The Thermal Properties and Nutritional Value of Biomass of Oleaginous Yeast Rhodotorula sp. during Glucose Fed-Batch Cultivation in Medium with Waste Nitrogen
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The Collection of Biomass
2.2. The Lipid Content and Fatty Acids Analysis
- (1)
- Polyunsaturated fatty acid/saturated fatty (Σ PUFA/Σ SFA) acid ratio
- (2)
- n-6/n-3 ratio
- (3)
- Saturation index (SI) using the formula:SI = (C 14:0 + C 16:0 + C 18:0)/(MUFA cis + PUFA)
- (4)
- Unsaturation index (UI) using the formula:UI = 1 × (% monoenoics) + 2 × (% dienoics) + 3 × (% trienoics) + 4 × (% tetraenoics) + 5 × (% pentaenoics) + 6 × (% hexaenoics)
- (5)
- Nutritional value (NV)NV = (C 12:0 + C 14:0 + C 16:0)/(C 18:1 cis9 + C 18:2 n-6)
- (6)
- Atherogenicity index (IA) [15]IA = [C 12:0 + (4 × C 14:0) + C 16:0]/Σ UFA
- (7)
- Thrombogenicity index (IT) [15]IT = (C14:0 + C16:0 + C18:0)/
[(0.5 × Σ MUFA) + (0.5 × Σ n-6 PUFA) + (3 × Σ n-3 PUFA) + (n-3/n-6)] - (8)
- Fatty acids hypocholesterolemic/hypercholesterolemic ratio (hH) [16]hH = (C 18:1 cis9 + C 18:2 × 6 + C 20:4 × 6 + C 18:3 × 3+ C 20:5 × 3 + C 22:5 × 3 + C 22:6 × 3)/(C 14:0 + C 16:0)
- (9)
- Health-promoting index (HPI)HPI = Σ UFA/[C 12:0+ (4 × C 14:0) + C 16:0],
- (10)
- Linoleic acid/α-linolenic acid (LA/ALA) ratio
2.3. The Protein Content and Amino Acids Analysis
- (1)
- The chemical score (CS) [21]CS % = (aa/AA) × 100
- (2)
2.4. The Thermal Analysis of Powdered Biomass
2.5. The Statistical Analysis
3. Results and Discussion
3.1. The Rhodotorula glutinis var. rubescens Cell Composition during Fed-Batch Cultivation
3.2. The Thermal Analysis of Powdered Biomass of Rhodotorula glutinis var. rubescens
3.3. The Composition and Nutritional Suitability of Rhodotorula glutinis var. rubescens Yeast Biomass Lipid
3.4. The Amino Acid Content and Nutritional Value of Protein of Rhodotorula glutinis var. rubescens Yeast Biomass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Thiviya, P.; Gamage, A.; Kapilan, R.; Merah, O.; Madhujith, T. Single Cell Protein Production Using Different Fruit Waste: A Review. Separations 2022, 9, 178. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein—State-of-the-Art, Industrial Landscape and Patents 2001–2016. Front. Microbiol. 2017, 8, 2009. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipids of Oleaginous Yeasts. Part II: Technology and Potential Applications. Eur. J. Lipid Sci. Technol. 2011, 113, 1052–1073. [Google Scholar] [CrossRef]
- Parsons, S.; Allen, M.J.; Chuck, C.J. Coproducts of algae and yeast-derived single cell oils: A critical review of their role in improving biorefinery sustainability. Bioresour. Technol. 2020, 303, 122862. [Google Scholar] [CrossRef]
- Vasilakis, G.; Karayannis, D.; Massouras, T.; Politis, I.; Papanikolaou, S. Biotechnological Conversions of Mizithra Second Cheese Whey by Wild-Type Non-Conventional Yeast Strains: Production of Yeast Cell Biomass, Single-Cell Oil and Polysaccharides. Appl. Sci. 2022, 12, 11471. [Google Scholar] [CrossRef]
- Janssen, M.; Wijffels, R.H.; Barbosa, M.J. Microalgae based production of single-cell protein. Curr. Opin. Biotechnol. 2022, 75, 102705. [Google Scholar] [CrossRef]
- Ageitos, J.M.; Vallejo, J.A.; Veiga-Crespo, P.; Villa, T.G. Oily Yeasts as Oleaginous Cell Factories. Appl. Microbiol. Biotechnol. 2011, 90, 1219–1227. [Google Scholar] [CrossRef]
- Gientka, I.; Duda, M.; Bzducha-Wróbel, A.; Błażejak, S. Deproteinated potato wastewater as a low-cost nitrogen substrate for very high yeast biomass quantities: Starting point for scaled-up applications. Eur. Food Res. Technol. 2019, 245, 919–928. [Google Scholar] [CrossRef]
- Sitepu, I.R.; Garay, L.A.; Sestric, R.; Levin, D.; Block, D.E.; German, J.B.; Boundy-Mills, K.L. Oleaginous Yeasts for Biodiesel: Current and Future Trends in Biology and Production. Biotechnol. Adv. 2014, 32, 1336–1360. [Google Scholar] [CrossRef]
- Gientka, I.; Wirkowska-Wojdyła, M.; Ostrowska-Ligęza, E.; Janowicz, M.; Reczek, L.; Synowiec, A.; Błażejak, S. Enhancing Red Yeast Biomass Yield and Lipid Biosynthesis by Using Waste Nitrogen Source by Glucose Fed-Batch at Low Temperature. Microorganisms 2022, 10, 1253. [Google Scholar] [CrossRef]
- Kot, A.M.; Błażejak, S.; Kurcz, A.; Gientka, I.; Kieliszek, M. Rhodotorula glutinis—Potential Source of Lipids, Carotenoids, and Enzymes for Use in Industries. Appl. Microbiol. Biotechnol. 2016, 100, 6103–6117. [Google Scholar] [CrossRef] [PubMed]
- Górska, A.; Brzezińska, R.; Wirkowska-Wojdyła, M.; Bryś, J.; Domian, E.; Ostrowska-Ligęza, E. Application of Thermal Methods to Analyze the Properties of Coffee Silverskin and Oil Extracted from the Studied Roasting By-Product. Appl. Sci. 2020, 10, 8790. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.C.; French, W.T.; Hernandez, R.; Alley, E.; Paraschivescu, M. Effects of Furfural and Acetic Acid on Growth and Lipid Production from Glucose and Xylose by Rhodotorula glutinis. Biomass Bioenergy 2011, 35, 734–740. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary Heart Disease: Seven Dietary Factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Santos-Silva, J.; Bessa, R.J.B.; Santos-Silva, F. Effect of Genotype, Feeding System and Slaughter Weight on the Quality of Light Lambs: II. Fatty Acid Composition of Meat. Livest. Prod. Sci. 2002, 77, 187–194. [Google Scholar] [CrossRef]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Jaworska, G.; Bernaś, E. Comparison of Amino Acid Content in Canned Pleurotus Ostreatus and Agaricus Bisporus Mushrooms. J. Fruit Ornam. Plant Res. 2011, 74, 107–115. [Google Scholar] [CrossRef]
- Buňka, F.; Hrabě, J.; Kráčmar, S. The Effect of Sterilisation on Amino Acid Contents in Processed Cheese. Int. Dairy J. 2004, 14, 829–831. [Google Scholar] [CrossRef]
- INGOS. Amino Acid Analyzer AAA 500 Clarity EN User Manual; INGOS: Praha, Czech Republic, 2021. [Google Scholar]
- Block, R.J.; Mitchell, H.H. The Correlation of the Amino Acid Composition of Proteins with Their Nutritive Value. Nutr. Abstr. Rev. 1946, 16, 249–278. [Google Scholar]
- Oser, B.L. An Integrated Essential Amino Acid Index for Predicting the Biological Value of Proteins. In Protein and Amino Acid Nutrition; Elsevier: Amsterdam, The Netherlands, 1959; pp. 281–295. [Google Scholar] [CrossRef]
- Tidwell, J.H.; Webster, C.D.; Yancey, D.H.; D’Abramo, L.R. Partial and Total Replacement of Fish Meal with Soybean Meal and Distillers’ by-Products in Diets for Pond Culture of the Freshwater Prawn (Macrobrachium rosenbergii). Aquaculture 1993, 118, 119–130. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Górska, A.; Wirkowska, M.; Koczoń, P. An Assessment of Various Powdered Baby Formulas by Conventional Methods (DSC) or FT-IR Spectroscopy. J. Therm. Anal. Calorim. 2012, 110, 465–471. [Google Scholar] [CrossRef]
- Fakas, S. Lipid Biosynthesis in Yeasts: A Comparison of the Lipid Biosynthetic Pathway between the Model Nonoleaginous Yeast Saccharomyces cerevisiae and the Model Oleaginous Yeast Yarrowia lipolytica. Eng. Life Sci. 2016, 17, 292–302. [Google Scholar] [CrossRef]
- Papanikolaou, S.; Aggelis, G. Lipids of Oleaginous Yeasts. Part I: Biochemistry of Single Cell Oil Production. Eur. J. Lipid Sci. Technol. 2011, 113, 1031–1051. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Dolatowska-Żebrowska, K.; Wirkowska-Wojdyła, M.; Bryś, J.; Górska, A. Comparison of Thermal Characteristics and Fatty Acids Composition in Raw and Roasted Cocoa Beans from Peru (Criollo) and Ecuador (Forastero). Appl. Sci. 2021, 11, 2698. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Yu, H.-T.; Lin, C.-P. The Potential of the Oil-Producing Oleaginous Yeast Rhodotorula mucilaginosa for Sustainable Production of Bio-Oil Energy. Processes 2022, 10, 336. [Google Scholar] [CrossRef]
- Li, X.; Mansour, H.M. Physicochemical Characterization and Water Vapor Sorption of Organic Solution Advanced Spray-Dried Inhalable Trehalose Microparticles and Nanoparticles for Targeted Dry Powder Pulmonary Inhalation Delivery. AAPS PharmSciTech 2011, 12, 1420–1430. [Google Scholar] [CrossRef]
- Otero, M.A.; Wagner, J.R.; Vasallo, M.C.; García, L.; Añón, M.C. Thermal Behavior and Hydration Properties of Yeast Proteins from Saccharomyces cerevisiae and Kluyveromyces fragilis. Food Chem. 2000, 69, 161–165. [Google Scholar] [CrossRef]
- Lin, C.-P.; Tsai, S.-Y. Differences in the Moisture Capacity and Thermal Stability of Tremella fuciformis Polysaccharides Obtained by Various Drying Processes. Molecules 2019, 24, 2856. [Google Scholar] [CrossRef]
- Paramera, E.I.; Konteles, S.J.; Karathanos, V.T. Microencapsulation of Curcumin in Cells of Saccharomyces cerevisia. Food Chem. 2011, 125, 892–902. [Google Scholar] [CrossRef]
- Bansal, N.; Dasgupta, D.; Hazra, S.; Bhaskar, T.; Ray, A.; Ghosh, D. Effect of utilization of crude glycerol as substrate on fatty acid composition of an oleaginous yeast Rhodotorula mucilagenosa IIPL32: Assessment of nutritional indices. Bioresour. Technol. 2020, 309, 123330. [Google Scholar] [CrossRef]
- Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and Antioxidant Properties of Some Tropical Seaweeds from Saurashtra Coast of India. J. Appl. Phycol. 2011, 23, 797–810. [Google Scholar] [CrossRef]
- Chan, P.T.; Matanjun, P. Chemical Composition and Physicochemical Properties of Tropical Red Seaweed, Gracilaria changii. Food Chem. 2017, 221, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Nantapo, C.T.W.; Muchenje, V.; Hugo, A. Atherogenicity Index and Health-Related Fatty Acids in Different Stages of Lactation from Friesian, Jersey and Friesian × Jersey Cross Cow Milk under a Pasture-Based Dairy System. Food Chem. 2014, 146, 127–133. [Google Scholar] [CrossRef]
- Sinanoglou, V.J.; Koutsouli, P.; Fotakis, C.; Sotiropoulou, G.; Cavouras, D.; Bizelis, I. Assessment of Lactation Stage and Breed Effect on Sheep Milk Fatty Acid Profile and Lipid Quality Indices. Dairy Sci. Technol. 2015, 95, 509–531. [Google Scholar] [CrossRef]
- Brogna, D.M.R.; Nasri, S.; Salem, H.B.; Mele, M.; Serra, A.; Bella, M.; Priolo, A.; Makkar, H.P.S.; Vasta, V. Effect of Dietary Saponins from Quillaja saponaria L. on Fatty Acid Composition and Cholesterol Content in Muscle Longissimus dorsi of Lambs. Animal 2011, 5, 1124–1130. [Google Scholar] [CrossRef]
- Yang, L.G.; Song, Z.X.; Yin, H.; Wang, Y.Y.; Shu, G.F.; Lu, H.X.; Wang, S.K.; Sun, G.J. Low N-6/n-3 PUFA Ratio Improves Lipid Metabolism, Inflammation, Oxidative Stress and Endothelial Function in Rats Using Plant Oils as n-3 Fatty Acid Source. Lipids 2016, 51, 49–59. [Google Scholar] [CrossRef]
- da Costa, C.A.S.; Carlos, A.S.; de Paula Lopes Gonzalez, P.; Reis, R.P.G.; Ribeiro, M.D.S.; Dos Santos, A.d.S.; Monteiro, A.M.V.; de Moura, E.G.; do Nascimento-Saba, C.C.A. Diet Containing Low N-6/n-3 Polyunsaturated Fatty Acids Ratio, Provided by Canola Oil, Alters Body Composition and Bone Quality in Young Rats. Eur. J. Nutr. 2012, 51, 191–198. [Google Scholar] [CrossRef]
- FoodData Central. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/171030/nutrients (accessed on 13 August 2023).
- Michaelsen, K.F.; Dewey, K.G.; Perez-Exposito, A.B.; Nurhasan, M.; Lauritzen, L.; Roos, N. Food Sources and Intake of N-6 and n-3 Fatty Acids in Low-Income Countries with Emphasis on Infants, Young Children (6–24 Months), and Pregnant and Lactating Women. Matern. Child Nutr. 2011, 7, 124–140. [Google Scholar] [CrossRef]
- Omri, B.; Chalghoumi, R.; Izzo, L.; Ritieni, A.; Lucarini, M.; Durazzo, A.; Abdouli, H.; Santini, A. Effect of Dietary Incorporation of Linseed Alone or Together with Tomato-Red Pepper Mix on Laying Hens’ Egg Yolk Fatty Acids Profile and Health Lipid Indexes. Nutrients 2019, 11, 813. [Google Scholar] [CrossRef]
- Monteiro, M.; Matos, E.; Ramos, R.; Campos, I.; Valente, L.M.P. A Blend of Land Animal Fats Can Replace up to 75% Fish Oil without Affecting Growth and Nutrient Utilization of European Seabass. Aquaculture 2018, 487, 22–31. [Google Scholar] [CrossRef]
- Mir, N.A.; Tyagi, P.K.; Biswas, A.K.; Tyagi, P.K.; Mandal, A.B.; Kumar, F.; Sharma, D.; Biswas, A.; Verma, A.K. Inclusion of Flaxseed, Broken Rice, and Distillers Dried Grains with Solubles (DDGS) in Broiler Chicken Ration Alters the Fatty Acid Profile, Oxidative Stability, and Other Functional Properties of Meat. Eur. J. Lipid Sci. Technol. 2018, 120, 1700470. [Google Scholar] [CrossRef]
- Alvarenga, A.L.N.; Sousa, R.V.; Parreira, G.G.; Chiarini-Garcia, H.; Almeida, F.R.C.L. Fatty Acid Profile, Oxidative Stability of Pork Lipids and Meat Quality Indicators Are Not Affected by Birth Weight. Animal 2014, 8, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.E.; da Silva Vasconcelos, M.A.; de Almeida Ribeiro, M.; Sarubbo, L.A.; Andrade SA, C.; de Melo Filho, A.B. Nutritional and Lipid Profiles in Marine Fish Species from Brazil. Food Chem. 2014, 160, 67–71. [Google Scholar] [CrossRef]
- Subhadra, B.; Lochmann, R.; Rawles, S.; Chen, R. Effect of Dietary Lipid Source on the Growth, Tissue Composition and Hematological Parameters of Largemouth Bass (Micropterus salmoides). Aquaculture 2006, 255, 210–222. [Google Scholar] [CrossRef]
- Bouzgarrou, O.; El Mzougui, N.; Sadok, S. Smoking and Polyphenols’ Addition to Improve Freshwater Mullet (Mugil cephalus) Fillets’ Quality Attributes during Refrigerated Storage. Int. J. Food Sci. Technol. 2016, 51, 268–277. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Íñiguez-González, G.; Fehrmann-Cartes, K.; Toro-Mujica, P.; Garnsworthy, P.C. Influence of Fish Oil Alone or in Combination with Hydrogenated Palm Oil on Sensory Characteristics and Fatty Acid Composition of Bovine Cheese. Anim. Feed. Sci. Technol. 2015, 205, 60–68. [Google Scholar] [CrossRef]
- Wójciak, K.M.; Stasiak, D.M.; Ferysiuk, K.; Solska, E. The Influence of Sonication on the Oxidative Stability and Nutritional Value of Organic Dry-Fermented Beef. Meat Sci. 2019, 148, 113–119. [Google Scholar] [CrossRef]
- Majdoub-Mathlouthi, L.; Saïd, B.; Kraiem, K. Carcass Traits and Meat Fatty Acid Composition of Barbarine Lambs Reared on Rangelands or Indoors on Hay and Concentrate. Animal 2015, 9, 2065–2071. [Google Scholar] [CrossRef]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Okrouhlá, M.; Stupka, R.; Čítek, J.; Lebedová, N.; Zadinová, K. Effect of Duration of Dietary Rapeseed and Soybean Oil Feeding on Physical Characteristics, Fatty Acid Profile, and Oxidative Stability of Pig Backfat. Animals 2018, 8, 193. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Xu, Y.; Liu, T.; Zhang, L.; Liu, H.; Guan, H. Comparative Studies on the Characteristic Fatty Acid Profiles of Four Different Chinese Medicinal Sargassum Seaweeds by GC-MS and Chemometrics. Mar. Drugs 2016, 14, 68. [Google Scholar] [CrossRef] [PubMed]
- Dellatorre, F.G.; Avaro, M.G.; Commendatore, M.G.; Arce, L.; Díaz de Vivar, M.E. The Macroalgal Ensemble of Golfo Nuevo (Patagonia, Argentina) as a Potential Source of Valuable Fatty Acids for Nutritional and Nutraceutical Purposes. Algal Res. 2020, 45, 101726. [Google Scholar] [CrossRef]
- Chen, S.; Bobe, G.; Zimmerman, S.; Hammond, E.G.; Luhman, C.M.; Boylston, T.D.; Freeman, A.E.; Beitz, D.C. Physical and Sensory Properties of Dairy Products from Cows with Various Milk Fatty Acid Compositions. J. Agric. Food Chem. 2004, 52, 3422–3428. [Google Scholar] [CrossRef]
- Bobe, G.; Zimmerman, S.; Hammond, E.G.; Freeman, A.E.; Porter, P.A.; Luhman, C.M.; Beitz, D.C. Butter Composition and Texture from Cows with Different Milk Fatty Acid Compositions Fed Fish Oil or Roasted Soybeans. J. Dairy Sci. 2007, 90, 2596–2603. [Google Scholar] [CrossRef]
- Bonanno, A.; Grigoli, A.D.; Mazza, F.; Pasquale, C.D.; Giosuè, C.; Vitale, F.; Alabiso, M. Effects of Ewes Grazing Sulla or Ryegrass Pasture for Different Daily Durations on Forage Intake, Milk Production and Fatty Acid Composition of Cheese. Animal 2016, 10, 2074–2082. [Google Scholar] [CrossRef]
- Boucherie, H. Protein Synthesis during Transition and Stationary Phases under Glucose Limitation in Saccharomyces Cerevisiae. J. Bacteriol. 1985, 161, 385–392. [Google Scholar] [CrossRef]
- Lopez, M.J.; Mohiuddin, S.S. Biochemistry, Essential Amino Acids; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Abdel-Hafez, A.M.; Mahmoud, S.A.Z.; El-Sawy, M.; Ramadan, E.M. Studies on Protein Production by Yeasts: II. Protein, Non-Protein Nitrogen, and Amino Acid Content of Yeast Strains. Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Zweite Naturwissenschaftliche Abt. Allg. Landwirtsch. Und Tech. Mikrobiol. 1977, 132, 631–640. [Google Scholar] [CrossRef]
- Dobrzański, Z.; Opaliński, S.; Dolińska, B.; Chojnacka, K.; Kołacz, R. The nutritive value of yeast Saccharomyces cerevisiae enriched in copper, iron, and manganes. In Proceedings of the ISAH-2007 Tartu, XIIIth International Congress in Animal Hygiene, Estonian University of Life Sciences, Tartu, Estonia, 17–21 June 2007. [Google Scholar]
- Yalçın, S.; Erol, H.; Özsoy, B.; Onbaşılar, I.; Yalçın, S. Effects of the Usage of Dried Brewing Yeast in the Diets on the Performance, Egg Traits and Blood Parameters in Quails. Animal 2008, 2, 1780–1785. [Google Scholar] [CrossRef]
- Nicolas, O.; Aly, S.; Marius, K.S.; François, T.; Cheikna, Z.; Alfred, S.T. Effect of Mineral Salts and Nitrogen Source on Yeast (Candida Utilis NOY1) Biomass Production Using Tubers Wastes. Afr. J. Biotechnol. 2017, 16, 359–365. [Google Scholar] [CrossRef]
- Khudyi, O.; Kushniryk, O.; Khuda, L.; Marchenko, M. Differences in Nutritional Value and Amino Acid Composition of Moina Macrocopa (Straus) Using Yeast Saccharomyces cerevisiae and Rhodotorula glutinis as Fodder Substrates. ILNS 2018, 68, 27–34. [Google Scholar] [CrossRef]
- FAO; WHO. Energy and Protein Requirements; Report of a Joint FAO/WHO Ad hoc Expert committee World Health Organization Technical Report Series No. 522/FAO Nutrition Meetings Report Series No. 52; World Health Organization: Geneva, Switzerland, 1973.
- WHO; FAO; UNU. Protein and Amino Acid Requirements in Human Nutrition; Weltgesundheitsorganisation, FAO, Vereinte Nationen, Eds.; Report of a Joint WHO/FAO/UNU Expert Consultation; WHO: Geneva, Switzerland, 2007.
- Vasan, P.; Mandal, A.B.; Dutta, N.; Maiti, S.K.; Sharma, K. Digestibility of Amino Acids of Maize, Low Tannin Sorghum, Pearl Millet and Finger Millet in Caecectomized Roosters. Asian-Australas. J. Anim. Sci. 2008, 21, 701–706. [Google Scholar] [CrossRef]
- Michalik, B.; Biel, W.; Lubowicki, R.; Jacyno, E. Chemical Composition and Biological Value of Proteins of the Yeast Yarrowia lipolytica Growing on Industrial Glycerol. Can. J. Anim. Sci. 2014, 94, 99–104. [Google Scholar] [CrossRef]
- Juszczyk, P.; Tomaszewska, L.; Kita, A.; Rymowicz, W. Biomass Production by Novel Strains of Yarrowia lipolytica Using Raw Glycerol, Derived from Biodiesel Production. Bioresour. Technol. 2013, 137, 124–131. [Google Scholar] [CrossRef] [PubMed]
Compound Name | Time of Incubation 120 h | 144 h |
---|---|---|
C 10:0 | 0.085 ± 0.007 | 0.065 ± 0.064 |
C 12:0 | 0.120 ± 0.014 | 0.000 ± 0.000 |
C 14:0 | 0.900 ± 0.028 b | 0.680 ± 0.042 a |
C 15:0 | 0.215 ± 0.021 | 0.215 ± 0.007 |
C 16:0 | 13.805 ± 0.120 | 13.515 ± 0.233 |
C 17:0 | 0.175 ± 0.021 | 0.000 ± 0.000 |
C 18:0 | 3.725 ± 0.064 b | 3.510 ± 0.014 a |
C 20:0 | 0.200 ± 0.028 | 0.160 ± 0.000 |
Σ SFA | 19.225 ± 0.120 b | 18.145 ± 0.332 a |
C 15:1 | 0.135 ± 0.007 | 0.160 ± 0.014 |
C 6:1 | 2.100 ± 0.057 | 2.210 ± 0.014 |
C 18:1 n-9c | 73.255 ± 0.318 | 74.375 ± 0.191 |
C 20:1c | 0.675 ± 0.035 | 0.730 ± 0.042 |
Σ MUFA | 76.165 ± 0.229 a | 77.474 ± 0.262 b |
C 18:2 n-6c | 3.530 ± 0.028 b | 3.265 ± 0.049 a |
C 18:3 n-3 | 0.770 ± 0.057 | 0.745 ± 0.007 |
C 20:3 n-3 | 0.310 ± 0.014 | 0.360 ± 0.014 |
Σ PUFA | 4.610 ± 0.099 | 4.370 ± 0.057 |
Nutritional Index | 120 h | 144 h |
---|---|---|
PUFA/SFA | 0.240 ± 0.004 | 0.241 ± 0.008 |
n-6/n-3 | 3.275 ± 0.188 | 2.955 ± 0.026 |
AI | 0.223 ± 0.004 | 0.205 ± 0.006 |
TI | 0.438 ± 0.001 | 0.416 ± 0.008 |
h/H | 5.253 ± 0.072 | 5.539 ± 0.139 |
NV | 0.193 ± 0.003 | 0.183 ± 0.005 |
SI | 0.235 ± 0.002 | 0.223 ± 0.004 |
UI | 86.465 ± 0.049 | 87.320 ± 0.382 |
LA/ALA | 4.595 ± 0.301 | 4.383 ± 0.108 |
HPI | 4.610 ± 0.072 | 5.036 ± 0.155 |
Amino Acid | FAO/WHO Standard mg/g | Rhodotorula glutinis var. rubescens CS | |
---|---|---|---|
120 h | 144 h | ||
Cys | 6 | 149.1 | 124.2 |
His | 15 | 302.8 | 302.3 |
Ile | 30 | 220.6 | 220.4 |
Leu | 59 | 125.0 | 124.8 |
Lys | 45 | 40.5 | 40.3 |
Met | 16 | 80.4 | 82.8 |
Met + Cys | 22 | 99.1 | 94.0 |
Phe + Tyr | 30 | 192.0 | 185.9 |
The | 23 | 135.7 | 135.3 |
Val | 39 | 79.1 | 78.9 |
EAAI | 123.5 | 120.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gientka, I.; Ostrowska-Ligęza, E.; Wirkowska-Wojdyła, M.; Synowiec, A. The Thermal Properties and Nutritional Value of Biomass of Oleaginous Yeast Rhodotorula sp. during Glucose Fed-Batch Cultivation in Medium with Waste Nitrogen. Appl. Sci. 2023, 13, 11072. https://doi.org/10.3390/app131911072
Gientka I, Ostrowska-Ligęza E, Wirkowska-Wojdyła M, Synowiec A. The Thermal Properties and Nutritional Value of Biomass of Oleaginous Yeast Rhodotorula sp. during Glucose Fed-Batch Cultivation in Medium with Waste Nitrogen. Applied Sciences. 2023; 13(19):11072. https://doi.org/10.3390/app131911072
Chicago/Turabian StyleGientka, Iwona, Ewa Ostrowska-Ligęza, Magdalena Wirkowska-Wojdyła, and Alicja Synowiec. 2023. "The Thermal Properties and Nutritional Value of Biomass of Oleaginous Yeast Rhodotorula sp. during Glucose Fed-Batch Cultivation in Medium with Waste Nitrogen" Applied Sciences 13, no. 19: 11072. https://doi.org/10.3390/app131911072
APA StyleGientka, I., Ostrowska-Ligęza, E., Wirkowska-Wojdyła, M., & Synowiec, A. (2023). The Thermal Properties and Nutritional Value of Biomass of Oleaginous Yeast Rhodotorula sp. during Glucose Fed-Batch Cultivation in Medium with Waste Nitrogen. Applied Sciences, 13(19), 11072. https://doi.org/10.3390/app131911072