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Abstract: Novel tetragonal matrix Ba0.5−xLn0.5NaxF2.5−x with x = 0.08, doped by Yb3+, Ho3+, Er3+,
was synthesized by molten salt synthesis (MSS) from nitrate flux. XRD data show that the tetragonal
phase with a = 4.122(1) Å, c = 17.672(1) Å is stable in an argon atmosphere up to 960 ◦C. Luminescence
spectra recorded in 500–900 nm and 1050–1700 nm upon 974 nm pumping demonstrated the char-
acteristic luminescence at 1550 nm (4I13/2 → 4I15/2) for Er3+ and 1150 nm (5I6 → 5I8) for Ho3+. The
relative thermal sensitivity (Sr) at 296–316 K were 0.3%×K−1 and 5.5%×K−1 in shortwave infrared
(SWIR) and visible range, respectively. Synthesized luminophores can be used as dual-range optical
temperature sensors, which simultaneously operate in visible and SWIR ranges.

Keywords: fluoride matrix; luminescence; thermometry; thermography; molten salt synthesis

1. Introduction

Luminescent thermometry is an effective way to display the temperature in the ana-
lyzed objects. The main advantage of luminescent thermometry is the possibility of con-
tactless temperature measurement [1–5]. This approach is efficiently applied in medicine,
biology, detecting catalytic reactions, and other areas, where contact measurement is incon-
venient or inapplicable [6–9].

Luminescent nanoprobes are widely used quantum dots [10], organic dyes [11], poly-
mers [12], DNA or protein-conjugated systems [13], transition metal-based materials, or
materials doped with rare-earth ions [14]. The latter has many advantages, such as high
photostability and narrow luminescence peaks with large shifts between excitation and
emission. Moreover, these materials are also capable of converting near-infrared (NIR)
excitation to emission in the ultraviolet (UV), visible, or NIR range via a multiphoton
excitation process known as upconversion. This feature makes upconverting materials
interesting for biological applications where NIR excitation offers several advantages, such
as higher penetration depth in biological tissue, negligible autofluorescence, and lower
photodamage in comparison to UV.

Temperature measuring using rare-earth (Ln) ions luminescence [15] is based on two
main approaches. The first approach is based on the measurement of luminescence intensity
ratio (LIR) from two different energy levels that are thermally coupled [16,17]. The energy
gap between the thermally coupled levels is so small that, according to Boltzmann’s law, an
increase in temperature can lead to an increase in the population of the overlying state. In
the luminescence spectrum, an increase in the shorter-wavelength peak will be observed.

The second approach was proposed by Sekiyama et al. [18] and is based on temperature-
dependent non-resonant energy transfer. In this case, a matrix is doped with three rare-earth
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ions [19,20]. One of them (usually Yb3+) acts as a donor, absorbs exciting radiation, and
transfers it to two other acceptor ions. Acceptor ions are selected in such way that one
of the energy transfers is resonant, its probability does not depend on temperature and
this signal is used as a reference. The second transfer is non-resonant and with increasing
temperature, its probability increases (phonon-assisted energy transfer). This approach
was realized for Yb3+-Er3+-Ho3+-doped NaYF4 nanoparticles and allows thermometry in
the SWIR region.

Pumping was carried out into the absorption band Yb3+ (7F7/2 → 5F5/2), followed
by energy redistribution between Ho3+ and Er3+ ions as a result of non-radiative energy
transfer. In this case, the energy transfer of Yb3+ → Ho3+ is phonon assisted, as a result
of which the luminescence intensity of Ho3+ ions at the transition 5I6→5I8 will depend on
temperature, and the energy transfer of Yb3+→ Er3+ is resonant, as a result of which the lu-
minescence of Er3+ ions at the transition 4I13/2→ 4I15/2 depends on temperature weakly [21].
This makes it possible to measure the relative coefficient of temperature sensitivity by the
ratio of the integral intensities of the luminescence bands. The obtained thermal sensitivity
was in the range of 1.34–1.87%·◦C in the physiological temperature range.

To date, the active search for new thermal sensors continues. The main tasks are
to expand the range of operating temperatures and the range of excitation and emission
wavelengths, as well as to increase thermal sensitivity. The sensitivity between 0.5 and
1.5% K–1 at around 300 K is typically for Er3+ [22]. In the paper [23], it was proposed to
use silica coating to expand the thermometry range to 900 ◦C; the relative sensitivity was
from 1.02% K–1 at 300 K to 0.13% K–1 at 900 ◦C. The use of Nd3+ ions allows a shift of
the operating wavelength range into NIR and obtains a relative sensitivity of 1.1% K−1

for NaYF4:0.1%Nd3+ [24]. For Nd3+/Tm3+/Yb3+/Gd3+ four-doped NaYF4 nanoparticles
the relative sensitivity was significantly higher and reached 2.89% K−1 in the temperature
range of 333–553 K [25].

Thus, using thermally coupled levels, taking into account resonant and non-resonant
energy transfer channels from the sensitizer, it is possible to expand the range of wave-
lengths in which thermometry can be performed, as well as increase the thermal sensitivity.

Fluoride matrices such as NaYF4 [26], NaGdF4 [27], and MF2, where M = Ca, Sr,
Ba [28], have proven to be effective photonics materials [29]. It is known that an increase
in matrix molecular weight leads to a decrease in multi-phonon relaxation and usually
increases the luminescence energy yield [30,31]. In this connection, the purpose of the
study is to search for new “heavy” matrices based on fluorides and recognize their spectral
and luminescent characteristics for luminescent nanothermometers. As part of the study, a
method was developed for the synthesis of a new “heavy” matrix Ba0.5−xLn0.5NaxF2.5−x
(x = 0.08) and phosphors based on it for testing as a dual-band luminescent thermometer.

2. Materials and Methods
2.1. Synthesis of Luminophores

We synthesized the samples by crystallization from a solution in a sodium nitrate melt
according to the method [32]. Sodium fluoride (Reagent grade, Chimmed) was used as a
fluorinating agent, and sodium nitrate (Reagent grade, Chimmed) was used as a solvent.
The reagents were used without additional purification steps. The weights of the initial
reagents are given in Table S1.

The synthesis is described by the following reaction equation:

(1 − x)Ba(NO3)2 + xLn(NO3)3 × nH2O + (2 + x)NaF→ Ba1−xLnxF2+x↓ + (2 + x)NaNO3 + nxH2O↑. (1)

The samples of barium nitrate (specialty grade 10-2, Reachem) and nitrate hydrates of
rare earth elements (99.99% purity in terms of cation impurity, Lanhit) were homogenized
in an agate mortar for 10 min and then added to the samples of fluoride and sodium
nitrate. After homogenization, the mixture was transferred to a porcelain glazed crucible
and annealed at a temperature of 500 ◦C for 1 h with a heating rate of 10 ◦C per minute.
After natural cooling to room temperature, the sinter was removed from the crucible and



Appl. Sci. 2023, 13, 9999 3 of 11

washed three times with double-distilled water in a polypropylene reactor until a negative
reaction of a solution of diphenylamine in sulfuric acid to nitrate anions. The samples were
dried under an IR lamp at a temperature of 40–60 ◦C for 6 h.

2.2. Characterization of Luminophores

The samples were characterized by X-ray phase analysis (XRD) (Bruker, D8 Advance
with CuKa irradiation, Karlsruhe, Germany), scanning electron microscopy (SEM) (Carl
Zeiss, Nvision 40, Oberkochen, Germany), energy dispersion analysis (EDX) (Oxford
Instruments, X-Max 80 mm2, Abingdon, UK), differential scanning calorimetry (DSC)
(Netzsch, STA 449 F3 Jupiter, Selb, Germany). All samples were analyzed as prepared.

2.3. Temperature-Dependent Luminescence Spectra Measurements

Luminescent spectroscopy of the samples was performed on an installation consisting
of a laser with a wavelength of 974 nm, a spectrometer (StellarNet, DWARF-Star) in the
SWIR range of 1000–1700 nm, a spectrometer (BIOSPEC, LESA-01-BIOSPEC) in the visible
range of 300–900 nm, and a thermal infrared camera (CEDIP, JADE MWIR SC7300M) for
temperature measurements in the range from 24 to 44 ◦C [21]. Heating was carried out
using a Primelab PL-R-basic H heated magnetic stirrer (Primelab, Mytischci, Russia) with
0.1 ◦C temperature heating sampling. Luminescence intensity ratio (LIR) was used to
quantify the dependence of luminescence spectra on temperature in the SWIR range:

LIR = IHo/IEr (2)

where I is the integral luminescence intensity calculated as the area under the luminescence
peak in the corresponding wavelength range. For SWIR the area was calculated under the
peak in the 1100–1250 nm range for Ho3+ 5I6 → 5I8 transition and the 1450–1650 nm range
for Er3+ 4I13/2 → 4I15/2 transition. In visible range we use luminescence in green range,
520–570 nm range, which corresponds to Er3+ 2H11/2, 4S3/2 → 4I15/2, and in red range,
625–675 nm, which probably includes both the Er3+ and Ho3+ luminescence, transitions
4F9/2 → 4I15/2 and 2F5 → 5I8, correspondingly.

The relative coefficient of temperature sensitivity (Sr) was calculated using the follow-
ing formula:

Sr =
LIRT1 − LIRT2

T2 − T1
∗ 100% (3)

3. Results

In the course of our work, we synthesized samples in the BaF2-GdF3 system doped
with Yb, Ho, and Er. The nominal composition and composition determined according
to the EDX data of the samples obtained, as well as the practical yield of the synthesis
reaction are shown in Table 1. EDX results show that the crystal lattice of synthesized
samples contains sodium in an amount of up to 8 mol. %, regardless of the content of the
rare earth element. Apparently, this value corresponds to solubility limit of sodium in this
solid solution. The content of rare earth elements was overestimated compared to the initial
charge, and the content of barium was underestimated.

Figure 1 shows the X-ray diffraction patterns of prepared samples.
According to X-ray diffraction patterns, Samples 1–5 are single phase, and have a

structure derived from the fluorite structure in which BaF2 crystallizes. The X-ray pattern
of Sample 1 is characterized by a fine splitting of the main X-ray diffraction reflexes and is
indicated in the tetragonal crystallographic system in a space symmetry group (SSG) I4.
X-ray pattern of Samples 2–5 also indexed in SSG I4. It is worth noting that X-ray diffraction
patterns of Samples 2–5 contain superstructural peaks, which are well described when
the crystal lattice parameter “c” is increased three times. The Supplementary Materials,
Tables S2–S6, show the results of indexing of X-ray patterns. For all samples, the estimated
values of the coherent scattering regions D were more than 100 nm. The lattice parameters
of Samples 1–5 and the calculated X-ray density (Dx) values are given in Table 2.
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Table 1. The nominal composition of the samples, the composition according to EDX data, and the
practical yield of the sample synthesis reaction.

Samples Nominal Composition Composition according to EDX Data 1,2 Reaction Yield, %

1 Ba0.67Gd0.33F2.33 Ba0.51(1)Gd0.45(1)Na0.04(2)F2.41 60.1

2 Ba0.600Gd0.304Yb0.080Ho0.012Er0.004F2.4 Ba0.44(1)Gd0.40(1)(Yb, Ho, Er)0.11(1)Na0.05(2)F2.46 70.5

3 Ba0.600Gd0.300Yb0.080Ho0.012Er0.008F2.4 Ba0.43(1)Gd0.38(1)(Yb, Ho, Er)0.11(1)Na0.08(2)F2.41 67.7

4 Ba0.600Gd0.306Yb0.080Ho0.010Er0.004F2.4 Ba0.42(1)Gd0.37(2)(Yb, Ho, Er)0.13(2)Na0.08(1)F2.42 70.3

5 Ba0.600Gd0.304Yb0.080Ho0.008Er0.008F2.4 Ba0.40(1)Gd0.30(4)(Yb, Ho, Er)0.22(5)Na0.08(2)F2.44 74.0
1 Fluorine content was calculated by cations based on the assumption of electroneutrality of the solid solution.
2 EDX method does not have sufficient sensitivity to separate the signals of neighboring rare earth elements.
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SEM micrographs were obtained for all samples (Figure 2).
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Table 2. Crystal lattice parameters and sample density.

Sample № a, Å c, Å V, Å3 Dx, g/cm3

1 4.164 (1) 5.946 (1) 103.09 (2) 6.039

2 4.122 (1) 17.672 (1) 300.30 (3) 6.310

3 4.122 (1) 17.674 (1) 300.37 (1) 6.150

4 4.124 (1) 17.682 (1) 300.69 (1) 6.167

5 4.123 (1) 17.683 (1) 300.61 (1) 6.242

All powders have submicron sizes with a bimodal particle size distribution. The first
maximum is about 200 nm, and the second is about 700 nm. Histograms of particle size
distribution can be found in Supplementary Materials, Figure S1. Detection of backscattered
electrons showed that the particles in Sample 3 are homogeneous in composition, there
is no contrast in microphotographs. It has to be mentioned that corrosion of the glazed
porcelain crucible and additional phases in SEM microphotographs were not observed. The
presence of aluminum or silicon as the main elements of the crucible was not detected in
EDX analysis. Buchinskaya et al. [33] also showed that there is no interaction between the
sodium nitrate melt and the porcelain glazed crucible.

The results of thermal analysis are shown in Figures 3 and 4.
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Figure 3. DSC curve of Sample 3 in argon at heating rate 20 K×min−1.

DSC analysis of Sample 3 in argon atmosphere was made up to 1300 ◦C (Figure 3).
Peaks with maximums at 986 ◦C and 1010 ◦C correspond to phase reactions, and the effect
with a maximum at 1074 ◦C corresponds to the end of melting of the sample (liquidus
point). DSC data show that Sample 3 is stable in the flow of argon until 962.5 ◦C.

Thermal stability in air also was investigated (Figure 4). Sample 3 starts to lose
weight at approximately 290 ◦C. The endothermal peak around 80 ◦C may be attributed to
dehydration of adsorbed water. There are two exothermal peaks that could be attributed to
the chemical reaction of pyrohydrolysis [34]. However, the X-ray pattern of Sample 3 did
not change after this DSC experiment.
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Figure 4. DSC curve of Sample 3 in air at heating rate 20 K×min−1.

Figure 5 shows the luminescence spectra in the visible range for Sample 5 at different
temperatures (Figure 5a) and in the SWIR range for Samples 3 and 5 at a temperature of
296 K (Figure 5b).
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Figure 5. Luminescence spectra (a) Sample № 5, visible range; (b) Sample №3 and 5, SWIR range.

The peak in the SWIR region at 1150 nm wavelength corresponds to Ho3+ (5I6 → 5I8),
and the peak at 1550 nm corresponds to Er3+ (4I13/2 → 4I15/2).

The temperature dependences of the ratio of the intensities of the red and green
luminescence bands for the visible range of the spectrum are shown in Figure 6a, and the
intensity ratios of the erbium and holmium luminescence bands for the SWIR range are
shown in Figure 6b.

From the dependences presented in Figure 6, the relative coefficients of temperature
sensitivity in the temperature range from 24 to 44 ◦C are determined: Sr = 5.55%×K−1 in
the visible range and Sr = 0.34%×K−1 in the SWIR range.
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(LIR) for Sample 5. (a) The wavelengths are 625–675 nm and 520–570 nm. (b) The wavelengths are
1450–1650 nm and 1100–1250 nm.

4. Discussion

According to the XRD data, the synthesized samples crystallize in a tetragonal crys-
tallographic system with the spatial symmetry group I4. Comparing the data obtained
with the well-known phase diagram of the BaF2-GdF3 system, as presented in Figure 7,
makes it obvious that the samples prepared by us correspond to a high-temperature T
phase having a similar composition [35]. This phase with a fluorite-derived structure is
characterized by a tetragonal cell, SSG I4, with the parameter “c” increased three times.
The cause of tetragonal distortion is the ordered arrangement of clusters of defects in
a fluorite-type lattice. The synthesis of the phase of such a structure at a low synthesis
temperature of 500 ◦C is apparently explained by the entry of sodium into the lattice of
synthesized samples, leading to the stabilization of the high-temperature phase.
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As the data in Figure 6 show, the luminescent thermometer synthesized by us can
be used to detect temperature in both visible and SWIR ranges. At the same time, the
sensitivity in the visible range is high and significantly higher than in the IR range. However,
the obtained characteristic of our phosphor is consistent with the analogs described in the
literature (Table 3).

Table 3. Comparison of sensitivity of various luminescent IR thermometers in SWIR range.

Matrix Dopant Ions Temperature Range, K Sr, %×K−1 Bibliography

NaLuF4 Yb3+, Ho3+, Er3+ 293–568 0.21 [20]

β-NaYF4 Yb3+, Ho3+, Er3+ 298–323 0.85 [7]

Sr2LuF7 Yb3+, Ho3+, Er3+ 293–329 0.80 [19]

Ba0.51(1)Gd0.45(1)Na0.04(2)F2.41 Yb3+, Ho3+, Er3+ 296–316 0.34 This work

5. Conclusions

The synthesis of a heavy matrix based on barium gadolinium fluoride with a density
of more than 6 g/cm3 was developed as a result of this study. The entry of sodium into the
composition of the samples was recorded using the EDX method. The presence of sodium
stabilizes the high-temperature phase of the tetragonal crystallographic system with the
general formula Ba0.5−xLn0.5NaxF2.5−x.

The relative coefficients of temperature sensitivity (Sr) in the temperature range
296–316 K are equal to Sr = 5.55%×K−1 in the visible range and Sr = 0.34%×K−1 in
the SWIR range. The samples are not hygroscopic and are stable under air atmosphere
up to 200 ◦C. Thus, a novel dual-range luminescent thermometer of the composition
Ba0.5Gd0.45Na0.05F2.45: Yb, Ho, Er has been developed.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/app13189999/s1, Figure S1: histogram of particle size distribution;
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