Instability during Stepping and Distance between the Center of Mass and the Minimal Moment Axis: Effect of Age and Speed
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Skeletal Model
2.4. Data Analysis
2.5. Theoretical Background
3. Results
3.1. Spatiotemporal Parameters
3.2. Distances between the COM and the MMA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowland, D.M.; Lewek, M.D. Linking gait mechanics with perceived quality of life and participation after stroke. PLoS ONE 2022, 17, e0274511. [Google Scholar] [CrossRef]
- Pin, S.; Spini, D. Impact of falling on social participation and social support trajectories in a middle-aged and elderly European sample. SSM Popul. Health 2016, 2, 382–389. [Google Scholar] [CrossRef]
- Berg, W.P.; Alessio, H.M.; Mills, E.M.; Tong, C. Circumstances and consequences of falls in independent community-dwelling older adults. Age Ageing 1997, 26, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Robinovitch, S.N.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Sims-Gould, J.; Loughin, M. Video capture of the circumstances of falls in elderly people residing in long-term care: An observational study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef]
- Pijnappels, M.; Bobbert, M.F.; Dieën, J.H.V. Push-off reactions in recovery after tripping discriminate young subjects, older non-fallers and older fallers. Gait Posture 2005, 21, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Müller, B.; Wolf, S.I. Handbook of Human Motion; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-14417-7. [Google Scholar]
- Neptune, R.R.; Vistamehr, A. Dynamic Balance During Human Movement: Measurement and Control Mechanisms. J. Biomech. Eng. 2019, 141, 70801. [Google Scholar] [CrossRef]
- Grundy, M.; Tosh, P.A.; McLeish, R.D.; Smidt, L. An investigation of the centres of pressure under the foot while walking. J. Bone Jt. Surg. Br. 1975, 57-B, 98–103. [Google Scholar] [CrossRef]
- Hof, A.L.; Gazendam, M.G.J.; Sinke, W.E. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef]
- Herr, H.; Popovic, M. Angular momentum in human walking. J. Exp. Biol. 2008, 211, 467–481. [Google Scholar] [CrossRef]
- Vistamehr, A.; Neptune, R.R. Differences in balance control between healthy younger and older adults during steady-state walking. J. Biomech. 2021, 128, 110717. [Google Scholar] [CrossRef]
- Gomez, N.G.; Foreman, K.B.; Hunt, M.; Merryweather, A.S. Regulation of whole-body and segmental angular momentum in persons with Parkinson’s disease on an irregular surface. Clin. Biomech. 2022, 99, 105766. [Google Scholar] [CrossRef] [PubMed]
- Vistamehr, A.; Balasubramanian, C.K.; Clark, D.J.; Neptune, R.R.; Fox, E.J. Dynamic balance during walking adaptability tasks in individuals post-stroke. J. Biomech. 2018, 74, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bailly, F.; Carpentier, J.; Pinet, B.; Soueres, P.; Watier, B. A Mechanical Descriptor of Human Locomotion and its Application to Multi-Contact Walking in Humanoids. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; IEEE: Enschede, The Netherlands, 2018; pp. 350–356. [Google Scholar]
- Al Abiad, N.; Pillet, H.; Watier, B. A Mechanical Descriptor of Instability in Human Locomotion: Experimental Findings in Control Subjects and People with Transfemoral Amputation. Appl. Sci. 2020, 10, 840. [Google Scholar] [CrossRef]
- Yiou, E.; Caderby, T.; Delafontaine, A.; Fourcade, P.; Honeine, J.-L. Balance control during gait initiation: State-of-the-art and research perspectives. World J. Orthop. 2017, 8, 815–828. [Google Scholar] [CrossRef] [PubMed]
- Lyon, I.N.; Day, B.L. Control of frontal plane body motion in human stepping. Exp. Brain Res. 1997, 115, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Zettel, J.L.; McIlroy, W.E.; Maki, B.E. Environmental constraints on foot trajectory reveal the capacity for modulation of anticipatory postural adjustments during rapid triggered stepping reactions. Exp. Brain Res. 2002, 146, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Brenière, Y.; Cuong Do, M.; Bouisset, S. Are Dynamic Phenomena Prior to Stepping Essential to Walking? J. Mot. Behav. 1987, 19, 62–76. [Google Scholar] [CrossRef]
- Lepers, R.; Brenière, Y. The role of anticipatory postural adjustments and gravity in gait initiation. Exp. Brain Res. 1995, 107, 118–124. [Google Scholar] [CrossRef]
- Watanabe, R.; Higuchi, T. Anticipatory action planning for stepping onto competing potential targets. Front. Hum. Neurosci. 2022, 16, 875249. [Google Scholar] [CrossRef]
- Monaghan, A.S.; Hooyman, A.; Dibble, L.E.; Mehta, S.H.; Peterson, D.S. Stability Changes in Fall-Prone Individuals With Parkinson Disease Following Reactive Step Training. J. Neurol. Phys. Ther. 2023. [Google Scholar] [CrossRef]
- Muijres, W.; Arnalsteen, S.; Daenens, C.; Afschrift, M.; De Groote, F. Accuracy-speed-stability trade-offs in a targeted stepping task are similar in young and older adults. Front. Aging Neurosci. 2023, 15, 1130707. [Google Scholar] [CrossRef] [PubMed]
- Begue, J.; Peyrot, N.; Lesport, A.; Turpin, N.A.; Watier, B.; Dalleau, G.; Caderby, T. Segmental contribution to whole-body angular momentum during stepping in healthy young and old adults. Sci. Rep. 2021, 11, 19969. [Google Scholar] [CrossRef] [PubMed]
- Begue, J.; Peyrot, N.; Dalleau, G.; Caderby, T. Age-related changes in the control of whole-body angular momentum during stepping. Exp. Gerontol. 2019, 127, 110714. [Google Scholar] [CrossRef] [PubMed]
- McIlroy, W.; Maki, B. Preferred placement of the feet during quiet stance: Development of a standardized foot placement for balance testing. Clin. Biomech. 1997, 12, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; van der Helm, F.C.T.; (DirkJan) Veeger, H.E.J.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Maldonado, G.; Bailly, F.; Souères, P.; Watier, B. On the coordination of highly dynamic human movements: An extension of the Uncontrolled Manifold approach applied to precision jump in parkour. Sci. Rep. 2018, 8, 12219. [Google Scholar] [CrossRef]
- Anderson, F.C.; Pandy, M.G. A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions. Comput. Methods Biomech. Biomed. Engin. 1999, 2, 201–231. [Google Scholar] [CrossRef]
- Dumas, R.; Chèze, L.; Verriest, J.-P. Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 2007, 40, 543–553. [Google Scholar] [CrossRef]
- de Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [PubMed]
- Caderby, T.; Yiou, E.; Peyrot, N.; De Viviés, X.; Bonazzi, B.; Dalleau, G. Effects of Changing Body Weight Distribution on Mediolateral Stability Control during Gait Initiation. Front. Hum. Neurosci. 2017, 11. [Google Scholar] [CrossRef] [PubMed]
- Singer, J.C.; McIlroy, W.E.; Prentice, S.D. Kinetic measures of restabilisation during volitional stepping reveal age-related alterations in the control of mediolateral dynamic stability. J. Biomech. 2014, 47, 3539–3545. [Google Scholar] [CrossRef] [PubMed]
- Sloot, L.H.; Malheiros, S.; Truijen, S.; Saeys, W.; Mombaur, K.; Hallemans, A.; Van Criekinge, T. Decline in gait propulsion in older adults over age decades. Gait Posture 2021, 90, 475–482. [Google Scholar] [CrossRef]
- Menant, J.C.; Steele, J.R.; Menz, H.B.; Munro, B.J.; Lord, S.R. Rapid gait termination: Effects of age, walking surfaces and footwear characteristics. Gait Posture 2009, 30, 65–70. [Google Scholar] [CrossRef]
- Manckoundia, P.; Mourey, F.; Pérennou, D.; Pfitzenmeyer, P. Backward disequilibrium in elderly subjects. Clin. Interv. Aging 2008, 3, 667–672. [Google Scholar] [CrossRef]
- Tesio, L.; Rota, V.; Chessa, C.; Perucca, L. The 3D path of body centre of mass during adult human walking on force treadmill. J. Biomech. 2010, 43, 938–944. [Google Scholar] [CrossRef]
- Orendurff, M.S.; Segal, A.D.; Klute, G.K.; Berge, J.S.; Rohr, E.S.; Kadel, N.J. The effect of walking speed on center of mass displacement. J. Rehabil. Res. Dev. 2004, 41, 829. [Google Scholar] [CrossRef]
- Ohtsu, H.; Yoshida, S.; Minamisawa, T.; Katagiri, N.; Yamaguchi, T.; Takahashi, T.; Yomogida, S.; Kanzaki, H. Does the balance strategy during walking in elderly persons show an association with fall risk assessment? J. Biomech. 2020, 103, 109657. [Google Scholar] [CrossRef]
- Lockhart, T.E.; Smith, J.L.; Woldstad, J.C. Effects of Aging on the Biomechanics of Slips and Falls. Hum. Factors 2005, 47, 708–729. [Google Scholar] [CrossRef]
- Bouisset, S.; Do, M.-C. Posture, dynamic stability, and voluntary movement. Neurophysiol. Clin. Neurophysiol. 2008, 38, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.B.; da Silva Almeida, G.C.; Costa, K.H.A.; Garcez, D.R.; de Athayde Costa e Silva, A.; da Silva Souza, G.; de Melo-Neto, J.S.; Callegari, B. Anticipatory postural adjustments in older versus young adults: A systematic review and meta-analysis. Syst. Rev. 2022, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Delafontaine, A.; Vialleron, T.; Hussein, T.; Yiou, E.; Honeine, J.-L.; Colnaghi, S. Anticipatory Postural Adjustments During Gait Initiation in Stroke Patients. Front. Neurol. 2019, 10, 352. [Google Scholar] [CrossRef] [PubMed]
Young Adults | Older Adults | Effect | |||||
---|---|---|---|---|---|---|---|
Parameters | Spontaneous | Fast | Spontaneous | Fast | Speed | Group | Speed × Group |
Total duration (s) | 3.21 ± 0.15 | 2.75 ± 0.17 | 3.18 ± 0.32 | 2.89 ± 0.28 | p < 0.001 | ns | ns |
P1 duration (s) | 0.62 ± 0.09 | 0.49 ± 0.08 | 0.51 ± 0.08 | 0.43 ± 0.08 | p < 0.001 | p = 0.003 | ns |
P2 duration (s) | 0.43 ± 0.06 | 0.34 ± 0.04 | 0.40 ± 0.06 | 0.33 ± 0.04 | p < 0.001 | ns | ns |
P3 duration (s) | 0.29 ± 0.07 | 0.13 ± 0.03 | 0.25 ± 0.05 | 0.16 ± 0.02 | p < 0.001 | ns | p = 0.004 |
P4 duration (s) | 0.46 ± 0.05 | 0.36 ± 0.03 | 0.48 ± 0.05 | 0.38 ± 0.06 | p < 0.001 | ns | ns |
P5 duration (s) | 1.42 ± 0.11 | 1.42 ± 0.13 | 1.54 ± 0.17 | 1.58 ± 0.18 | ns | p = 0.003 | ns |
Forward speed (m/s) | 0.71 ± 0.16 | 1.18 ± 0.19 | 0.73 ± 0.12 | 0.99 ± 0.21 | p < 0.001 | ns | p < 0.001 |
Young Adults | Older Adults | Effect | |||||
---|---|---|---|---|---|---|---|
Parameters | Spontaneous | Fast | Spontaneous | Fast | Speed | Group | Speed × Group |
Minimal AP distance | −2.27 ± 0.35 | −3.87 ± 0.78 | −2.81 ± 0.47 | −4.71 ± 1.29 | p < 0.001 | p = 0.009 | ns |
Maximal AP distance | 2.00 ± 0.37 | 3.48 ± 0.97 | 2.75 ± 0.58 | 4.39 ± 1.33 | p < 0.001 | p = 0.004 | ns |
Minimal ML distance | −1.15 ± 0.35 | −2.21 ± 0.64 | −1.35 ± 0.17 | −1.92 ± 0.36 | p < 0.001 | ns | p = 0.017 |
Maximal ML distance | 1.10 ± 0.36 | 1.85 ± 0.61 | 1.32 ± 0.25 | 1.89 ± 0.60 | p < 0.001 | ns | ns |
Young Adults | Older Adults | Effect | ||||||
---|---|---|---|---|---|---|---|---|
Phase | Parameters | Spontaneous | Fast | Spontaneous | Fast | Speed | Group | Speed × Group |
P1 | AP | 1.48 ± 0.48 | 3.10 ± 1.02 | 2.18 ± 0.78 | 3.62 ± 1.34 | p < 0.001 | ns | ns |
ML | 0.97 ± 0.28 | 1.21 ± 0.56 | 1.23 ± 0.42 | 1.40 ± 0.54 | p = 0.026 | ns | ns | |
P2 | AP | 3.14 ± 0.59 | 6.02 ± 1.79 | 4.19 ± 0.95 | 7.02 ± 2.26 | p < 0.001 | p = 0.036 | ns |
ML | 1.13 ± 0.31 | 2.69 ± 0.68 | 1.42 ± 0.32 | 2.36 ± 0.71 | p < 0.001 | ns | p = 0.013 | |
P3 | AP | 3.08 ± 0.73 | 5.00 ± 1.70 | 4.30 ± 0.81 | 6.95 ± 2.58 | p < 0.001 | p = 0.004 | ns |
ML | 1.64 ± 0.47 | 3.47 ± 1.44 | 2.11 ± 0.40 | 3.06 ± 1.01 | p < 0.001 | ns | p = 0.04 | |
P4 | AP | 3.54 ± 0.56 | 6.23 ± 1.21 | 4.46 ± 0.93 | 7.49 ± 1.83 | p < 0.001 | p = 0.007 | ns |
ML | 1.07 ± 0.43 | 2.13 ± 0.87 | 1.53 ± 0.32 | 2.33 ± 0.72 | p < 0.001 | ns | ns | |
P5 | AP | 1.09 ± 0.21 | 1.85 ± 0.51 | 0.90 ± 0.21 | 1.52 ± 0.49 | p < 0.001 | p = 0.031 | ns |
ML | 0.69 ± 0.25 | 0.86 ± 0.25 | 0.59 ± 0.14 | 0.82 ± 0.24 | p < 0.001 | ns | ns | |
Total | AP | 4.27 ± 0.64 | 7.35 ± 1.64 | 5.56 ± 0.95 | 9.10 ± 2.53 | p < 0.001 | p = 0.005 | ns |
ML | 2.21 ± 0.63 | 4.06 ± 1.27 | 2.67 ± 0.34 | 3.82 ± 0.87 | p < 0.001 | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watier, B.; Begue, J.; Pillet, H.; Caderby, T. Instability during Stepping and Distance between the Center of Mass and the Minimal Moment Axis: Effect of Age and Speed. Appl. Sci. 2023, 13, 10574. https://doi.org/10.3390/app131910574
Watier B, Begue J, Pillet H, Caderby T. Instability during Stepping and Distance between the Center of Mass and the Minimal Moment Axis: Effect of Age and Speed. Applied Sciences. 2023; 13(19):10574. https://doi.org/10.3390/app131910574
Chicago/Turabian StyleWatier, Bruno, Jérémie Begue, Hélène Pillet, and Teddy Caderby. 2023. "Instability during Stepping and Distance between the Center of Mass and the Minimal Moment Axis: Effect of Age and Speed" Applied Sciences 13, no. 19: 10574. https://doi.org/10.3390/app131910574
APA StyleWatier, B., Begue, J., Pillet, H., & Caderby, T. (2023). Instability during Stepping and Distance between the Center of Mass and the Minimal Moment Axis: Effect of Age and Speed. Applied Sciences, 13(19), 10574. https://doi.org/10.3390/app131910574