Google Scholar] [CrossRef]
- Saaty, R.W. The analytic hierarchy process—What it is and how it is used. Math. Model. 1987, 9, 161–176. [Google Scholar] [CrossRef]
- Choi, M.C. Evaluation of Analytic Hierarchy Process Method and Development of a Weight Modified Model. Manag. Inf. Syst. Rev. 2020, 39, 145–162. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Ros, G.; Codevilla, F.; López, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st Annual Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017. [Google Scholar]
Evaluation Item | Measurement Method | References |
---|---|---|
Signal violation | Deep learning | [17,18,19] |
Reverse lane driving | GPS, GIS | [20,21] |
Central line violation | Deep learning | [22,23,24] |
Speed violation | GPS, GIS | [25,26,27] |
Helmet violation | Deep learning | [28,29,30,31] |
Pedestrian close driving | Deep learning | [32,33,34,35,36] |
Sidewalk driving | GPS, GIS | [37,38] |
Rapid acceleration | Simulation videos, motion sensors | [39,40,41,42,43] |
Rapid deceleration | Simulation videos, motion sensors | |
Rapid turn | Simulation videos, motion sensors | |
Rapid lane change | Simulation videos, motion sensors |
Evaluation Item | Level | Average Risk Score | Weight | Evaluation Item | Level | Average Risk Score | Weight |
---|---|---|---|---|---|---|---|
Rapid Acceleration | 1 | 0.87 | 0.098 | Rapid Deceleration | 1 | 0.79 | 0.098 |
2 | 1.07 | 0.101 | 2 | 0.98 | 0.101 | ||
3 | 2.05 | 0.116 | 3 | 1.44 | 0.107 | ||
4 | 3.12 | 0.132 | 4 | 2.74 | 0.126 | ||
5 | 4.18 | 0.147 | 5 | 4.17 | 0.147 | ||
Rapid Turn | 1 | 1.04 | 0.044 | Rapid Lane Change | 1 | 1.17 | 0.040 |
2 | 1.57 | 0.048 | 2 | 1.62 | 0.043 | ||
3 | 2.72 | 0.057 | 3 | 2.68 | 0.051 | ||
4 | 3.74 | 0.065 | 4 | 3.83 | 0.060 |
Driver No. | Travel Distance (km) | Travel Time (h) | Average Speed (km/h) | Final Dangerous Driving Index |
---|---|---|---|---|
1 | 744.371 | 37.109 | 19.809 | 16.921 |
2 | 377.354 | 20.134 | 19.148 | 13.845 |
3 | 1058.966 | 48.713 | 22.031 | 13.639 |
4 | 488.593 | 25.897 | 19.268 | 19.435 |
5 | 453.244 | 30.227 | 16.332 | 22.086 |
6 | 1818.832 | 88.230 | 21.757 | 14.158 |
7 | 1221.171 | 68.477 | 17.194 | 17.738 |
8 | 901.395 | 52.112 | 16.678 | 11.654 |
9 | 527.955 | 31.477 | 16.415 | 22.110 |
10 | 610.077 | 32.538 | 17.721 | 17.816 |
11 | 1082.630 | 62.249 | 16.987 | 20.511 |
12 | 529.615 | 28.570 | 17.668 | 19.611 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Kim, D.; Jun, C. Calculation of Dangerous Driving Index for Two-Wheeled Vehicles Using the Analytic Hierarchy Process. Appl. Sci. 2023, 13, 12377. https://doi.org/10.3390/app132212377
Lee S, Kim D, Jun C. Calculation of Dangerous Driving Index for Two-Wheeled Vehicles Using the Analytic Hierarchy Process. Applied Sciences. 2023; 13(22):12377. https://doi.org/10.3390/app132212377
Chicago/Turabian StyleLee, Suyun, Dongbeom Kim, and Chulmin Jun. 2023. "Calculation of Dangerous Driving Index for Two-Wheeled Vehicles Using the Analytic Hierarchy Process" Applied Sciences 13, no. 22: 12377. https://doi.org/10.3390/app132212377