Geoinformatics and Machine Learning for Comprehensive Fire Risk Assessment and Management in Peri-Urban Environments: A Building-Block-Level Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Overview
2.2.2. Analysis of Wind Characteristics
2.2.3. Determination of Fire Ignition Points
2.2.4. Hazard Scenarios
2.2.5. Vulnerability
Population Density
Population Age
Building Characteristics
Total Vulnerability
- This study combined population density and population age vulnerability layers to assess human vulnerability to fire incidents in the area of interest. This accounted for different demographic characteristics affecting vulnerability in the study area.
- The resulting layer was then combined with the building material vulnerability to estimate the total vulnerability of each building block by applying equal weights to population density, population age, and building material for assessing the vulnerability to fire risks.
2.2.6. Land Value Exposure
2.2.7. Fire Risk
3. Results
3.1. Hazard Scenarios
3.2. Total Vulnerability
3.3. Exposure
3.4. Fire Risk Maps
3.5. Field Campaigns and Management Planning
Proposed Evacuation Plan
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Munich Re. Group Annual Report; Munich Re: Munich, Germany, 2021. [Google Scholar]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- Prodromou, M.; Yfantidou, A.; Theocharidis, C.; Miltiadou, M.; Danezis, C. Analysis of radar and thermal satellite data time-series for understanding the long-term impact of land surface temperature changes on forests. In Proceedings of the EGU General Assembly, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Vassi, A.; Siountri, K.; Papadaki, K.; Iliadi, A.; Ypsilanti, A.; Bakogiannis, E. The Greek Urban Policy Reform through the Local Urban Plans (LUPs) and the Special Urban Plans (SUPs), Funded by Recovery and Resilience Facility (RRF). Land 2022, 11, 1231. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Environment. EU Biodiversity Strategy for 2030: Bringing Nature Back into Our Lives; Publications Office of the European Union: Luxembourg, 2021; Available online: https://data.europa.eu/doi/10.2779/677548 (accessed on 25 July 2023).
- UNISDR. Sendai Framework for Disaster Risk Reduction 2015–2030. United Nations Office for Disaster Risk Reduction, 2015. Available online: https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (accessed on 24 July 2023).
- Chowdhury, E.H.; Hassan, Q.K. Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS J. Photogramm. Remote Sens. 2015, 104, 224–236. [Google Scholar] [CrossRef]
- Gheshlaghi, H.A.; Feizizadeh, B.; Blaschke, T. GIS-based forest fire risk mapping using the analytical network process and fuzzy logic. J. Environ. Plan. Manag. 2020, 63, 481–499. [Google Scholar] [CrossRef]
- Kanga, S.; Sharma, L.K.; Pandey, P.C.; Nathawat, M.S. GIS Modelling Approach for Forest Fire Risk Assessment and Management. Int. J. Adv. Remote Sens. GIS Geogr. 2014, 2, 30–44. [Google Scholar]
- Erdin, C.; Çağlar, M. Rural Fire Risk Assessment in GIS Environment Using Fuzzy Logic and the AHP Approaches. Pol. J. Environ. Stud. 2021, 30, 4971–4984. [Google Scholar] [CrossRef]
- Jafari-Goldarag, Y.; Mohammadzadeh, A.; Ardakani, A. Fire Risk Assessment Using Neural Network and Logistic Regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [Google Scholar] [CrossRef]
- González-Olabarria, J.R.; Rodríguez, F.G.; Fernández-Landa, A.; Mola-Yudego, B. Mapping fire risk in the Model Forest of Urbión (Spain) based on airborne LiDAR measurements. For. Ecol. Manag. 2012, 282, 49–156. [Google Scholar] [CrossRef]
- Finney, M. An Overview of FlamMap Fire Modeling Capabilities. In Fuels Management-How to Measure Success: Conference Proceedings, Proceedings of the RMRS-P-41, Portland, OR, USA, 28–30 March 2006; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006. [Google Scholar]
- Zigner, K.; Carvalho, L.M.V.; Peterson, S.; Fujioka, F.; Duine, G.-J.; Jones, C.; Roberts, D.; Moritz, M. Evaluating the Ability of FARSITE to Simulate Wildfires Influenced by Extreme, Downslope Winds in Santa Barbara, California. Fire 2020, 3, 29. [Google Scholar] [CrossRef]
- Andrews Patricia, L. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildland Fire 2014, 23, 21–33. [Google Scholar] [CrossRef]
- Coen, J.L.; Cameron, M.; Michalakes, J.; Patton, E.G.; Riggan, P.J.; Yedinak, K.M. WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteorol. Climatol. 2013, 52, 16–38. [Google Scholar] [CrossRef]
- Tymstra, C.; Bryce, R.W.; Wotton, B.M.; Taylor, S.W.; Armitage, O.B. Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model (Information Report NOR-X-417); Canadian Forest Service: Edmonton, AB, Canada, 2010. [Google Scholar]
- Aslan, Y.E.; Korpeoglu, I.; Ulusoy, Ö. A framework for use of wireless sensor networks in forest fire detection and monitoring. Comput. Environ. Urban Syst. 2012, 36, 614–625. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Omarzadeh, D.; Mohammadnejad, V.; Khallaghi, H.; Sharifi, A.; Karkarg, B.G. An integrated approach of artificial intelligence and geoinformation techniques applied to forest fire risk modeling in Gachsaran, Iran. J. Environ. Plan. Manag. 2023, 66, 1369–1391. [Google Scholar] [CrossRef]
- Gbadamosi, S.L.; Nwulu, N.I. A multi-period composite generation and transmission expansion planning model incorporating renewable energy sources and demand response. Sustain. Energy Technol. Assess. 2020, 39, 100726. [Google Scholar] [CrossRef]
- Naderpour, M.; Rizeei, H.M.; Ramezani, F. Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework. Remote Sens. 2021, 13, 2513. [Google Scholar] [CrossRef]
- Dirzka, C.; Acciaro, M. Principal-agent problems in decarbonizing container shipping: A panel data analysis. Transp. Res. Part D Transp. Environ. 2021, 98, 102948. [Google Scholar] [CrossRef]
- Computational Industry Technologies A/S. User’s Manual for Kameleon FireEx; Computational Industry Technologies A/S: Stavanger, Norway, 2010. [Google Scholar]
- Lim, J.W.; Baalisampang, T.; Garaniya, V.; Abbassi, R.; Khan, F.; Ji, J. Numerical analysis of performances of passive fire protections in processing facilities. J. Loss Prev. Process Ind. 2019, 62, 103970. [Google Scholar] [CrossRef]
- Alcasena, F.; Salis, M.; Ager, A.; Castell, R.; Vega-García, C. Assessing Wildland Fire Risk Transmission to Communities in Northern Spain. Forests 2017, 8, 30. [Google Scholar] [CrossRef]
- Granda, S.; Ferreira, T.M. Assessing Vulnerability and Fire Risk in Old Urban Areas: Application to the Historical Centre of Guimarães. Fire Technol. 2018, 55, 105–127. [Google Scholar] [CrossRef]
- Granda, S.; Ferreira, T. Large-scale Vulnerability and Fire Risk Assessment of the Historic Centre of Quito, Ecuador. Int. J. Archit. Herit. 2019, 15, 1043–1057. [Google Scholar] [CrossRef]
- EADO. Resilience of the Greek Forest Ecosystems to Climate Change; Committee for the Resilience of the Greek Forest Ecosystems to Climate Change (EADO); Arianoutsou, M., Zerefos, C., Kalabokidis, K., Poupkou, A., Aravanopoulos, F., Eds.; Academy of Athens: Athens, Greece, 2023; 547p, ISBN 978-960-404-413-9. [Google Scholar]
- Efthimiou, N.; Psomiadis, E.; Panagos, P. Fire severity and soil erosion susceptibility mapping using multi-temporal Earth Observation data: The case of Mati fatal wildfire in Eastern Attica, Greece. Catena 2020, 187, 104320. [Google Scholar] [CrossRef]
- Girtsou, S.; Apostolakis, A.; Giannopoulos, G.; Kontoes, C. A machine learning methodology for next day wildfire prediction. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021. [Google Scholar]
- Kontoes, C.; Papoutsis, I.; Herekakis, T.; Ieronymidi, E.; Keramitsoglou, I. Remote Sensing Techniques for Forest Fire Disaster Management: The FireHub Operational Platform. In Integrating Scale in Remote Sensing and GIS; CRC Press: Boca Raton, FL, USA, 2016; pp. 157–188. [Google Scholar]
- Apostolakis, A.; Girtsou, S.; Kontoes, C.; Papoutsis, I.; Tsoutsos, M. Implementation of a Random Forest Classifier to Examine Wildfire Predictive Modelling in Greece Using Diachronically Collected Fire Occurrence and Fire Mapping Data. In Proceedings of the MultiMedia Modeling: 27th International Conference, MMM 2021, Prague, Czech Republic, 22–24 June 2021; Lokoč, J., Skopal, T., Schoeffmann, K., Mezaris, V., Li, X., Vrochidis, S., Patras, I., Eds.; Lecture Notes in Computer Science. Springer: Cham, Switzerland, 2021; Volume 12573. [Google Scholar] [CrossRef]
- Darvishi, L.; Daryaei, M.G.; Kouchi, A.H.S. Comparison of Statistical Modeling and AHP Methods in Fire Risk Assessment in Oak Forests of Iran. For. Res. 2020, 9, 229. [Google Scholar]
- Bonazountas, M.; Kallidromitou, D.; Kassomenos, P.A.; Passas, N. Forest Fire Risk Analysis. Hum. Ecol. Risk Assess. Int. J. 2005, 11, 617–626. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1950 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 2019. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 7 September 2023).
- Petrou, A.M.J. Weather Forecasting for the Greek Territory. Available online: https://meteo.gr (accessed on 7 September 2023).
- Queck, R.; Bernhofer, C. Constructing wind profiles in forests from limited measurements of wind and vegetation structure. Agric. For. Meteorol. 2010, 150, 724–735. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Brown, T.J. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 2011, 32, 772–780. [Google Scholar] [CrossRef]
- FlamMap6_ Release_Notes_June_28_2019. 2019. Available online: https://www.scribd.com/document/481166104/FlamMap6-Release-Notes-June-28-2019 (accessed on 7 August 2023).
- Scott, J.H.; Burgan, R.E. Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread model. In General Technical Report RMRS-GTR-153; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; 72p. [Google Scholar]
- Kalabokidis, K.; Palaiologou, P.; Finney, B. Fire Behavior Simulation in Mediterranean Forests Using the Minimum Travel Time Algorithm. In Proceedings of the 4th Fire Behavior and Fuels Conference, St. Petersburg, Russia, 1–4 July 2013; International Association of Wildland Fire: Missoula, MT, USA, 2014. [Google Scholar]
- Perrow, C. The Next Catastrophe; Princeton University Press: Princeton, NJ, USA, 2007. [Google Scholar]
- Qujia, Z.; Xinling, C.; Guomin, M.; Rouwei, P. Prediction Research on the Economic Losses and Population Casualties of Earthquake Disasters; Institute of Geophysics, State Seismological Bureau: Beijing, China, 1992; unpublished manuscript. [Google Scholar]
- Choi, M.; Lee, S.; Hwang, S.; Park, M.; Lee, H.S. Comparison of emergency response abilities and evacuation performance involving vulnerable occupants in building fire situations. Sustainability 2019, 12, 87. [Google Scholar] [CrossRef]
- Rahman, N.; Ansary, M.A.; Islam, I. GIS based mapping of vulnerability to earthquake and fire hazard in Dhaka city, Bangladesh. Int. J. Disaster Risk Reduct. 2015, 13, 291–300. [Google Scholar] [CrossRef]
- Jenks, G.F. The Data Model Concept in Statistical Mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Kodur, V.; Kumar, P.; Rafi, M.M. Fire hazard in buildings: Review, assessment and strategies for improving fire safety. PSU Res. Rev. 2019, 4, 1–23. [Google Scholar] [CrossRef]
- Stratton, R.D. Assessing the effectiveness of landscape fuel treatments on fire growth and behavior. J. For. 2004, 102, 32–40. [Google Scholar] [CrossRef]
- Forghani, A.; Cechet, B.; Radke, J.; Finney, M.A.; Butler, B.W. Applying fire spread simulation over two study sites in California lessons learned and future plans. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007. [Google Scholar] [CrossRef]
- Jahdi, R.; Salis, M.; Darvishsefat, A.A.; Alcasena, F.; Mostafavi, M.A.; Etemad, V.; Lozano, O.M.; Spano, D. Evaluating fire modelling systems in recent wildfires of the Golestan National Park, Iran. Forestry 2015, 89, 136–149. [Google Scholar] [CrossRef]
- Mitsopoulos, I.; Mallinis, G.; Karali, A.; Giannakopoulos, C.; Arianoutsou, M. Mapping fire behaviour in a Mediterranean landscape under different future climate change scenarios. In Proceedings of the International Conference ADAPTtoCLIMATE, Nicosia, Cyprus, 27–28 March 2014. [Google Scholar]
- Mitsopoulos, I.; Mallinis, G.; Zibtsev, S.; Yavuz, M.; Saglam, B.; Kucuk, O.; Bogomolov, V.; Borsuk, A.; Zaimes, G. An integrated approach for mapping fire suppression difficulty in three different ecosystems of Eastern Europe. J. Spat. Sci. 2017, 62, 139–155. [Google Scholar] [CrossRef]
- Salis, M.; Ager, A.A.; Alcasena, F.J.; Arca, B.; Finney, M.A.; Pellizzaro, G.; Spano, D. Analyzing seasonal patterns of wildfire exposure factors in Sardinia, Italy. Environ. Monit. Assess. 2015, 187, 4175. [Google Scholar] [CrossRef] [PubMed]
- Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management. 2012. Available online: https://filetransfer.itc.nl/ (accessed on 27 June 2023).
- Huang, H.; Li, L.; Gu, Y. Assessing the accessibility to fire hazards in preserving historical towns: Case studies in suburban Shanghai, China. Front. Archit. Res. 2022, 11, 731–746. [Google Scholar] [CrossRef]
- Fekete, A.; Nehren, U. Assessment of social vulnerability to forest fire and hazardous facilities in Germany. Int. J. Disaster Risk Reduct. 2023, 87, 103562. [Google Scholar] [CrossRef]
- Ferreira, T.M.; Vicente, R.; Da Silva, J.A.R.M.; Varum, H.; Costa, A.; Maio, R. Urban fire risk: Evaluation and emergency planning. J. Cult. Herit. 2016, 20, 739–745. [Google Scholar] [CrossRef]
- Urbina, O.; Sousa, H.S.; Fekete, A.; Matos, J.C.; Teixeira, E. Spatial Vulnerability Assessment of Critical Infrastructure Based on Fire Risk through GIS Systems—Case Study: Historic City Center of Guimarães, Portugal. Appl. Sci. 2023, 13, 8881. [Google Scholar] [CrossRef]
- Gualdi, B.; Binet-Stéphan, E.; Bahabi, A.; Marchal, R.; Moncoulon, D. Modelling fire risk exposure for France using machine learning. Appl. Sci. 2022, 12, 1635. [Google Scholar] [CrossRef]
Ages | Age Group | Weights |
---|---|---|
20 to 39 | 1 | 0.05 |
40 to 49 | 2 | 0.1 |
50 to 59 | 3 | 0.15 |
10 to 19 and 60 to 69 | 4 | 0.25 |
0 to 9 and >70 | 5 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yfantidou, A.; Zoka, M.; Stathopoulos, N.; Kokkalidou, M.; Girtsou, S.; Tsoutsos, M.-C.; Hadjimitsis, D.; Kontoes, C. Geoinformatics and Machine Learning for Comprehensive Fire Risk Assessment and Management in Peri-Urban Environments: A Building-Block-Level Approach. Appl. Sci. 2023, 13, 10261. https://doi.org/10.3390/app131810261
Yfantidou A, Zoka M, Stathopoulos N, Kokkalidou M, Girtsou S, Tsoutsos M-C, Hadjimitsis D, Kontoes C. Geoinformatics and Machine Learning for Comprehensive Fire Risk Assessment and Management in Peri-Urban Environments: A Building-Block-Level Approach. Applied Sciences. 2023; 13(18):10261. https://doi.org/10.3390/app131810261
Chicago/Turabian StyleYfantidou, Anastasia, Melpomeni Zoka, Nikolaos Stathopoulos, Martha Kokkalidou, Stella Girtsou, Michail-Christos Tsoutsos, Diofantos Hadjimitsis, and Charalampos Kontoes. 2023. "Geoinformatics and Machine Learning for Comprehensive Fire Risk Assessment and Management in Peri-Urban Environments: A Building-Block-Level Approach" Applied Sciences 13, no. 18: 10261. https://doi.org/10.3390/app131810261
APA StyleYfantidou, A., Zoka, M., Stathopoulos, N., Kokkalidou, M., Girtsou, S., Tsoutsos, M.-C., Hadjimitsis, D., & Kontoes, C. (2023). Geoinformatics and Machine Learning for Comprehensive Fire Risk Assessment and Management in Peri-Urban Environments: A Building-Block-Level Approach. Applied Sciences, 13(18), 10261. https://doi.org/10.3390/app131810261