Influences of Sex on Muscle Architecture and Performance in Elite Field Hockey Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Body Composition and Muscle Architecture Assessments
2.4. Change of Direction Speed and Sprint Testing
2.5. Strength and Power Testing
2.6. Statistical Analyses
3. Results
3.1. Body Composition and Muscle Architecture
3.2. Change of Direction Speed and Sprint Testing
3.3. Strength and Power Testing
3.4. Correlations between Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jennings, D.H.; Stuart, J.C.; Aaron, J.C.; Robert, J.A. International field hockey players perform more high-speed running than national-level counterparts. J. Strength Cond. Res. 2012, 26, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Septianingrum, K.; Sugiyanto, S.; Kristiyanto, A. Physical Condition as a Contribution of Shooting Accuracy with Flick Drag Technique. ACTIVE J. Phys. Ed. Sport Health Recreat. 2018, 7, 58–62. [Google Scholar]
- Bartolomei, S.; Grillone, G.; Di Michele, R.; Cortesi, M. A comparison between male and female athletes in relative strength and power performances. J. Funct. Morph. Kinesiol. 2021, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Garhammer, J. A comparison of maximal power outputs between elite male and female weightlifters in competition. J. Appl. Biomech. 1991, 7, 3–11. [Google Scholar] [CrossRef]
- Kanehisa, H.; Ikegawa, S.; Fukunaga, T. Comparison of muscle cross-sectional area and strength between untrained women and men. Eur. J. Appl. Physiol. Occup. Physiol. 1994, 68, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Mayhew, J.L.; Hancock, K.; Rollison, L.; Ball, T.E.; Bowen, J.C. Contributions of strength and body composition to the gender difference in anaerobic power. J. Sports Med. Phys. Fit. 2001, 41, 33. [Google Scholar]
- Bartolomei, S.; Nigro, F.; Ciacci, S.; Malagoli Lanzoni, I.; Treno, F.; Cortesi, M. Relationships between Muscle Architecture and Performance in Division I Male Italian Field Hockey Players. Appl. Sci. 2021, 11, 4394. [Google Scholar] [CrossRef]
- Pillen, S.; Scholten, R.R.; Zwarts, M.J.; Verrips, A. Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease. Muscle Nerve 2003, 27, 699–705. [Google Scholar] [CrossRef]
- Stock, M.S.; Thompson, B.J. Echo intensity as an indicator of skeletal muscle quality: Applications, methodology, and future directions. Eur. J. Appl. Physiol. 2021, 121, 369–380. [Google Scholar] [CrossRef]
- Mangine, G.T.; Fukuda, D.H.; LaMonica, M.B.; Gonzalez, A.M.; Wells, A.J.; Townsend, J.R.; Jajtner, A.R.; Fragala, M.S.; Stout, J.R.; Hoffman, J.R. Influence of gender and muscle architecture asymmetry on jump and sprint performance. J. Sports Sci. Med. 2014, 13, 904. [Google Scholar]
- Hirsch, K.R.; Smith-Ryan, A.E.; Trexler, E.T.; Roelofs, E.J. Body composition and muscle characteristics of division I track and field athletes. J. Strength Cond. Res. 2016, 30, 1231. [Google Scholar] [CrossRef] [PubMed]
- Scanlon, T.C.; Fragala, M.S.; Stout, J.R.; Emerson, N.S.; Beyer, K.S.; Oliveira, L.P.; Hoffman, J.R. Muscle architecture and strength: Adaptations to short-term resistance training in older adults. Muscle Nerve 2014, 49, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Pillen, S.; Tak, R.O.; Zwarts, M.J.; Lammens, M.M.; Verrijp, K.N.; Arts, I.M.; van der Laak, J.A.; Hoogerbrugge, P.M.; van Engelen, B.G.; Verrips, A. Skeletal muscle ultrasound: Correlation between fibrous tissue and echo intensity. Ultrasound Med. Biol. 2009, 35, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Wong, V.; Spitz, R.W.; Bell, Z.W.; Viana, R.B.; Chatakondi, R.N.; Abe, T.; Loenneke, J.P. Exercise induced changes in echo intensity within the muscle: A brief review. J. Ultrasound 2020, 23, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Mitsukawa, N.; Bemben, M.G.; Abe, T. Ultrasound assessment of adductor muscle size using muscle thickness of the thigh. J. Sport Rehabil. 2012, 21, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Mirón Mombiela, R.; Facal de Castro, F.; Moreno, P.; Borras, C. Ultrasonic echo intensity as a new noninvasive in vivo biomarker of frailty. J. Am. Geriatr. Soc. 2017, 65, 2685–2690. [Google Scholar] [CrossRef] [PubMed]
- Evans, E.M.; Rowe, D.A.; Misic, M.M.; Prior, B.M.; Arngrímsson, S.A. Skinfold prediction equation for athletes developed using a four-component model. Med. Sci. Sports Exerc. 2005, 37, 2006. [Google Scholar] [CrossRef]
- Bemben, M.G. Use of diagnostic ultrasound for assessing muscle size. J. Strength Cond. Res. 2022, 16, 103–108. [Google Scholar]
- O’Sullivan, C.; Meaney, J.; Boyle, G.; Gormley, J.; Stokes, M. The validity of rehabilitative ultrasound imaging for measurement of trapezius muscle thickness. Man. Ther. 2009, 14, 572–578. [Google Scholar] [CrossRef]
- Ryan, E.D.; Shea, N.W.; Gerstner, G.R.; Barnette, T.J.; Tweedell, A.J.; Kleinberg, C.R. The influence of subcutaneous fat on the relationship between body composition and ultrasound-derived muscle quality. Appl. Physiol. Nutr. Metab. 2016, 41, 1104–1107. [Google Scholar] [CrossRef]
- Young, H.J.; Jenkins, N.T.; Zhao, Q.; Mccully, K.K. Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve 2015, 52, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Bartolomei, S.; Nigro, F.; Ruggeri, S.; Lanzoni, I.M.; Ciacci, S.; Merni, F.; Sadres, E.; Hoffman, J.R.; Semprini, G. Comparison between bench press throw and ballistic push-up tests to assess upper-body power in trained individuals. J. Strength Cond. Res. 2018, 32, 1503–1510. [Google Scholar] [CrossRef]
- Forster, J.W.; Uthoff, A.M.; Rumpf, M.C.; Cronin, J.B. Advancing the pro-agility test to provide better change of direction speed diagnostics. J. Sport Exerc. Sci. 2021, 5, 101–106. [Google Scholar]
- Bartolomei, S.; Hoffman, J.R.; Merni, F.; Stout, J.R. A comparison of traditional and block periodized strength training programs in trained athletes. J. Strength Cond. Res. 2014, 28, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.P. Applied Multivariate Statistics for the Social Sciences; Routledge: New York, NY, USA, 2012; Chapter 4; p. 169. [Google Scholar]
- Mukkaka, M.M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar]
- Reimers, C.D.; Fleckenstein, J.L.; Witt, T.N.; Müller-Felber, W.; Pongratz, D.E. Muscular ultrasound in idiopathic inflammatory myopathies of adults. J. Neurol. Sci. 1993, 116, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Elbers, J.M.H.; Asscheman, H.; Seidell, J.C.; Gooren, L.J. Effects of sex steroid hormones on regional fat depots as assessed by magnetic resonance imaging in transsexuals. Am. J. Physiol-Endocrinol. Metab. 1999, 276, E317–E325. [Google Scholar] [CrossRef]
- Bartolomei, S.; Nigro, F.; Gubellini, L.; Ciacci, S.; Merni, F.; Treno, F.; Cortesi, M.; Semprini, G. Physiological and sport-specific comparison between division I and division II Italian male field hockey players. J. Strength Cond. Res. 2019, 33, 3123–3128. [Google Scholar] [CrossRef]
- Lombard, W.P.; Cai, X.; Lambert, M.I.; Chen, X.; Mao, L. Relationships between physiological characteristics and match demands in elite-level male field hockey players. Int. J. Sports Sci. Coach. 2021, 16, 985–993. [Google Scholar] [CrossRef]
- Kapteijns, J.A.; Caen, K.; Lievens, M.; Bourgois, J.G.; Boone, J. Positional match running performance and performance profiles of elite female field hockey. Int. J. Sports Physiol. Perform. 2021, 16, 1295–1302. [Google Scholar] [CrossRef]
- Kramer, T.A.; Sacko, R.S.; Pfeifer, C.E.; Gatens, D.R.; Goins, J.M.; Stodden, D.F. The association between the functional movement screentm, y-balance test, and physical performance tests in male and female high school athletes. Int. J. Sports Phys. Ther. 2019, 14, 911. [Google Scholar] [CrossRef] [PubMed]
- Stephard, R.L. Exercise and training in women, Part I: Influence of gender on performance and training responses. Can. J. Appl. Physiol. 2000, 25, 19–34. [Google Scholar] [CrossRef] [PubMed]
Assessment | Male Group | Female Group | Groups Comparison (p; η2; CI) |
---|---|---|---|
%FM | 9.69 ± 3.05 * | 20.51 ± 3.31 | ≤0.001; 0.673; −12.622, −8.989 |
VLMT (mm) | 1.49 ± 0.29 * | 1.22 ± 0.31 | 0.007; 0.182; 0.811, 0.469 |
TrapMT (mm) | 1.12 ± 0.21 * | 0.89 ± 0.15 | ≤0.001; 0.284; 0.104, 0.342 |
VLEI (a.u.) | 41.22 ± 6.64 * | 52.01 ± 7.89 | <0.001; 0.361, −15.575 |
TrapEI (a.u.) | 30.75 ± 2.70 | 32.16 ± 6.19 | 0.375; 0.021; −4.612, 1.778 |
VLcEI (a.u.) | 52.64 ± 8.8 * | 77.35 ± 13.71 | ≤0.001; 0.370; 18.008, 33.172 |
TrapcEI (a.u.) | 38.93 ± 2.74 | 39.58 ± 9.72 | 0.798; 0.002; −5.420, 5.070 |
Assessment | Male Group | Female Group | Groups Comparison (p; η2; CI) |
---|---|---|---|
Pro-agility (s) | 4.72 ± 0.21 * | 5.01 ± 0.16 | ≤0.001; 0.390; 0.176, 0.411 |
30 m sprint (s) | 4.19 ± 0.19 * | 4.80 ± 0.25 | ≤0.001; 0.650; −0.763; −0.456 |
Assessment | Male Group | Female Group | Groups Comparison (p; η2; CI) |
---|---|---|---|
Bench Press 1-RM (kg) | 77.50 ± 20.48 * | 41.13 ± 8.15 | ≤0.001; 0.942; 27.038, 45.689 |
Bench press AUC (a.u.) | 5623.63 ± 1960.16 * | 1493.57 ± 1381.60 | ≤0.001; 0.427; 5244.44, 11,697.43 |
Bench press peak power (W) | 476.26 ± 74.44 * | 216.47 ± 34.87 | 0.002; 0.843; 221.96; 297.61 |
Rel 1-RM | 1.07 ± 0.30 * | 0.67 ± 0.10 | ≤0.001; 0.448; 0.78,−0.95 |
Rel Pow (w·kg) | 5.26 ± 2.30 * | 3.61 ± 0.57 | ≤0.001; 0.186; 3.98–5.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartolomei, S.; D’Amico, A.; Treno, F.; Cortesi, M.; Pagliara, S.; Mignardi, S. Influences of Sex on Muscle Architecture and Performance in Elite Field Hockey Players. Appl. Sci. 2023, 13, 11314. https://doi.org/10.3390/app132011314
Bartolomei S, D’Amico A, Treno F, Cortesi M, Pagliara S, Mignardi S. Influences of Sex on Muscle Architecture and Performance in Elite Field Hockey Players. Applied Sciences. 2023; 13(20):11314. https://doi.org/10.3390/app132011314
Chicago/Turabian StyleBartolomei, Sandro, Alessio D’Amico, Filippo Treno, Matteo Cortesi, Stefano Pagliara, and Sergio Mignardi. 2023. "Influences of Sex on Muscle Architecture and Performance in Elite Field Hockey Players" Applied Sciences 13, no. 20: 11314. https://doi.org/10.3390/app132011314
APA StyleBartolomei, S., D’Amico, A., Treno, F., Cortesi, M., Pagliara, S., & Mignardi, S. (2023). Influences of Sex on Muscle Architecture and Performance in Elite Field Hockey Players. Applied Sciences, 13(20), 11314. https://doi.org/10.3390/app132011314