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Abstract: Given the high incidence of traffic accidents and fatalities on two-wheeled vehicles, there is
a growing need for safety management. However, studies on evaluating two-wheeled vehicle driving
in a quantitative and comprehensive form are insufficient. In this study, 11 items were defined for
the first step to evaluate two-wheeled vehicle driving: signal violation, central line violation, helmet
violation, pedestrian close driving, sidewalk driving, reverse lane driving, speed violation, rapid
acceleration, rapid deceleration, rapid turn, and rapid lane change. The items were classified into
three categories (traffic violation, pedestrian threat, and reckless driving), and their weights were
derived using the AHP technique. For rapid acceleration, rapid deceleration, rapid turn, and rapid
lane change, a high-performance driving simulator was used to establish risk criteria and calculate
the weight based on the degree of risk. The calculated weight of each item indicates its importance in
evaluating two-wheeled vehicle driving, with helmet violation (0.158), speed violation (0.124), and
pedestrian close driving (0.122) having the highest weights. Finally, the dangerous driving index
for two-wheeled vehicles was calculated by the weights of each evaluation item and applied to the
driving trajectory data.

Keywords: two-wheeled vehicle; AHP; dangerous driving index for two-wheeled vehicles

1. Introduction

As the COVID-19 pandemic prompted a transition to a non-face-to-face consumption
structure, life logistics services have increased dramatically. According to an online shop-
ping trends survey by Statistics Korea, the domestic food delivery service market grew by
about 488% (from 2018 to 2021) during the COVID-19 pandemic, and the market size in
2022 was about KRW 26 trillion, which is still high today [1]. Along with this, the frequency
of use of two-wheeled vehicles has increased, and the proportion of delivery-related traffic
accidents has grown. Based on the statistics of traffic accidents by vehicle type from the
National Police Agency of Korea, the number of accidents involving two-wheeled vehicles
averages 9.0% of the total number of accidents, while the number of fatalities accounts
for an average of 14.7%, indicating the need for active measures to address two-wheeled
vehicle safety issues [2].

Various studies have been carried out on developing indices or systems for evaluating
four-wheeled vehicle driving. Dula and Ballard (2003) developed an index to measure
a driver’s likelihood of risky driving, incorporating factors such as driving aggression,
riskiness, and negative emotions for passenger and freight vehicles [3]. In terms of vehicle
insurance, Zheng et al. (2015) proposed a risk assessment index system based on driving
style, considering energy, speed, and rotation [4]. Rouf et al. (2018) initially estimated the
risky driving index (RDI) by assigning weights based on the frequency of each driving
behavior at the time of a traffic crash for nine driving behaviors such as not wearing a car
seat belt, exceeding the speed limit, and driving in the emergency lane, and then developed
a regression-based model to predict it [5].
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Since two-wheeled vehicles lack external protection for the driver and are more
difficult to balance than four-wheeled vehicles [6], additional characteristics should be
considered, such as rapid turns, rapid lane changes, sidewalk driving, and helmet violation.
However, the development of quantitative indicators that comprehensively consider these
different two-wheeled vehicle driving behaviors is limited.

In terms of the dangers of driving a two-wheeled vehicle, there have been a number
of studies that have focused on the statistical analysis of the relationship between crash
severity and influencing factors. Cook et al. (2009) analyzed the association between helmet
use and two-wheeled vehicle crash severity using multivariate logistic regression [7]. Jung
et al. (2013) used a multinomial logit model to analyze injury severity as a function of
helmet use, alcohol/drug effects, and crash type [8]. Chung and Song (2018) developed a
nonlinear correlation analysis method to identify important factors affecting the severity
of two-wheeled vehicle crashes, considering driver characteristics, road characteristics,
and the characteristics of the other vehicle [9]. Vajari et al. (2020) evaluated factors (driver
characteristics, environmental characteristics, intersection characteristics, and crash charac-
teristics) on the severity of two-wheeled vehicle crashes at intersections using a multinomial
logit model [10]. These studies have focused on the statistical analysis of the items related
to two-wheeled vehicle driving. This study focuses on evaluating the driving behavior of
individual two-wheeled vehicle drivers, with the main objective being the development of
an indicator for this purpose.

In order to comprehensively and quantitatively derive safe driving evaluation indica-
tors for two-wheeled vehicles, it is necessary to calculate the weight of the risk of driving
a two-wheeled vehicle for various evaluation items. Each evaluation item has a specific
measurement method, such as high-precision GPS and GIS linkage, deep learning, and
simulated image. Also, each item cannot be evaluated with the same risk criteria. Therefore,
it is reasonable to assign different weights to each item.

This study aims to develop an index to evaluate dangerous driving that quantitatively
considers various characteristics of two-wheeled vehicles. Therefore, in this study, the
dangerous driving index for two-wheeled vehicles was calculated by considering the
weight of each item for 11 evaluation items, such as signal violation, reverse lane driving,
helmet violation, and rapid turn. To calculate different weights for each item, the analytic
hierarchy process (AHP) was used, which is effective for calculating the importance of
multiple evaluation criteria and items, and has been utilized by various studies across
different fields [11–14]. In addition, realistic simulation videos were used to derive the risk
criteria for certain evaluation items such as rapid acceleration, rapid deceleration, rapid
turn, and rapid lane change. The weights of each evaluation item were then applied to the
actual driving data of two-wheeled vehicles to calculate the dangerous driving index for
two-wheeled vehicles.

Through the analysis using AHP and simulation videos, the weight for each of the
items was assigned. Among the 11 items, helmet violation (0.158), speed violation (0.124),
and pedestrian close driving (0.122) ranked highest. Based on the derived weights, a
two-wheeled vehicle dangerous driving index was developed, and the index was tested
with trajectory data. The developed index can evaluate the degree of safety for driving
two-wheeled vehicles and is expected to be utilized for addressing relevant safety issues.

2. Methods for Evaluating Driving Risk
2.1. Evaluation Items

A total of 11 evaluation items were defined through a comprehensive review of items
that contribute to two-wheeled vehicle accidents and items that drivers violate, by analyzing
the following data: the types of two-wheeled vehicle accidents and law violations through
the Traffic Accident Analysis System (TAAS) [15], the survey on two-wheeled vehicle traffic
law violations by the Korea Transportation Safety Authority [16], and two-wheeled vehicle
violation status data by the Korean National Police Agency [2]. The 11 finalized evaluation
items are the following: signal violation (not following a traffic signal), central line violation
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(crossing the central line on a roadway), helmet violation (not wearing a helmet), pedestrian
close driving, sidewalk driving, reverse lane driving (driving in the opposite direction of a
lane), speed violation (exceeding the speed limit of a roadway), rapid acceleration, rapid
deceleration, rapid turn, and rapid lane change.

Table 1 shows the methodologies to measure and detect violations for each item.
Evaluation items such as signal violation, central line violation, helmet violation, and
pedestrian close driving are determined through object detection by deep learning models
using real-time video and sensor data. For items such as reverse lane driving, speed
violation, and sidewalk driving, precise GIS road and sidewalk data with directions and
speed limits and GPS-based location data are used to detect violations. In the case of
items such as rapid acceleration, rapid deceleration, rapid turn, and rapid lane change,
multiple videos with different speeds, accelerations, and angular velocities are created
for each item using a realistic driving simulator, and risk criteria are derived through a
questionnaire. The data collected through motion sensors are then compared to the risk
criteria to determine the degree of violation. Since this paper focuses on calculating the
weight of items in evaluating driving, rather than detecting items, it is assumed that the
detection of items is accurate.

Table 1. Two-wheeled vehicle dangerous driving index evaluation items and measurement methods.

Evaluation Item Measurement Method References

Signal violation Deep learning [17–19]
Reverse lane driving GPS, GIS [20,21]
Central line violation Deep learning [22–24]

Speed violation GPS, GIS [25–27]
Helmet violation Deep learning [28–31]

Pedestrian close driving Deep learning [32–36]
Sidewalk driving GPS, GIS [37,38]

Rapid acceleration Simulation videos, motion sensors

[39–43]
Rapid deceleration Simulation videos, motion sensors

Rapid turn Simulation videos, motion sensors
Rapid lane change Simulation videos, motion sensors

2.2. Weight Derivation for Evaluation Items

In this study, the AHP technique is employed to determine the weights for the evalu-
ation items of the two-wheeled vehicle dangerous driving index. The AHP technique is
one of the multicriteria decision making (MCDM) methodologies to determine the best
alternative or rank of alternatives when there are multiple evaluation criteria and multiple
alternatives. It was developed by Saaty (1988) and can be used to organize a complex
situation into a hierarchy and then derive the importance of each factor [44].

Weight derivation using the AHP proceeds in the following five steps:

1. Create a hierarchy of evaluation items;
2. Construct a pairwise comparison matrix based on the survey;
3. Calculate the weight of the main criteria and sub criteria by comparison matrix for

each respondent;
4. Perform a consistency check and exclude inconsistent responses;
5. Calculate the weight of each item for the entire response result.

As a first step, the decision-making hierarchy is created as shown in Figure 1 by
classifying 11 evaluation items into three categories: traffic violation, pedestrian threat, and
reckless driving. The 0th layer is two-wheeled vehicle driving evaluation, the 1st layer is
category (main criteria), and the 2nd layer is evaluation item (sub criteria).
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Figure 1. Hierarchy framework for two-wheeled vehicle driving evaluation.

In the subsequent step, (traffic violation–pedestrian threat), (traffic violation–reckless
driving), and (pedestrian threat–reckless driving) pairs are formed and surveys are con-
ducted by category. An example of a category pairwise comparison survey is shown in
Figure 2. The numbers from 1 to 9 represent a relative importance scale. A rating of 1
means that the two items are equally important, with larger numbers indicating that one
item is more important than the other, and a rating of 9 means that one item is extremely
important compared to the other. For example, the response to the first question in Figure 2
means that pedestrian threats are about three times more important than traffic violations.
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Based on the results of the category pairwise comparison questionnaire, a compar-
ison matrix is constructed. For categories c1, c2, · · · , cn, the relative importance scales
a1, a2, · · · , an, represented by the comparison matrix A, are shown in Equation (1).

A =

c1 c2 · · · cn
c1

c2
...
cn


1 a1/a2

a2/a1 1
· · · a1/an
· · · a2/an

...
...

an/a1 an/a2

. . .
...

· · · 1

 (1)

The weight of each category is calculated through the pairwise comparison matrix.
Each element of matrix A is normalized by dividing it by the sum of the columns it belongs
to, as shown in Equation (2). By averaging the rows of the normalized matrix Â, the
weight matrix W for a category is derived as Equation (3). Pairwise comparisons are
performed in the same way for the evaluation items that comprise each category, resulting
in a weight matrix.

Â =


A11

∑n
i=1 Ai1

A12
∑n

i=1 Ai2
A21

∑n
i=1 Ai1

A22
∑n

i=1 Ai2

· · · A1n
∑n

i=1 Ain

· · · A2n
∑n

i=1 Ain
...

...
An1

∑n
i=1 Ai1

An2
∑n

i=1 Ai2

. . .
...

· · · Ann
∑n

i=1 Ain

 (2)
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W =
[

∑n
i=1 Â1i

n
∑n

i=1 Â2i
n · · · ∑n

i=1 Âni
n

]T
(3)

Through consistency ratio, the logical consistency of each respondent’s response result
is verified. First, the matrix AW is derived by multiplying the comparison matrix A by
the weight matrix W. Then, the vector λ is obtained by dividing the elements of AW by
the corresponding elements of W. λmax is calculated by averaging λ. The consistency
index (CI) is derived by Equation (4). The consistency ratio (CR) is the ratio of CI and the
corresponding random index (RI), which is equal to Equation (5). When CR > 0.1, it is
judged as a consistent response. In this study, the consistency ratio is calculated through a
web-based survey form, allowing respondents to review the response values if they are
greater than 0.1 and revise their response instantly.

CI =
λmax − n

n − 1
(4)

CR =
CI
RI

(5)

After the above process is repeated for each criterion of each respondent, a comparison
matrix is aggregated using the geometric mean for all respondents. Then, the consistency
of the aggregated matrix is checked, and the local weight matrix of the evaluation items
is multiplied by the category weight to calculate the global weight for each evaluation
item. In this process, the number of evaluation items for each category is not the same:
traffic violation—5 items, pedestrian threat—2 items, and reckless driving—4 items. If the
number of each sub criterion belonging to each main criterion is different, a serious error
occurs in the AHP analysis, so a process for adjusting this is necessary [45]. Therefore,
as in Equation (6), the revised weight RWij of evaluation item j belonging to category i
is calculated.

RWij =
Wi × Wij × ni

∑n
i=1 ∑m

j=1
(
Wi × Wij × ni

) (6)

where Wi denotes the weight of category i, Wij denotes the weight of evaluation item
j belonging to category i, and ni denotes the number of evaluation items belonging to
category i.

In the case of evaluation items belonging to the reckless driving category, which are
rapid acceleration, rapid deceleration, rapid turn, and rapid lane change, the risk criteria are
not defined, and evaluation according to the degree is necessary. In addition, it is difficult
to establish such risk criteria by verbal expression. However, it is impractical to obtain
driving data by requiring such reckless behavior during real-world driving. Therefore,
using Carla (version 0.9.13), which is a high-performance driving simulator [46], videos
were implemented with different degrees of speeds, accelerations, and angular velocities.
Then, risk scores from 1 to 5 were collected through survey responses for each video. Based
on the response results for each video type, the risk criteria for each item were statistically
calculated. These risk criteria are used to determine the weight for each type.

2.3. Calculation of Dangerous Driving Index

Based on the weight of each evaluation item, the dangerous driving index of two-
wheeled vehicle driving is finally calculated. The dangerous driving index (DDI) is cal-
culated according to the number of violations and the corresponding weight of each
evaluation item, as shown in Equation (7). It indicates the degree of dangerous driving
when driving a two-wheeled vehicle, with a value of 0 indicating maximum safe driving.
This is applied to two-wheeled vehicle trajectory data, resulting in the dangerous driving
index for each driver.

DDI = ∑
(
Wj × nj

)
(7)

where Wj denotes the weight of evaluation item j and nj denotes the number of violations.
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3. Results and Application of Dangerous Driving Index
3.1. Weight for Evaluation Items

In order to employ simulation videos and instantly assess the consistency of the
response results, a web-based survey form specifically designed for this study, as shown
in Figure 3, is used, as existing survey forms were inadequate for the survey required in
this study. When the consistency ratio calculated for the response results of each question
is below 0.1, indicating that the response is considered to be inconsistent, a consistency
warning notification is displayed, as shown in Figure 3b, so that the respondents could
modify their choices.
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survey answers; and (b) example of consistency alert.

A survey was conducted using these web-based forms, targeting 100 participants,
with a balanced ratio of approximately 1:1:1 among road traffic professionals, two-wheeled
vehicle drivers, and common citizens (non-drivers). Figure 4 shows the weights of two-
wheeled vehicle driving evaluation items, as derived from the survey results. The weights
of the categories (main criteria) are as follows: traffic violation (0.380), pedestrian threat
(0.365), and reckless driving (0.255). This signifies that pedestrian threat is more important
than reckless driving, and traffic violation is more important than pedestrian threat. The
weights of the evaluation items (sub criteria) were highest for helmet violation (0.158),
speed violation (0.124), and pedestrian close driving (0.122), indicating that these should
be regarded as important attributes for evaluating two-wheeled vehicle driving.
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Figure 4. Weights of two-wheeled vehicle driving evaluation items.

The risk criteria for the reckless driving category were derived based on the average
risk score for each video type. A higher level of the simulation video type corresponds
to a greater risk. For rapid acceleration and rapid deceleration, five levels of types were
considered, and the respondents were instructed to enter a risk score ranging from 0 to 5.
For rapid turn and rapid lane change, there were four levels of risk, and the respondents
were required to assign a risk score between 0 and 4. The average of the risk scores was
then utilized to calculate the weight of each level. Table 2 shows the average risk score and
weight for each level within the reckless driving category.

Table 2. Average risk scores and weights for the reckless driving category.

Evaluation
Item Level Average

Risk Score Weight Evaluation
Item Level Average

Risk Score Weight

Rapid
Acceleration

1 0.87 0.098

Rapid
Deceleration

1 0.79 0.098
2 1.07 0.101 2 0.98 0.101
3 2.05 0.116 3 1.44 0.107
4 3.12 0.132 4 2.74 0.126
5 4.18 0.147 5 4.17 0.147

Rapid Turn

1 1.04 0.044
Rapid Lane

Change

1 1.17 0.040
2 1.57 0.048 2 1.62 0.043
3 2.72 0.057 3 2.68 0.051
4 3.74 0.065 4 3.83 0.060

3.2. Dangerous Driving Index

The dangerous driving index for two-wheeled vehicles is calculated by applying the
derived weights to Equation (7). To test the calculation process of the index, trajectory data
from two-wheeled vehicles were used, in Suwon and Seongnam, Gyeonggi-do, involving
12 drivers. Figure 5a shows the trajectory of each driver in Suwon, and Figure 5b shows the
trajectory in Seongnam. However, certain items were not able to be regarded as the drivers
did not violate all items. Therefore, the dangerous driving index tested in this study was
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calculated based on six items: signal violation, speed violation, pedestrian close driving,
rapid acceleration, rapid deceleration, and rapid turn.
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Figure 5. Two-wheeled vehicle trajectories by region: (a) Suwon, and (b) Seongnam.

Figure 6 displays the distribution of the calculated index for each 10 km trip, using
selected drivers as an example. Table 3 shows the finalized dangerous driving index for
each driver, updated by averaging the indexes for each 10 km trip. It can be concluded that
among the 12 drivers, driver no. 8 was the safest with a dangerous driving index of 11.654,
whereas driver no. 9 was the most dangerous with a dangerous driving index of 22.110.
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Table 3. Final dangerous driving index by two-wheeled vehicle driver.

Driver No. Travel Distance
(km)

Travel Time
(h)

Average Speed
(km/h)

Final Dangerous
Driving Index

1 744.371 37.109 19.809 16.921
2 377.354 20.134 19.148 13.845
3 1058.966 48.713 22.031 13.639
4 488.593 25.897 19.268 19.435
5 453.244 30.227 16.332 22.086
6 1818.832 88.230 21.757 14.158
7 1221.171 68.477 17.194 17.738
8 901.395 52.112 16.678 11.654
9 527.955 31.477 16.415 22.110
10 610.077 32.538 17.721 17.816
11 1082.630 62.249 16.987 20.511
12 529.615 28.570 17.668 19.611

4. Discussion

While there has been limited research on driving evaluation for two-wheeled vehicles,
this study employs the AHP technique to comprehensively assess various driving behaviors
of two-wheeled vehicles and derive a quantitative driving evaluation index. The AHP
analysis of the survey responses indicated that in terms of categories, traffic violations,
pedestrian threats, and reckless driving were ranked in order of importance. Among the
11 evaluation items, helmet violation, speed violation, and pedestrian close driving were
ranked highly. The dangerous driving index was calculated considering the individual
weights and the number of violations for each evaluation item. Additionally, for the reckless
driving category, the risk level was also considered.

Although the respective weights for the evaluation items were calculated, during the
index calculation process, there was a limitation that it was unable to collect trajectory data
of the two-wheeled vehicles for all items detected. Also, in this study, the developed index
was tested using the trajectory data of 12 drivers, but it is considered that a larger amount
of trajectory data from multiple years will be required for more accurate testing.

Future studies could improve on these limitations, such as collecting accumulated
trajectory data over several years or using a two-wheeled vehicle driving simulator to
generate data that diversifies the degree of risk in driving and violates all 11 items. It is ex-
pected that the dangerous driving index can be further developed by adjusting the weights
of each item and improving the index calculation method through further experiments.
Also, methods to assess the developed index could be studied to increase the credibility
and acceptability of the index.

Moreover, it will also be possible to develop an integrated system for evaluating and
managing two-wheeled vehicle driving using these indicators. It can be also expected
that this system could be utilized for usage-based insurance (UBI) or government safety
management policies, and finally, contribute to the prevention of traffic accidents.
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