Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometry
Abstract
:1. Introduction
- Section 2. Theory: Introducing the concept of polarization-sensitive analysis and forming the basis of the fitting procedure applied for the results chapter.
- Section 3. Experimental Setup: Describing the experimental realization.
- Section 4. Results: Discussing the experimental results and their agreements with theory.Section 4.1. Impact of Illumination Polarization.Section 4.2. Analyzation of the Near-Field Polarization.
- Section 5. Conclusions: Summarizing our results and giving an outlook on possible applications and extensions.
2. Theory
3. Experimental Setup
- Section 4.1 and Figure 3:controlled via the phase retardation plate, with no analyzer;
- Section 4.2 and Figure 4:set via the phase retardation plate; probed via the analyzer;
- Section 4.2 and Figure 5:controlled the via phase retardation plate; probed via the analyzer.
4. Results
4.1. Impact of Illumination Polarization
4.2. Analyzing the Near-Field Polarization
Wavelength | Re(); Our Results | Re(); Literature |
---|---|---|
10.6 µm | −2.57 ± 0.54 | −1.40 [38] |
10.7 µm | −6.37 ± 0.73 | −1.94 [38] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, V.J.; Matthiesen, M.; Goetz, K.P.; Huck, C.; Yim, C.; Siris, R.; Han, J.; Hahn, S.; Bunz, U.H.F.; Dreuw, A.; et al. AFM-IR and IR-SNOM for the Characterization of Small Molecule Organic Semiconductors. J. Phys. Chem. C 2020, 124, 5331–5344. [Google Scholar] [CrossRef]
- Tesema, T.E.; Mcfarland-Porter, R.; Zerai, E.; Grey, J.; Habteyes, T.G. Hierarchical Self-Assembly and Chemical Imaging of Nanoscale Domains in Polymer Blend Thin Films. J. Phys. Chem. C 2022, 126, 7764–7772. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, J.; Ma, Q.; Kittiwatanakul, S.; Mcleod, A.; Chen, X.; Gilbert Corder, S.; Watanabe, K.; Taniguchi, T.; Lu, J.; et al. Phase-Change Hyperbolic Heterostructures for Nanopolaritonics: A Case Study of hBN/VO2. Adv. Mater. 2019, 31, 1900251. [Google Scholar] [CrossRef]
- Ritchie, E.T.; Casper, C.B.; Lee, T.A.; Atkin, J.M. Quantitative Local Conductivity Imaging of Semiconductors Using Near-Field Optical Microscopy. J. Phys. Chem. C 2022, 126, 4515–4521. [Google Scholar] [CrossRef]
- Rygula, A.; Oleszkiewicz, T.; Grzebelus, E.; Pacia, M.Z.; Baranska, M.; Baranski, R. Raman, AFM and SNOM high resolution imaging of carotene crystals in a model carrot cell system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 197, 47–55. [Google Scholar] [CrossRef]
- Zenhausern, F.; Martin, Y.; Wickramasinghe, H.K. Scanning interferometric apertureless microscopy: Optical imaging at 10 angstrom resolution. Science 1995, 269, 1083–1085. [Google Scholar] [CrossRef]
- Knoll, B.; Keilmann, F. Near-field probing of vibrational absorption for chemical microscopy. Nature 1999, 399, 134–137. [Google Scholar] [CrossRef]
- Hillenbrand, R.; Knoll, B.; Keilmann, F. Pure optical contrast in scattering-type scanning near-field microscopy. J. Microsc. 2001, 202, 77–83. [Google Scholar] [CrossRef]
- Taubner, T.; Hillenbrand, R.; Keilmann, F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. J. Microsc. 2003, 210, 311–314. [Google Scholar] [CrossRef] [PubMed]
- Huber, A.J.; Keilmann, F.; Wittborn, J.; Aizpurua, J.; Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 2008, 8, 3766–3770. [Google Scholar] [CrossRef]
- Kuschewski, F.; Von Ribbeck, H.G.; Döring, J.; Winnerl, S.; Eng, L.M.; Kehr, S.C. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz. Appl. Phys. Lett. 2016, 108, 113102. [Google Scholar] [CrossRef]
- de Oliveira, T.V.; Nörenberg, T.; Álvarez-Pérez, G.; Wehmeier, L.; Taboada-Gutiérrez, J.; Obst, M.; Hempel, F.; Lee, E.J.; Klopf, J.M.; Errea, I.; et al. Nanoscale-Confined Terahertz Polaritons in a van der Waals Crystal. Adv. Mater. 2021, 33, 2005777. [Google Scholar] [CrossRef]
- Huber, A.; Ocelic, N.; Taubner, T.; Hillenbrand, R. Nanoscale Resolved Infrared Probing of Crystal Structure and of Plasmon-Phonon Coupling. Nano Lett. 2006, 6, 774–778. [Google Scholar] [CrossRef]
- Cui, T.; Sun, L.; Bai, B.; Sun, H.B. Probing and Imaging Photonic Spin-Orbit Interactions in Nanostructures. Laser Photonics Rev. 2021, 15, 2100011. [Google Scholar] [CrossRef]
- Kehr, S.C.; Cebula, M.; Mieth, O.; Härtling, T.; Seidel, J.; Grafström, S.; Eng, L.M.; Winnerl, S.; Stehr, D.; Helm, M. Anisotropy contrast in phonon-enhanced apertureless near-field microscopy using a free-electron laser. Phys. Rev. Lett. 2008, 100, 256403. [Google Scholar] [CrossRef] [PubMed]
- Govyadinov, A.A.; Mastel, S.; Golmar, F.; Chuvilin, A.; Carney, P.S.; Hillenbrand, R. Recovery of permittivity and depth from near-field data as a step toward infrared nanotomography. ACS Nano 2014, 8, 6911–6921. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.G.; Kihm, H.W.; Kihm, J.E.; Choi, W.J.; Kim, H.; Ropers, C.; Park, D.J.; Yoon, Y.C.; Choi, S.B.; Woo, D.H.; et al. Vector field microscopic imaging of light. Nat. Photon. 2007, 1, 53–56. [Google Scholar] [CrossRef]
- Liu, Z.; Ng, B.P.; Zhang, Y.; Soh, Y.C.; Kok, S.W. Near-field ellipsometry for thin film characterization. Opt. Express 2010, 18, 3298–3310. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Kok, S.W.; Ng, B.P.; Soh, Y.C. Reflection-based near-field ellipsometry for thin film characterization. Ultramicroscopy 2013, 124, 26–34. [Google Scholar] [CrossRef]
- Esslinger, M.; Dorfmüller, J.; Khunsin, W.; Vogelgesang, R.; Kern, K. Background-free imaging of plasmonic structures with cross-polarized apertureless scanning near-field optical microscopy. Rev. Sci. Instrum 2012, 83, 033704. [Google Scholar] [CrossRef] [PubMed]
- Mrkyvkova, N.; Cernescu, A.; Futera, Z.; Nebojsa, A.; Dubroka, A.; Sojkova, M.; Hulman, M.; Majkova, E.; Jergel, M.; Siffalovic, P.; et al. Nanoimaging of Orientational Defects in Semiconducting Organic Films. J. Phys. Chem. C 2021, 125, 42. [Google Scholar] [CrossRef]
- Schneider, S.; Seidel, J.; Grafström, S.; Eng, L.M.; Winnerl, S.; Stehr, D.; Helm, M. Impact of optical in-plane anisotropy on near-field phonon polariton spectroscopy. Appl. Phys. Lett. 2007, 90, 143101. [Google Scholar] [CrossRef]
- McArdle, P.; Lahneman, D.J.; Biswas, A.; Keilmann, F.; Qazilbash, M.M. Near-field infrared nanospectroscopy of surface phonon-polariton resonances. Phys. Rev. Research 2020, 2, 023272. [Google Scholar] [CrossRef]
- Richard, R.; Xinzhong, C.; Mengkun, L. High-efficiency scattering probe design for s-polarized near-field microscopy. Appl. Phys. Express 2021, 14, 022002. [Google Scholar] [CrossRef]
- Park, K.D.; Raschke, M.B. Polarization Control with Plasmonic Antenna Tips: A Universal Approach to Optical Nanocrystallography and Vector-Field Imaging. Nano Lett. 2018, 18, 2912–2917. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Chen, X.; Wehmeier, L.; Xu, S.; Shao, Y.; Zeng, Z.; Liu, F.; Mcleod, A.S.; Gilbert Corder, S.N.; Tsuneto, M.; et al. Probing subwavelength in-plane anisotropy with antenna-assisted infrared nano-spectroscopy. Nat. Commun. 2021, 12, 2649. [Google Scholar] [CrossRef] [PubMed]
- Aminpour, H.; Eng, L.M.; Kehr, S.C. Spatially confined vector fields at material-induced resonances in near-field-coupled systems. Opt. Express 2020, 28, 32316. [Google Scholar] [CrossRef]
- Wehmeier, L.; Lang, D.; Liu, Y.; Zhang, X.; Winnerl, S.; Eng, L.M.; Kehr, S.C. Polarization-dependent near-field phonon nanoscopy of oxides: SrTiO3, LiNbO3, and PbZr0.2Ti0.8O3. Phys. Rev. B 2019, 100, 47–52. [Google Scholar] [CrossRef]
- Huber, A.J.; Ziegler, A.; Köck, T.; Hillenbrand, R. Infrared nanoscopy of strained semiconductors. Nat. Nanotechnol. 2009, 4, 153–157. [Google Scholar] [CrossRef]
- Wehmeier, L.; Nörenberg, T.; De Oliveira, T.V.; Klopf, J.M.; Yang, S.Y.; Martin, L.W.; Ramesh, R.; Eng, L.M.; Kehr, S.C. Phonon-induced near-field resonances in multiferroic BiFeO3 thin films at infrared and THz wavelengths. Appl. Phys. Lett. 2020, 116. [Google Scholar] [CrossRef]
- Döring, J.; Lang, D.; Wehmeier, L.; Kuschewski, F.; Nörenberg, T.; Kehr, S.C.; Eng, L.M. Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate. Nanoscale 2018, 10, 18074–18079. [Google Scholar] [CrossRef] [PubMed]
- Knoll, B.; Keilmann, F. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Opt. Commun. 2000, 182, 321–328. [Google Scholar] [CrossRef]
- Jones, R.C. A New Calculus for the Treatment of Optical SystemsI Description and Discussion of the Calculus. J. Opt. Soc. Am. 1941, 31, 488. [Google Scholar] [CrossRef]
- Lukosz, W. Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation. JOSA 1979, 69, 1495–1503. [Google Scholar] [CrossRef]
- Renger, J.; Grafström, S.; Eng, L.M.; Hillenbrand, R. Resonant light scattering by near-field-induced phonon polaritons. Phys. Rev. B 2005, 71, 075410. [Google Scholar] [CrossRef]
- Fymat, A.L. Jones’s Matrix Representation of Optical Instruments I: Beam Splitters. Appl. Opt. 1971, 10, 2499. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.H.; Babar, S. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Mutschke, H.; Andersen, A.C.; Clément, D.; Henning, T.; Peiter, G. Infrared properties of SiC particles. Astron. Astrophys. 1999, 345, 187–202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaps, F.G.; Kehr, S.C.; Eng, L.M. Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometry. Appl. Sci. 2023, 13, 10429. https://doi.org/10.3390/app131810429
Kaps FG, Kehr SC, Eng LM. Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometry. Applied Sciences. 2023; 13(18):10429. https://doi.org/10.3390/app131810429
Chicago/Turabian StyleKaps, Felix G., Susanne C. Kehr, and Lukas M. Eng. 2023. "Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometry" Applied Sciences 13, no. 18: 10429. https://doi.org/10.3390/app131810429
APA StyleKaps, F. G., Kehr, S. C., & Eng, L. M. (2023). Polarization Sensitivity in Scattering-Type Scanning Near-Field Optical Microscopy—Towards Nanoellipsometry. Applied Sciences, 13(18), 10429. https://doi.org/10.3390/app131810429