Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Luminophores
2.2. Characterization of Luminophores
2.3. Temperature-Dependent Luminescence Spectra Measurements
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carlos, L.D.; Palacio, F. (Eds.) Thermometry at the Nanoscale: Techniques and Selected Applications; The Royal Society of Chemistry: Cambrige, UK, 2015; ISBN 978-1-84973-904-7. [Google Scholar]
- Chen, W.; Cao, J.; Hu, F.; Wei, R.; Chen, L.; Guo, H. Sr2GdF7:Tm3+/Yb3+ Glass Ceramic: A Highly Sensitive Optical Thermometer Based on FIR Technique. J. Alloys Compd. 2018, 735, 2544–2550. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, D.; Peng, Y.; Lu, Y.; Chen, X.; Li, X.; Ji, Z. A Review on Nanostructured Glass Ceramics for Promising Application in Optical Thermometry. J. Alloys Compd. 2018, 763, 34–48. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, Q.; Zhang, P.; Dong, Y.; Fang, F.; Jiang, J. Mechanistic Investigations on the Dramatic Thermally Induced Luminescence Enhancement in Upconversion Nanocrystals. J. Phys. Chem. C 2018, 122, 26142–26152. [Google Scholar] [CrossRef]
- Dramićanin, M.D. Trends in Luminescence Thermometry. J. Appl. Phys. 2020, 128, 040902. [Google Scholar] [CrossRef]
- Thimsen, E.; Sadtler, B.; Berezin, M.Y. Shortwave-Infrared (SWIR) Emitters for Biological Imaging: A Review of Challenges and Opportunities. Nanophotonics 2017, 6, 1043–1054. [Google Scholar] [CrossRef]
- Kamimura, M.; Matsumoto, T.; Umezawa, M.; Soga, K. Ratiometric Near-Infrared Fluorescence Nanothermometry in the OTN-NIR (NIR II/III) Biological Window Based on Rare-Earth Doped β-NaYF4 Nanoparticles. J. Mater. Chem. B 2017, 5, 1917–1925. [Google Scholar] [CrossRef]
- Geitenbeek, R.G.; Nieuwelink, A.-E.; Jacobs, T.S.; Salzmann, B.B.V.; Goetze, J.; Meijerink, A.; Weckhuysen, B.M. In Situ Luminescence Thermometry to Locally Measure Temperature Gradients during Catalytic Reactions. ACS Catal. 2018, 8, 2397–2401. [Google Scholar] [CrossRef]
- Meng, M.; Zhang, R.; Fa, X.; Yang, J.; Cheng, Z.; Qiao, X.; Ou, J.; Wurth, C.; Resch-Genger, U. Core–Shell NaYF4:Yb3+/Tm 3+@NaGdF4: Ce3+/Eu3+ Nanoparticles for Upconversion and Downconversion Dual-Mode Fluorescence-Based Temperature Sensing. ACS Appl. Nano Mater. 2022, 5, 9266–9276. [Google Scholar] [CrossRef]
- Liu, H.; Fan, Y.; Wang, J.; Song, Z.; Shi, H.; Han, R.; Sha, Y.; Jiang, Y. Intracellular Temperature Sensing: An Ultra-Bright Luminescent Nanothermometer with Non-Sensitivity to PH and Ionic Strength. Sci. Rep. 2015, 5, 14879. [Google Scholar] [CrossRef]
- Yang, G.; Liu, X.; Feng, J.; Li, S.; Li, Y. Organic Dye Thermometry. In Thermometry at the Nanoscale: Techniques and Selected Applications; RSC Nanoscience & Nanotechnology; The Royal Society of Chemistry: Cambrige, UK, 2015; pp. 167–189. [Google Scholar]
- Zarrintaj, P.; Jouyandeh, M.; Ganjali, M.R.; Hadavand, B.S.; Mozafari, M.; Sheiko, S.S.; Vatankhah-Varnoosfaderani, M.; Gutiérrez, T.J.; Saeb, M.R. Thermo-Sensitive Polymers in Medicine: A Review. Eur. Polym. J. 2019, 117, 402–423. [Google Scholar] [CrossRef]
- Donner, J.S.; Thompson, S.A.; Kreuzer, M.P.; Baffou, G.; Quidant, R. Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Lett. 2012, 12, 2107–2111. [Google Scholar] [CrossRef]
- Martins, J.C.; Skripka, A.; Brites, C.D.S.; Benayas, A.; Ferreira, R.A.S.; Vetrone, F.; Carlos, L.D. Upconverting Nanoparticles as Primary Thermometers and Power Sensors. Front. Photonics 2022, 3, 1037473. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Q.; Bu, Y.; Liu, C.-S.; Liu, T.; Yan, X. Optical Temperature Sensing of Rare-Earth Ion Doped Phosphors. RSC Adv. 2015, 5, 86219–86236. [Google Scholar] [CrossRef]
- Li, X.; Guo, H.; Wei, Y.; Guo, Y.; Lu, H.; Noh, H.M.; Jeong, J.H. Enhanced Up-Conversion in Er3+-Doped Transparent Glass-Ceramics Containing NaYbF4 Nanocrystals. J. Lumin. 2014, 152, 168–171. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Kuznetsov, S.V.; Konyushkin, V.A.; Nakladov, A.N.; Fedorov, P.P.; Carlos, L.D. Simultaneous Measurement of the Emission Quantum Yield and Local Temperature: The Illustrative Example of SrF2:Yb 3+/Er 3+ Single Crystals. Eur. J. Inorg. Chem. 2020, 2020, 1555–1561. [Google Scholar] [CrossRef]
- Sekiyama, S.; Umezawa, M.; Kuraoka, S.; Ube, T.; Kamimura, M.; Soga, K. Temperature Sensing of Deep Abdominal Region in Mice by Using Over-1000 Nm Near-Infrared Luminescence of Rare-Earth-Doped NaYF4 Nanothermometer. Sci. Rep. 2018, 8, 16979. [Google Scholar] [CrossRef]
- Runowski, M.; Goderski, S.; Przybylska, D.; Grzyb, T.; Lis, S.; Martín, I.R. Sr2LuF7:Yb3+–Ho3+–Er3+ Upconverting Nanoparticles as Luminescent Thermometers in the First, Second, and Third Biological Windows. ACS Appl. Nano Mater. 2020, 3, 6406–6415. [Google Scholar] [CrossRef]
- Runowski, M.; Bartkowiak, A.; Majewska, M.; Martín, I.R.; Lis, S. Upconverting Lanthanide Doped Fluoride NaLuF4:Yb3+-Er3+-Ho3+-Optical Sensor for Multi-Range Fluorescence Intensity Ratio (FIR) Thermometry in Visible and NIR Regions. J. Lumin. 2018, 201, 104–109. [Google Scholar] [CrossRef]
- Pominova, D.; Proydakova, V.; Romanishkin, I.; Ryabova, A.; Kuznetsov, S.; Uvarov, O.; Fedorov, P.; Loschenov, V. Temperature Sensing in the Short-Wave Infrared Spectral Region Using Core-Shell NaGdF4:Yb3+, Ho3+, Er3+@NaYF4 Nanothermometers. Nanomaterials 2020, 10, 1992. [Google Scholar] [CrossRef]
- Debasu, M.L.; Ananias, D.; Pastoriza-Santos, I.; Liz-Marzán, L.M.; Rocha, J.; Carlos, L.D. All-In-One Optical Heater-Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er3+ Emission and Blackbody Radiation. Adv. Mater. 2013, 25, 4868–4874. [Google Scholar] [CrossRef]
- Geitenbeek, R.G.; Prins, P.T.; Albrecht, W.; Van Blaaderen, A.; Weckhuysen, B.M.; Meijerink, A. NaYF4:Er3+,Yb3+/SiO2 Core/Shell Upconverting Nanocrystals for Luminescence Thermometry up to 900 K. J. Phys. Chem. C 2017, 121, 3503–3510. [Google Scholar] [CrossRef] [PubMed]
- Maciejewska, K.; Marciniak, L. The Role of Nd3+ Concentration in the Modulation of the Thermometric Performance of Stokes/Anti-Stokes Luminescence Thermometer in NaYF4:Nd3+. Sci. Rep. 2023, 13, 472. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Yang, J.; Jin, X.; Peng, Y.; Luo, J. A High-Sensitivity Optical Thermometer Based on Nd3+/Tm3+/Yb3+/Gd3+ Four-Doped NaYF4 Nanomaterials. J. Lumin. 2022, 246, 118807. [Google Scholar] [CrossRef]
- Fedorov, P.P.; Mayakova, M.N.; Alexandrov, A.A.; Voronov, V.V.; Pominova, D.V.; Chernova, E.V.; Ivanov, V.K. Synthesis of NaYF4:Yb, Er up-Conversion Luminophore from Nitrate Flux. Nanosyst. Phys. Chem. Math. 2020, 11, 417–423. [Google Scholar] [CrossRef]
- Maurya, S.K.; Kushawaha, R.; Tiwari, S.P.; Kumar, A.; Kumar, K.; Da Silva, J.C.G.E. Thermal Decomposition Mediated Er3+/Yb3+ Codoped NaGdF4 Upconversion Phosphor for Optical Thermometry. Mater. Res. Express 2019, 6, 086211. [Google Scholar] [CrossRef]
- Alexandrov, A.A.; Mayakova, M.N.; Voronov, V.V.; Pominova, D.V.; Kuznetsov, S.V.; Baranchikov, A.E.; Ivanov, V.K.; Lysakova, E.I.; Fedorov, P.P. Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Kondens. Sredy Mezhfaznye Granitsy Condens. Matter Interphases 2020, 22, 3–10. [Google Scholar] [CrossRef]
- Kuznetsov, S.V.; Alexandrov, A.A.; Fedorov, P.P. Optical Fluoride Nanoceramics. Inorg. Mater. 2021, 57, 555–578. [Google Scholar] [CrossRef]
- Basiev, T.T.; Orlovskii, Y.V.; Pukhov, K.K.; Sigachev, V.B.; Doroshenko, M.E.; Vorob’ev, I.N. Multiphonon Relaxation Rates Measurements and Theoretical Calculations in the Frame of Non-Linear and Non-Coulomb Model of a Rare-Earth Ion-L&and Interaction. J. Lumin. 1996, 68, 241–253. [Google Scholar] [CrossRef]
- Orlovskii, Y.V.; Basiev, T.T.; Pukhov, K.K.; Doroshenko, M.E.; Badikov, V.V.; Badikov, D.V.; Alimov, O.K.; Polyachenkova, M.V.; Dmitruk, L.N.; Osiko, V.V.; et al. Mid-IR Transitions of Trivalent Neodymium in Low Phonon Laser Crystals. Opt. Mater. 2007, 29, 1115–1128. [Google Scholar] [CrossRef]
- Fedorov, P.; Mayakova, M.; Alexandrov, A.; Voronov, V.; Kuznetsov, S.; Baranchikov, A.; Ivanov, V. The Melt of Sodium Nitrate as a Medium for the Synthesis of Fluorides. Inorganics 2018, 6, 38. [Google Scholar] [CrossRef]
- Buchinskaya, I.I.; Ivchenko, A.V. Solubility of calcium and strontium fluorides in a sodium nitrate melt and choosing a crucible material for working with their solution melts. Condens. Matter Interphases 2023, 25, 14–19. [Google Scholar] [CrossRef]
- Yonezawa, S.; Jae-Ho, K.; Takashima, M. Pyrohydrolysis of Rare-Earth Trifluorides in Moist Air. Solid State Sci. 2002, 4, 1481–1485. [Google Scholar] [CrossRef]
- Sobolev, B.P.; Tkachenko, N.L. Phase Diagrams of BaF2-(Y, Ln)F3 Systems. J. Less-Common Met. 1982, 85, 155–170. [Google Scholar] [CrossRef]
Samples | Nominal Composition | Composition according to EDX Data 1,2 | Reaction Yield, % |
---|---|---|---|
1 | Ba0.67Gd0.33F2.33 | Ba0.51(1)Gd0.45(1)Na0.04(2)F2.41 | 60.1 |
2 | Ba0.600Gd0.304Yb0.080Ho0.012Er0.004F2.4 | Ba0.44(1)Gd0.40(1)(Yb, Ho, Er)0.11(1)Na0.05(2)F2.46 | 70.5 |
3 | Ba0.600Gd0.300Yb0.080Ho0.012Er0.008F2.4 | Ba0.43(1)Gd0.38(1)(Yb, Ho, Er)0.11(1)Na0.08(2)F2.41 | 67.7 |
4 | Ba0.600Gd0.306Yb0.080Ho0.010Er0.004F2.4 | Ba0.42(1)Gd0.37(2)(Yb, Ho, Er)0.13(2)Na0.08(1)F2.42 | 70.3 |
5 | Ba0.600Gd0.304Yb0.080Ho0.008Er0.008F2.4 | Ba0.40(1)Gd0.30(4)(Yb, Ho, Er)0.22(5)Na0.08(2)F2.44 | 74.0 |
Sample № | a, Å | c, Å | V, Å3 | Dx, g/cm3 |
---|---|---|---|---|
1 | 4.164 (1) | 5.946 (1) | 103.09 (2) | 6.039 |
2 | 4.122 (1) | 17.672 (1) | 300.30 (3) | 6.310 |
3 | 4.122 (1) | 17.674 (1) | 300.37 (1) | 6.150 |
4 | 4.124 (1) | 17.682 (1) | 300.69 (1) | 6.167 |
5 | 4.123 (1) | 17.683 (1) | 300.61 (1) | 6.242 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrov, A.A.; Petrova, L.A.; Pominova, D.V.; Romanishkin, I.D.; Tsygankova, M.V.; Kuznetsov, S.V.; Ivanov, V.K.; Fedorov, P.P. Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization. Appl. Sci. 2023, 13, 9999. https://doi.org/10.3390/app13189999
Alexandrov AA, Petrova LA, Pominova DV, Romanishkin ID, Tsygankova MV, Kuznetsov SV, Ivanov VK, Fedorov PP. Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization. Applied Sciences. 2023; 13(18):9999. https://doi.org/10.3390/app13189999
Chicago/Turabian StyleAlexandrov, Alexander A., Lada A. Petrova, Daria V. Pominova, Igor D. Romanishkin, Maria V. Tsygankova, Sergey V. Kuznetsov, Vladimir K. Ivanov, and Pavel P. Fedorov. 2023. "Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization" Applied Sciences 13, no. 18: 9999. https://doi.org/10.3390/app13189999
APA StyleAlexandrov, A. A., Petrova, L. A., Pominova, D. V., Romanishkin, I. D., Tsygankova, M. V., Kuznetsov, S. V., Ivanov, V. K., & Fedorov, P. P. (2023). Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization. Applied Sciences, 13(18), 9999. https://doi.org/10.3390/app13189999