Evolutionary Algorithms for Optimization Sequence of Cut in the Laser Cutting Path Problem
Abstract
:1. Introduction
2. The Laser Cutting Path Problem (LCPP)
2.1. Formal Definition
2.2. An Integer Programming Formulation
3. Literature Review
4. Overview of Application of ABRKGA to LCPP
4.1. Introduction
4.2. Initialization and Basic Concepts
- p—population size (representing the set of solutions viable in each iteration);
- —elite size partition of the population (representing the portion of the population that is selected as elite);
- —mutant size partition of the population (representing the portion of the solutions that are submitted to our mutation procedure);
- —probability of inheriting the key from an elite parent;
- —maximum number of generations;
- —value based on the running available time and ();
- —the device head movement speed value;
- —the device head cutting speed value.
4.3. An Eulerian Heuristic to Generate Improved Individuals for LCPP
- A graph is called Eulerian if it possesses a closed trail, known as an Eulerian trail or an Eulerian circuit, which starts and ends at the same vertex while traversing every edge.
- A graph with an open trail, where the trail begins and ends at distinct vertices while traversing every edge, is called semi-Eulerian. Alternatively, it can be denoted as having a semi-Eulerian trail.
- We assume the input layout is connected and contains all nodes with even degrees (Eulerian graph). Then, the heuristic can find an Eulerian circuit and needs to use one air movement (source to nearest node) and another (nearest node back to origin). In this case, we have the minimum time required to cut all items.Note: To return the sequence of edges at the Eulerian circuit, we apply a linear time implementation adapted from [38] with NetworkX (Python library).
- We assume the input layout is connected and contains precisely two vertices that have odd degrees (semi-Eulerian graph). In this way, the initial population comprises solutions with path routes that necessarily pass through both odd-degree vertices. The idea is that the metaheuristic finds the combination that minimizes the end-cut time in the LCPP, assuming that a good solution must pass through the starting and ending points.
- We assume the input layout is connected and contains more than two nodes with odd degrees. In this case, the heuristic seeks to transform the graph’s vertices that have odd degrees into even degrees, adding new edges between them until only two odd edges remain in the semi-Eulerian graph (2).
- We consider the possibility that the input layouts present items without contact between them. This situation occurs when the cut needs to maintain a safe area for the edges.
Algorithm 1: Eulerian Heuristc Algorithm |
Algorithm 2: Eulerian Heuristic Individual Generation |
4.4. New Generation Process
Algorithm 3: Pseudocode of ABRKGA to tackle LCPP |
5. Computational Results
5.1. Instances
5.2. Results for the MIP Flow Model
5.3. Comparison of Results for BRKGA vs. e-BRKGA
5.4. Comparison of Results for ABRKGA vs. e-ABRKGA
5.5. Comparison of Results for e-BRKGA vs. e-ABRKGA
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABRKGA | Adaptive biased random-key genetic algorithm |
ACO | Ant colony optimization |
ALNS | Adaptive large neighborhood search |
BRKGA | Biased random-key genetic algorithm |
CAD | Computer-aided design |
CAM | Computer-aided manufacturing |
C&P | Cutting and packing |
CPD | Cut path determination |
FACO | Focused ant colony optimization |
GA | Genetic algorithm |
GTSP | Generalized traveling salesman problem |
LCPP | Laser cutting path planning |
NC | Numerical control |
NRP | Node routing problem |
SVG | Scalable vector graphics |
RCL | Restricted chromosome list |
SA | Simulated annealing |
TSP | Traveling salesman problem |
TSP-N | Traveling salesman problem with neighborhoods |
Appendix A. Images of Input Layouts
Appendix A.1. Connected Instances
Appendix A.2. Separated Instances
Appendix B. Results Tables
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano_[0.997] | 109.45 | 81.85 | 110.43 | 82.59 | 109.77 | 82.21 | 0.34 | 1.09 | 0.31 | 1.32 |
albano_[0.998] | 108.94 | 83.98 | 110.00 | 82.08 | 109.52 | 83.23 | 0.29 | 0.79 | 0.26 | 0.95 |
albano_[0.999] | 109.65 | 80.55 | 110.51 | 79.69 | 109.99 | 80.79 | 0.27 | 0.94 | 0.24 | 1.16 |
blaz1_[0.997] | 156.29 | 31.45 | 158.21 | 31.69 | 157.21 | 31.43 | 0.60 | 0.39 | 0.38 | 1.23 |
blaz1_[0.998] | 156.81 | 30.97 | 157.86 | 32.53 | 157.25 | 31.41 | 0.37 | 0.53 | 0.24 | 1.70 |
blaz1_[0.999] | 156.29 | 30.48 | 158.14 | 31.15 | 157.21 | 31.01 | 0.69 | 0.62 | 0.44 | 1.99 |
blaz2_[0.997] | 274.19 | 113.44 | 278.75 | 117.19 | 276.49 | 116.74 | 1.33 | 1.37 | 0.48 | 1.18 |
blaz2_[0.998] | 275.66 | 90.41 | 279.38 | 89.69 | 277.36 | 91.24 | 0.94 | 0.97 | 0.34 | 1.06 |
blaz2_[0.999] | 275.81 | 96.73 | 278.40 | 97.11 | 276.86 | 97.53 | 0.76 | 1.46 | 0.27 | 1.50 |
blaz3_[0.997] | 424.31 | 400.35 | 428.85 | 404.89 | 426.69 | 400.65 | 1.67 | 3.31 | 0.39 | 0.83 |
blaz3_[0.998] | 426.51 | 276.21 | 429.76 | 276.08 | 428.49 | 274.41 | 1.07 | 1.82 | 0.25 | 0.66 |
blaz3_[0.999] | 428.02 | 212.58 | 432.00 | 215.66 | 429.43 | 215.19 | 1.04 | 2.22 | 0.24 | 1.03 |
dighe1_[0.997] | 71.10 | 12.37 | 71.77 | 13.04 | 71.35 | 12.46 | 0.23 | 0.42 | 0.32 | 3.40 |
dighe1_[0.998] | 71.15 | 13.93 | 72.14 | 15.95 | 71.42 | 13.56 | 0.29 | 1.29 | 0.40 | 9.52 |
dighe1_[0.999] | 71.02 | 20.58 | 71.76 | 11.97 | 71.38 | 14.66 | 0.20 | 4.12 | 0.28 | 28.09 |
dighe2_[0.997] | 54.15 | 7.78 | 54.60 | 7.99 | 54.37 | 7.84 | 0.15 | 0.24 | 0.28 | 3.12 |
dighe2_[0.998] | 54.17 | 7.91 | 54.56 | 7.72 | 54.34 | 7.66 | 0.13 | 0.14 | 0.24 | 1.82 |
dighe2_[0.999] | 54.23 | 7.36 | 54.61 | 7.49 | 54.37 | 7.36 | 0.13 | 0.13 | 0.25 | 1.72 |
fu_[0.997] | 24.64 | 5.89 | 24.82 | 6.70 | 24.71 | 6.06 | 0.08 | 0.38 | 0.31 | 6.30 |
fu_[0.998] | 24.61 | 5.24 | 24.84 | 5.73 | 24.69 | 5.85 | 0.08 | 0.37 | 0.32 | 6.40 |
fu_[0.999] | 24.59 | 5.77 | 24.95 | 5.73 | 24.74 | 5.59 | 0.11 | 0.12 | 0.44 | 2.17 |
inst_10pol_[0.997] | 127.31 | 18.00 | 128.44 | 18.78 | 127.71 | 18.30 | 0.34 | 0.26 | 0.27 | 1.42 |
inst_10pol_[0.998] | 127.19 | 17.64 | 128.94 | 18.03 | 127.89 | 18.37 | 0.50 | 0.49 | 0.39 | 2.67 |
inst_10pol_[0.999] | 127.00 | 17.31 | 128.13 | 17.97 | 127.72 | 17.85 | 0.36 | 0.29 | 0.28 | 1.65 |
inst_16pol_[0.997] | 77.35 | 14.55 | 78.23 | 15.38 | 77.74 | 15.05 | 0.31 | 0.37 | 0.40 | 2.43 |
inst_16pol_[0.998] | 77.28 | 14.75 | 78.33 | 14.62 | 77.91 | 14.66 | 0.31 | 0.20 | 0.39 | 1.34 |
inst_16pol_[0.999] | 77.78 | 14.17 | 78.55 | 14.75 | 78.09 | 14.28 | 0.27 | 0.28 | 0.34 | 1.93 |
inst_2pol_[0.997] | 33.13 | 2.18 | 33.13 | 2.18 | 33.13 | 2.14 | 0.00 | 0.06 | 0.00 | 2.80 |
inst_2pol_[0.998] | 33.13 | 2.01 | 33.13 | 2.01 | 33.13 | 2.16 | 0.00 | 0.19 | 0.00 | 8.89 |
inst_2pol_[0.999] | 33.13 | 1.80 | 33.13 | 1.80 | 33.13 | 1.87 | 0.00 | 0.14 | 0.00 | 7.30 |
inst_3pol_[0.997] | 39.25 | 6.06 | 39.25 | 6.06 | 39.25 | 3.84 | 0.00 | 1.01 | 0.00 | 26.36 |
inst_3pol_[0.998] | 39.25 | 2.85 | 39.25 | 2.85 | 39.25 | 4.61 | 0.00 | 1.31 | 0.00 | 28.44 |
inst_3pol_[0.999] | 39.25 | 3.17 | 39.25 | 3.17 | 39.25 | 2.88 | 0.00 | 0.20 | 0.00 | 7.01 |
inst_4pol_[0.997] | 57.38 | 5.04 | 57.38 | 5.04 | 57.38 | 4.80 | 0.00 | 0.17 | 0.00 | 3.48 |
inst_4pol_[0.998] | 57.38 | 4.62 | 57.38 | 4.62 | 57.38 | 4.79 | 0.00 | 0.28 | 0.00 | 5.93 |
inst_4pol_[0.999] | 57.38 | 5.64 | 57.38 | 5.64 | 57.38 | 5.58 | 0.00 | 0.31 | 0.00 | 5.52 |
inst_5pol_[0.997] | 69.63 | 6.65 | 69.75 | 6.50 | 69.66 | 6.67 | 0.06 | 0.10 | 0.09 | 1.49 |
inst_5pol_[0.998] | 69.63 | 6.19 | 70.00 | 6.71 | 69.67 | 6.55 | 0.12 | 0.17 | 0.17 | 2.66 |
inst_5pol_[0.999] | 69.63 | 6.76 | 69.75 | 6.74 | 69.65 | 6.61 | 0.05 | 0.31 | 0.08 | 4.70 |
inst_6pol_[0.997] | 81.75 | 8.30 | 82.38 | 8.50 | 81.88 | 8.97 | 0.23 | 0.55 | 0.28 | 6.10 |
inst_6pol_[0.998] | 81.75 | 8.25 | 82.00 | 8.47 | 81.84 | 8.34 | 0.10 | 0.15 | 0.12 | 1.74 |
inst_6pol_[0.999] | 81.75 | 7.97 | 82.13 | 8.19 | 81.91 | 8.12 | 0.15 | 0.15 | 0.18 | 1.85 |
inst_7pol_[0.997] | 96.88 | 10.75 | 97.50 | 11.30 | 97.13 | 11.36 | 0.19 | 0.32 | 0.20 | 2.83 |
inst_7pol_[0.998] | 97.00 | 12.93 | 97.88 | 11.91 | 97.18 | 11.52 | 0.28 | 0.81 | 0.29 | 7.01 |
inst_7pol_[0.999] | 96.88 | 11.73 | 97.38 | 11.30 | 97.08 | 11.61 | 0.22 | 0.50 | 0.23 | 4.31 |
inst_8pol_[0.997] | 105.75 | 13.06 | 106.75 | 12.83 | 106.05 | 13.03 | 0.29 | 0.17 | 0.27 | 1.32 |
inst_8pol_[0.998] | 105.75 | 13.73 | 106.75 | 12.92 | 106.18 | 12.93 | 0.37 | 0.37 | 0.35 | 2.90 |
inst_8pol_[0.999] | 105.75 | 12.16 | 106.50 | 12.25 | 106.05 | 12.28 | 0.24 | 0.27 | 0.23 | 2.24 |
inst_9pol_[0.997] | 124.13 | 16.52 | 125.50 | 16.89 | 124.68 | 16.98 | 0.43 | 0.60 | 0.34 | 3.52 |
inst_9pol_[0.998] | 124.00 | 16.61 | 125.50 | 16.73 | 124.74 | 16.61 | 0.43 | 0.17 | 0.34 | 1.02 |
inst_9pol_[0.999] | 124.00 | 15.92 | 125.13 | 16.54 | 124.50 | 16.01 | 0.33 | 0.27 | 0.27 | 1.67 |
inst_26pol_[0.997] | 146.11 | 134.68 | 149.09 | 133.96 | 146.99 | 135.00 | 0.86 | 2.26 | 0.58 | 1.67 |
inst_26pol_[0.998] | 146.29 | 139.31 | 148.45 | 142.15 | 147.33 | 139.75 | 0.69 | 2.58 | 0.47 | 1.85 |
inst_26pol_[0.999] | 146.71 | 138.98 | 150.06 | 139.59 | 148.07 | 139.72 | 0.90 | 1.41 | 0.61 | 1.01 |
rco1_[0.997] | 140.98 | 26.05 | 143.70 | 27.41 | 142.29 | 26.56 | 0.81 | 0.48 | 0.57 | 1.81 |
rco1_[0.998] | 141.84 | 26.47 | 143.34 | 26.01 | 142.28 | 26.28 | 0.44 | 0.52 | 0.31 | 1.99 |
rco1_[0.999] | 141.61 | 24.82 | 142.94 | 25.53 | 142.29 | 26.57 | 0.43 | 1.40 | 0.30 | 5.28 |
rco2_[0.997] | 276.80 | 112.56 | 278.61 | 112.74 | 277.53 | 112.39 | 0.65 | 0.92 | 0.23 | 0.82 |
rco2_[0.998] | 275.61 | 88.67 | 277.43 | 87.02 | 276.52 | 87.73 | 0.69 | 0.80 | 0.25 | 0.91 |
rco2_[0.999] | 274.42 | 96.80 | 276.87 | 97.30 | 275.83 | 96.84 | 0.70 | 1.40 | 0.25 | 1.44 |
rco3_[0.997] | 402.96 | 310.02 | 407.02 | 312.44 | 404.28 | 313.75 | 1.29 | 3.45 | 0.32 | 1.10 |
rco3_[0.998] | 402.55 | 222.08 | 406.46 | 229.15 | 404.62 | 225.31 | 1.32 | 3.23 | 0.33 | 1.43 |
rco3_[0.999] | 403.49 | 186.90 | 406.39 | 187.75 | 404.48 | 187.60 | 0.95 | 1.85 | 0.24 | 0.98 |
shapes2_[0.997] | 219.86 | 62.61 | 223.11 | 64.44 | 221.18 | 63.88 | 1.01 | 1.14 | 0.46 | 1.79 |
shapes2_[0.998] | 220.30 | 66.52 | 222.53 | 67.67 | 221.32 | 67.44 | 0.63 | 0.66 | 0.28 | 0.97 |
shapes2_[0.999] | 221.04 | 67.50 | 223.20 | 68.73 | 222.04 | 68.59 | 0.76 | 0.65 | 0.34 | 0.94 |
shapes4_[0.997] | 425.10 | 434.26 | 428.50 | 431.76 | 426.62 | 436.66 | 1.24 | 6.01 | 0.29 | 1.38 |
shapes4_[0.998] | 426.22 | 306.57 | 429.41 | 308.92 | 427.58 | 303.99 | 1.07 | 7.88 | 0.25 | 2.59 |
shapes4_[0.999] | 428.66 | 241.17 | 433.44 | 246.15 | 430.30 | 244.22 | 1.44 | 2.63 | 0.34 | 1.08 |
spfc_[0.997] | 146.64 | 31.29 | 148.12 | 31.53 | 147.25 | 31.61 | 0.43 | 0.28 | 0.29 | 0.89 |
spfc_[0.998] | 146.43 | 31.21 | 147.94 | 32.05 | 147.06 | 31.70 | 0.52 | 0.42 | 0.35 | 1.32 |
spfc_[0.999] | 146.78 | 30.35 | 147.92 | 31.02 | 147.34 | 30.87 | 0.43 | 0.37 | 0.29 | 1.19 |
trousers_[0.997] | 268.61 | 717.63 | 273.28 | 724.13 | 270.71 | 722.14 | 1.46 | 14.19 | 0.54 | 1.97 |
trousers_[0.998] | 271.50 | 481.03 | 274.61 | 537.23 | 272.44 | 512.28 | 1.14 | 23.39 | 0.42 | 4.57 |
trousers_[0.999] | 270.75 | 510.17 | 273.38 | 510.43 | 271.84 | 510.43 | 1.02 | 3.72 | 0.38 | 0.73 |
Exec. time (avg) | 85.34 | 86.65 | 86.09 |
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano_[0.997] | 102.03 | 207.58 | 102.94 | 207.05 | 102.42 | 207.26 | 0.30 | 1.24 | 0.29 | 0.60 |
albano_[0.998] | 102.12 | 200.52 | 103.60 | 203.93 | 102.63 | 202.77 | 0.44 | 1.80 | 0.42 | 0.89 |
albano_[0.999] | 102.27 | 191.72 | 103.34 | 195.22 | 102.68 | 196.52 | 0.32 | 2.17 | 0.31 | 1.10 |
blaz1_[0.997] | 154.64 | 50.01 | 155.20 | 51.37 | 155.10 | 50.38 | 0.18 | 0.55 | 0.11 | 1.10 |
blaz1_[0.998] | 154.64 | 49.65 | 155.20 | 50.65 | 155.10 | 50.10 | 0.18 | 0.52 | 0.11 | 1.04 |
blaz1_[0.999] | 154.64 | 48.14 | 155.20 | 48.17 | 155.10 | 48.02 | 0.18 | 0.33 | 0.11 | 0.68 |
blaz2_[0.997] | 271.76 | 295.15 | 276.37 | 298.51 | 272.81 | 296.51 | 1.32 | 2.21 | 0.48 | 0.74 |
blaz2_[0.998] | 270.84 | 221.09 | 274.62 | 225.43 | 272.68 | 223.12 | 1.25 | 1.46 | 0.46 | 0.65 |
blaz2_[0.999] | 271.46 | 230.73 | 275.32 | 233.02 | 272.59 | 230.22 | 1.17 | 1.88 | 0.43 | 0.82 |
blaz3_[0.997] | 421.23 | 601.05 | 426.37 | 604.82 | 423.98 | 605.54 | 1.54 | 3.44 | 0.36 | 0.57 |
blaz3_[0.998] | 423.29 | 413.60 | 427.56 | 409.67 | 425.74 | 410.32 | 1.50 | 1.70 | 0.35 | 0.41 |
blaz3_[0.999] | 424.69 | 322.69 | 428.82 | 321.57 | 426.92 | 322.75 | 1.47 | 2.89 | 0.34 | 0.90 |
dighe1_[0.997] | 70.77 | 13.25 | 71.49 | 13.61 | 71.05 | 13.35 | 0.20 | 0.16 | 0.27 | 1.16 |
dighe1_[0.998] | 70.88 | 13.12 | 71.38 | 13.27 | 71.09 | 13.04 | 0.15 | 0.12 | 0.21 | 0.90 |
dighe1_[0.999] | 71.04 | 12.72 | 71.51 | 12.48 | 71.20 | 12.58 | 0.15 | 0.12 | 0.22 | 0.98 |
dighe2_[0.997] | 54.41 | 13.21 | 54.75 | 12.64 | 54.55 | 12.88 | 0.11 | 0.22 | 0.20 | 1.69 |
dighe2_[0.998] | 54.48 | 12.39 | 54.68 | 12.68 | 54.56 | 12.57 | 0.06 | 0.14 | 0.12 | 1.10 |
dighe2_[0.999] | 54.46 | 11.89 | 55.03 | 12.40 | 54.67 | 12.09 | 0.20 | 0.15 | 0.37 | 1.26 |
fu_[0.997] | 24.40 | 12.95 | 24.94 | 13.34 | 24.67 | 13.51 | 0.16 | 0.35 | 0.65 | 2.55 |
fu_[0.998] | 24.38 | 13.67 | 24.88 | 13.40 | 24.67 | 13.65 | 0.15 | 0.32 | 0.63 | 2.31 |
fu_[0.999] | 24.27 | 12.94 | 24.91 | 13.60 | 24.67 | 13.54 | 0.19 | 0.39 | 0.77 | 2.84 |
inst_10pol_[0.997] | 127.00 | 19.13 | 127.88 | 18.83 | 127.39 | 19.04 | 0.24 | 0.25 | 0.18 | 1.31 |
inst_10pol_[0.998] | 127.00 | 18.80 | 127.81 | 18.84 | 127.36 | 19.01 | 0.20 | 0.27 | 0.16 | 1.41 |
inst_10pol_[0.999] | 127.00 | 18.17 | 127.63 | 18.09 | 127.34 | 18.19 | 0.20 | 0.23 | 0.16 | 1.24 |
inst_16pol_[0.997] | 77.28 | 16.67 | 77.95 | 16.51 | 77.55 | 16.70 | 0.19 | 0.22 | 0.25 | 1.29 |
inst_16pol_[0.998] | 77.50 | 17.42 | 77.93 | 16.04 | 77.69 | 16.45 | 0.15 | 0.40 | 0.20 | 2.41 |
inst_16pol_[0.999] | 77.35 | 16.04 | 78.18 | 15.83 | 77.63 | 15.87 | 0.25 | 0.19 | 0.33 | 1.21 |
inst_2pol_[0.997] | 33.50 | 5.88 | 33.50 | 5.88 | 33.50 | 5.87 | 0.00 | 0.20 | 0.00 | 3.46 |
inst_2pol_[0.998] | 33.50 | 5.38 | 33.50 | 5.38 | 33.50 | 5.60 | 0.00 | 0.23 | 0.00 | 4.08 |
inst_2pol_[0.999] | 33.50 | 4.36 | 33.50 | 4.36 | 33.50 | 5.01 | 0.00 | 0.41 | 0.00 | 8.27 |
inst_3pol_[0.997] | 39.25 | 4.89 | 39.25 | 4.89 | 39.25 | 4.76 | 0.00 | 0.11 | 0.00 | 2.25 |
inst_3pol_[0.998] | 39.25 | 4.58 | 39.25 | 4.58 | 39.25 | 4.57 | 0.00 | 0.18 | 0.00 | 3.90 |
inst_3pol_[0.999] | 39.25 | 4.92 | 39.25 | 4.92 | 39.25 | 4.52 | 0.00 | 0.19 | 0.00 | 4.29 |
inst_4pol_[0.997] | 57.38 | 6.15 | 57.75 | 6.16 | 57.41 | 5.99 | 0.12 | 0.14 | 0.21 | 2.36 |
inst_4pol_[0.998] | 57.38 | 5.79 | 57.50 | 6.06 | 57.38 | 5.86 | 0.04 | 0.16 | 0.07 | 2.74 |
inst_4pol_[0.999] | 57.38 | 5.77 | 57.38 | 5.77 | 57.38 | 5.76 | 0.00 | 0.08 | 0.00 | 1.35 |
inst_5pol_[0.997] | 69.63 | 11.96 | 70.13 | 11.02 | 69.74 | 11.25 | 0.18 | 0.49 | 0.25 | 4.37 |
inst_5pol_[0.998] | 69.63 | 11.45 | 70.13 | 11.84 | 69.95 | 11.35 | 0.18 | 0.27 | 0.26 | 2.35 |
inst_5pol_[0.999] | 69.63 | 11.21 | 70.25 | 11.35 | 69.92 | 11.38 | 0.24 | 0.15 | 0.35 | 1.33 |
inst_6pol_[0.997] | 81.88 | 13.28 | 82.38 | 13.23 | 82.10 | 13.05 | 0.20 | 0.19 | 0.24 | 1.44 |
inst_6pol_[0.998] | 81.75 | 12.66 | 82.25 | 13.52 | 81.95 | 13.18 | 0.14 | 0.40 | 0.17 | 3.07 |
inst_6pol_[0.999] | 81.88 | 12.87 | 82.38 | 13.16 | 82.13 | 12.80 | 0.17 | 0.21 | 0.21 | 1.67 |
inst_7pol_[0.997] | 96.88 | 11.03 | 97.13 | 11.08 | 96.95 | 11.10 | 0.10 | 0.15 | 0.11 | 1.37 |
inst_7pol_[0.998] | 96.88 | 11.09 | 97.00 | 10.97 | 96.97 | 11.01 | 0.05 | 0.16 | 0.05 | 1.43 |
inst_7pol_[0.999] | 96.88 | 11.57 | 97.00 | 11.36 | 96.92 | 10.89 | 0.06 | 0.40 | 0.07 | 3.71 |
inst_8pol_[0.997] | 105.75 | 13.47 | 106.25 | 12.98 | 106.02 | 13.06 | 0.16 | 0.18 | 0.15 | 1.36 |
inst_8pol_[0.998] | 105.75 | 12.64 | 106.25 | 12.75 | 105.94 | 12.89 | 0.18 | 0.19 | 0.17 | 1.46 |
inst_8pol_[0.999] | 105.75 | 12.76 | 106.50 | 12.48 | 105.94 | 12.46 | 0.26 | 0.18 | 0.24 | 1.43 |
inst_9pol_[0.997] | 125.63 | 28.27 | 126.25 | 28.11 | 125.99 | 28.43 | 0.19 | 0.26 | 0.15 | 0.92 |
inst_9pol_[0.998] | 125.75 | 27.78 | 126.25 | 27.24 | 125.97 | 27.73 | 0.16 | 0.48 | 0.13 | 1.74 |
inst_9pol_[0.999] | 125.75 | 26.09 | 126.13 | 25.43 | 125.93 | 25.87 | 0.12 | 0.34 | 0.10 | 1.32 |
inst_26pol_[0.997] | 145.32 | 310.40 | 147.52 | 295.21 | 146.49 | 303.92 | 0.69 | 6.84 | 0.47 | 2.25 |
inst_26pol_[0.998] | 145.64 | 279.32 | 147.77 | 293.59 | 146.71 | 287.98 | 0.61 | 8.47 | 0.42 | 2.94 |
inst_26pol_[0.999] | 146.39 | 261.52 | 148.40 | 268.48 | 147.33 | 264.13 | 0.64 | 2.03 | 0.43 | 0.77 |
rco1_[0.997] | 141.31 | 43.82 | 142.40 | 44.36 | 141.68 | 44.39 | 0.29 | 0.35 | 0.20 | 0.79 |
rco1_[0.998] | 141.35 | 45.61 | 142.17 | 46.86 | 141.67 | 46.44 | 0.28 | 2.04 | 0.20 | 4.39 |
rco1_[0.999] | 141.17 | 52.97 | 142.10 | 52.95 | 141.58 | 49.70 | 0.26 | 2.78 | 0.18 | 5.59 |
rco2_[0.997] | 273.93 | 138.93 | 276.66 | 139.57 | 275.13 | 139.86 | 1.01 | 0.93 | 0.37 | 0.67 |
rco2_[0.998] | 274.91 | 113.39 | 277.22 | 112.39 | 275.93 | 112.23 | 0.82 | 1.25 | 0.30 | 1.11 |
rco2_[0.999] | 274.77 | 120.76 | 276.38 | 120.09 | 275.59 | 119.92 | 0.58 | 0.70 | 0.21 | 0.58 |
rco3_[0.997] | 409.02 | 1582.20 | 416.47 | 1622.53 | 412.49 | 1595.47 | 2.22 | 19.13 | 0.54 | 1.20 |
rco3_[0.998] | 408.78 | 906.03 | 418.29 | 927.53 | 414.10 | 916.01 | 3.33 | 8.62 | 0.80 | 0.94 |
rco3_[0.999] | 406.78 | 544.03 | 424.24 | 556.58 | 414.57 | 549.43 | 5.95 | 3.72 | 1.43 | 0.68 |
shapes2_[0.997] | 215.98 | 123.75 | 218.04 | 123.12 | 216.98 | 122.75 | 0.63 | 0.77 | 0.29 | 0.63 |
shapes2_[0.998] | 216.36 | 129.00 | 218.14 | 129.50 | 216.86 | 128.43 | 0.53 | 1.39 | 0.25 | 1.08 |
shapes2_[0.999] | 215.81 | 130.11 | 217.27 | 131.53 | 216.61 | 131.03 | 0.45 | 1.28 | 0.21 | 0.97 |
shapes4_[0.997] | 423.63 | 729.75 | 426.50 | 737.99 | 424.83 | 832.01 | 0.92 | 77.01 | 0.22 | 9.26 |
shapes4_[0.998] | 422.93 | 654.05 | 427.32 | 734.14 | 425.41 | 660.39 | 1.36 | 34.04 | 0.32 | 5.15 |
shapes4_[0.999] | 424.58 | 381.28 | 430.23 | 380.46 | 427.40 | 388.22 | 1.66 | 11.73 | 0.39 | 3.02 |
spfc_[0.997] | 144.46 | 67.95 | 145.58 | 67.80 | 144.87 | 68.03 | 0.40 | 0.37 | 0.28 | 0.55 |
spfc_[0.998] | 144.49 | 66.69 | 145.96 | 67.17 | 145.06 | 67.05 | 0.53 | 0.33 | 0.37 | 0.50 |
spfc_[0.999] | 144.39 | 67.95 | 145.73 | 64.31 | 144.91 | 66.58 | 0.42 | 2.31 | 0.29 | 3.47 |
trousers_[0.997] | 269.45 | 4044.48 | 282.95 | 4618.07 | 275.11 | 4114.72 | 4.91 | 258.25 | 1.78 | 6.28 |
trousers_[0.998] | 271.72 | 3042.26 | 283.93 | 3331.27 | 277.10 | 3067.14 | 3.52 | 183.45 | 1.27 | 5.98 |
trousers_[0.999] | 270.86 | 3308.09 | 278.55 | 3386.72 | 274.73 | 3222.42 | 2.87 | 239.20 | 1.04 | 7.42 |
Exec. time (avg) | 272.99 | 287.97 | 275.18 | 11.95 |
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano_[0.997] | 112.58 | 76.25 | 114.07 | 75.22 | 113.06 | 75.58 | 0.46 | 0.87 | 0.41 | 1.15 |
albano_[0.998] | 112.70 | 76.92 | 114.27 | 75.76 | 113.35 | 76.23 | 0.46 | 1.15 | 0.41 | 1.51 |
albano_[0.999] | 112.94 | 71.98 | 114.37 | 72.61 | 113.69 | 72.94 | 0.51 | 1.02 | 0.45 | 1.40 |
blaz1_[0.997] | 163.99 | 30.85 | 165.62 | 30.13 | 164.64 | 31.03 | 0.55 | 1.37 | 0.33 | 4.41 |
blaz1_[0.998] | 163.49 | 29.72 | 165.55 | 30.77 | 164.48 | 30.47 | 0.73 | 0.87 | 0.44 | 2.84 |
blaz1_[0.999] | 163.32 | 29.42 | 166.21 | 29.44 | 164.59 | 29.68 | 0.91 | 0.47 | 0.56 | 1.57 |
blaz2_[0.997] | 297.25 | 116.10 | 302.22 | 117.62 | 298.54 | 117.50 | 1.43 | 0.89 | 0.48 | 0.76 |
blaz2_[0.998] | 297.66 | 86.53 | 300.15 | 86.52 | 298.54 | 86.63 | 0.91 | 1.17 | 0.31 | 1.35 |
blaz2_[0.999] | 296.97 | 96.52 | 299.54 | 95.22 | 297.99 | 94.23 | 0.90 | 1.45 | 0.30 | 1.54 |
blaz3_[0.997] | 496.93 | 556.37 | 502.51 | 571.44 | 498.86 | 564.79 | 1.42 | 7.82 | 0.29 | 1.38 |
blaz3_[0.998] | 498.22 | 357.06 | 501.63 | 376.76 | 499.66 | 373.33 | 1.09 | 10.03 | 0.22 | 2.69 |
blaz3_[0.999] | 498.88 | 234.87 | 504.08 | 235.78 | 501.13 | 238.47 | 1.65 | 3.25 | 0.33 | 1.36 |
dighe1_[0.997] | 97.43 | 23.32 | 98.16 | 23.26 | 97.83 | 23.44 | 0.22 | 0.30 | 0.22 | 1.28 |
dighe1_[0.998] | 97.56 | 23.03 | 98.15 | 22.90 | 97.81 | 23.11 | 0.20 | 0.78 | 0.20 | 3.37 |
dighe1_[0.999] | 97.60 | 22.04 | 98.46 | 23.39 | 98.01 | 26.88 | 0.29 | 5.45 | 0.30 | 20.28 |
dighe2_[0.997] | 79.32 | 16.27 | 80.17 | 16.34 | 79.75 | 16.48 | 0.28 | 0.36 | 0.35 | 2.19 |
dighe2_[0.998] | 79.75 | 16.12 | 80.22 | 16.79 | 79.94 | 16.99 | 0.19 | 0.91 | 0.24 | 5.37 |
dighe2_[0.999] | 79.53 | 15.81 | 80.36 | 17.19 | 79.94 | 17.06 | 0.26 | 0.78 | 0.32 | 4.55 |
fu_[0.997] | 28.78 | 5.66 | 29.04 | 5.74 | 28.91 | 5.60 | 0.07 | 0.10 | 0.24 | 1.77 |
fu_[0.998] | 28.81 | 5.54 | 29.09 | 5.47 | 28.91 | 5.55 | 0.08 | 0.09 | 0.29 | 1.66 |
fu_[0.999] | 28.80 | 5.55 | 29.05 | 5.39 | 28.92 | 5.52 | 0.08 | 0.26 | 0.26 | 4.65 |
inst_10pol_[0.997] | 193.84 | 34.05 | 195.91 | 33.62 | 194.80 | 33.29 | 0.65 | 0.41 | 0.33 | 1.22 |
inst_10pol_[0.998] | 194.00 | 35.04 | 196.05 | 35.16 | 194.89 | 34.70 | 0.61 | 0.45 | 0.31 | 1.29 |
inst_10pol_[0.999] | 194.65 | 34.54 | 195.88 | 35.04 | 195.17 | 34.59 | 0.38 | 0.38 | 0.19 | 1.09 |
inst_16pol_[0.997] | 174.69 | 85.67 | 175.94 | 90.47 | 175.22 | 86.88 | 0.39 | 1.98 | 0.22 | 2.28 |
inst_16pol_[0.998] | 174.93 | 91.13 | 176.06 | 91.78 | 175.54 | 91.36 | 0.36 | 0.48 | 0.20 | 0.52 |
inst_16pol_[0.999] | 175.15 | 90.58 | 176.10 | 92.67 | 175.48 | 90.97 | 0.31 | 0.98 | 0.18 | 1.07 |
inst_2pol_[0.997] | 36.05 | 2.36 | 36.05 | 2.36 | 36.05 | 2.42 | 0.00 | 0.09 | 0.00 | 3.61 |
inst_2pol_[0.998] | 36.05 | 2.08 | 36.05 | 2.08 | 36.05 | 2.34 | 0.00 | 0.17 | 0.00 | 7.11 |
inst_2pol_[0.999] | 36.05 | 2.21 | 36.05 | 2.21 | 36.05 | 2.20 | 0.00 | 0.16 | 0.00 | 7.23 |
inst_3pol_[0.997] | 48.10 | 4.55 | 48.30 | 5.10 | 48.12 | 4.66 | 0.06 | 0.27 | 0.13 | 5.86 |
inst_3pol_[0.998] | 48.10 | 4.92 | 48.30 | 3.97 | 48.12 | 5.14 | 0.06 | 1.25 | 0.13 | 24.40 |
inst_3pol_[0.999] | 48.10 | 3.81 | 48.30 | 7.75 | 48.14 | 5.39 | 0.08 | 1.83 | 0.18 | 33.91 |
inst_4pol_[0.997] | 72.15 | 7.23 | 72.50 | 7.05 | 72.24 | 6.94 | 0.14 | 0.20 | 0.19 | 2.82 |
inst_4pol_[0.998] | 72.15 | 6.56 | 72.40 | 6.70 | 72.23 | 6.92 | 0.11 | 0.38 | 0.15 | 5.46 |
inst_4pol_[0.999] | 72.15 | 6.16 | 72.43 | 7.12 | 72.23 | 6.69 | 0.11 | 0.39 | 0.16 | 5.85 |
inst_5pol_[0.997] | 90.20 | 10.16 | 91.00 | 10.18 | 90.56 | 10.22 | 0.28 | 0.14 | 0.31 | 1.41 |
inst_5pol_[0.998] | 90.15 | 9.80 | 91.03 | 9.91 | 90.43 | 9.96 | 0.30 | 0.26 | 0.33 | 2.56 |
inst_5pol_[0.999] | 90.25 | 9.54 | 91.23 | 10.04 | 90.53 | 9.64 | 0.28 | 0.16 | 0.31 | 1.63 |
inst_6pol_[0.997] | 114.45 | 14.30 | 115.48 | 14.47 | 114.80 | 14.78 | 0.32 | 0.41 | 0.28 | 2.80 |
inst_6pol_[0.998] | 114.23 | 15.52 | 115.63 | 15.22 | 114.78 | 15.17 | 0.49 | 0.90 | 0.43 | 5.95 |
inst_6pol_[0.999] | 114.62 | 15.25 | 115.93 | 14.59 | 115.12 | 15.25 | 0.37 | 0.50 | 0.32 | 3.31 |
inst_7pol_[0.997] | 138.76 | 18.75 | 140.26 | 19.30 | 139.33 | 19.46 | 0.41 | 0.41 | 0.29 | 2.13 |
inst_7pol_[0.998] | 138.91 | 19.54 | 140.56 | 19.79 | 139.37 | 19.58 | 0.50 | 0.21 | 0.36 | 1.10 |
inst_7pol_[0.999] | 138.58 | 19.21 | 140.18 | 19.27 | 139.36 | 19.15 | 0.62 | 0.32 | 0.45 | 1.68 |
inst_8pol_[0.997] | 157.43 | 23.40 | 159.43 | 24.18 | 158.05 | 23.97 | 0.74 | 0.39 | 0.47 | 1.61 |
inst_8pol_[0.998] | 156.65 | 23.63 | 159.08 | 24.81 | 157.76 | 24.33 | 0.68 | 0.56 | 0.43 | 2.29 |
inst_8pol_[0.999] | 157.15 | 23.68 | 159.50 | 23.40 | 158.23 | 23.64 | 0.81 | 0.46 | 0.51 | 1.96 |
inst_9pol_[0.997] | 187.73 | 31.02 | 189.70 | 29.77 | 188.73 | 30.39 | 0.56 | 0.40 | 0.30 | 1.30 |
inst_9pol_[0.998] | 187.40 | 30.10 | 189.33 | 31.58 | 188.15 | 30.69 | 0.71 | 0.60 | 0.38 | 1.97 |
inst_9pol_[0.999] | 187.93 | 30.76 | 189.45 | 31.55 | 188.65 | 30.77 | 0.48 | 0.43 | 0.25 | 1.40 |
inst_26pol_[0.997] | 200.11 | 187.88 | 202.12 | 188.32 | 201.10 | 188.78 | 0.74 | 1.50 | 0.37 | 0.80 |
inst_26pol_[0.998] | 199.62 | 197.76 | 202.22 | 199.08 | 200.89 | 197.81 | 0.85 | 1.18 | 0.43 | 0.60 |
inst_26pol_[0.999] | 199.87 | 203.37 | 201.45 | 200.57 | 200.54 | 202.62 | 0.50 | 3.85 | 0.25 | 1.90 |
rco1_[0.997] | 163.32 | 26.56 | 165.62 | 26.95 | 164.61 | 27.40 | 0.68 | 0.71 | 0.41 | 2.59 |
rco1_[0.998] | 163.26 | 26.49 | 165.72 | 27.72 | 164.49 | 27.07 | 0.82 | 0.43 | 0.50 | 1.59 |
rco1_[0.999] | 163.49 | 26.71 | 165.57 | 26.56 | 164.51 | 26.90 | 0.72 | 0.45 | 0.44 | 1.66 |
rco2_[0.997] | 322.21 | 122.50 | 325.50 | 119.63 | 323.73 | 121.27 | 1.06 | 1.58 | 0.33 | 1.31 |
rco2_[0.998] | 322.67 | 90.66 | 326.16 | 93.85 | 324.25 | 92.39 | 1.22 | 1.12 | 0.38 | 1.22 |
rco2_[0.999] | 322.36 | 97.28 | 324.82 | 99.31 | 323.40 | 98.14 | 0.80 | 0.87 | 0.25 | 0.89 |
rco3_[0.997] | 487.92 | 435.70 | 493.13 | 430.93 | 490.28 | 429.45 | 1.42 | 3.15 | 0.29 | 0.73 |
rco3_[0.998] | 489.61 | 288.38 | 493.18 | 285.21 | 491.07 | 285.95 | 1.32 | 2.02 | 0.27 | 0.71 |
rco3_[0.999] | 489.55 | 196.50 | 492.82 | 195.90 | 491.01 | 193.28 | 1.17 | 3.60 | 0.24 | 1.86 |
shapes2_[0.997] | 231.16 | 56.62 | 233.01 | 58.93 | 232.11 | 57.63 | 0.60 | 1.00 | 0.26 | 1.74 |
shapes2_[0.998] | 230.59 | 63.62 | 233.13 | 61.43 | 231.76 | 62.38 | 0.81 | 1.17 | 0.35 | 1.87 |
shapes2_[0.999] | 230.93 | 63.93 | 233.08 | 64.30 | 231.90 | 64.48 | 0.72 | 1.14 | 0.31 | 1.77 |
shapes4_[0.997] | 454.80 | 464.50 | 458.54 | 484.06 | 456.44 | 465.41 | 1.13 | 11.18 | 0.25 | 2.40 |
shapes4_[0.998] | 454.91 | 291.62 | 458.95 | 287.36 | 456.82 | 289.34 | 1.29 | 4.15 | 0.28 | 1.43 |
shapes4_[0.999] | 456.35 | 235.71 | 461.07 | 237.20 | 458.01 | 236.44 | 1.52 | 4.79 | 0.33 | 2.03 |
spfc_[0.997] | 149.98 | 28.08 | 151.45 | 28.40 | 150.70 | 28.55 | 0.46 | 0.46 | 0.30 | 1.63 |
spfc_[0.998] | 150.15 | 28.53 | 151.54 | 28.58 | 150.70 | 28.56 | 0.38 | 0.23 | 0.25 | 0.80 |
spfc_[0.999] | 149.94 | 28.08 | 152.21 | 28.04 | 150.61 | 28.08 | 0.68 | 0.50 | 0.45 | 1.77 |
trousers_[0.997] | 298.75 | 718.47 | 302.70 | 745.63 | 300.84 | 734.46 | 1.57 | 21.92 | 0.52 | 2.99 |
trousers_[0.998] | 302.52 | 511.29 | 305.81 | 526.19 | 303.92 | 520.26 | 1.09 | 11.52 | 0.36 | 2.21 |
trousers_[0.999] | 301.90 | 543.22 | 305.16 | 511.10 | 303.36 | 528.66 | 1.03 | 22.34 | 0.34 | 4.23 |
Exec. time (avg) | 100.47 | 101.47 | 101.04 |
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano_[0.997] | 112.20 | 123.00 | 113.63 | 125.04 | 112.95 | 123.99 | 0.50 | 0.84 | 0.44 | 0.68 |
albano_[0.998] | 112.05 | 123.38 | 113.87 | 123.47 | 112.89 | 123.23 | 0.61 | 0.80 | 0.54 | 0.65 |
albano_[0.999] | 112.68 | 117.12 | 114.36 | 119.64 | 113.51 | 118.35 | 0.49 | 1.02 | 0.43 | 0.86 |
blaz1_[0.997] | 163.18 | 34.58 | 164.83 | 34.67 | 163.99 | 34.96 | 0.55 | 0.52 | 0.34 | 1.49 |
blaz1_[0.998] | 163.56 | 35.14 | 164.44 | 36.59 | 163.99 | 35.63 | 0.29 | 0.55 | 0.18 | 1.55 |
blaz1_[0.999] | 163.43 | 34.79 | 164.93 | 35.49 | 164.10 | 34.79 | 0.43 | 0.39 | 0.26 | 1.13 |
blaz2_[0.997] | 295.37 | 155.92 | 298.16 | 156.77 | 296.04 | 156.05 | 0.83 | 0.98 | 0.28 | 0.63 |
blaz2_[0.998] | 295.70 | 114.84 | 297.81 | 116.00 | 296.55 | 114.77 | 0.66 | 0.84 | 0.22 | 0.73 |
blaz2_[0.999] | 296.18 | 127.34 | 298.83 | 126.18 | 297.23 | 125.25 | 0.77 | 1.26 | 0.26 | 1.01 |
blaz3_[0.997] | 493.40 | 900.49 | 496.67 | 892.15 | 494.79 | 900.63 | 1.17 | 8.43 | 0.24 | 0.94 |
blaz3_[0.998] | 493.20 | 573.28 | 498.01 | 576.61 | 495.92 | 576.70 | 1.40 | 5.48 | 0.28 | 0.95 |
blaz3_[0.999] | 494.74 | 354.22 | 502.46 | 357.07 | 498.38 | 361.71 | 2.06 | 4.52 | 0.41 | 1.25 |
dighe1_[0.997] | 97.35 | 25.64 | 98.03 | 25.76 | 97.54 | 25.86 | 0.23 | 0.17 | 0.23 | 0.66 |
dighe1_[0.998] | 97.16 | 25.33 | 97.88 | 25.68 | 97.55 | 25.44 | 0.21 | 0.22 | 0.22 | 0.87 |
dighe1_[0.999] | 97.30 | 24.61 | 98.05 | 24.85 | 97.73 | 24.68 | 0.25 | 0.15 | 0.25 | 0.63 |
dighe2_[0.997] | 79.26 | 17.65 | 80.14 | 19.72 | 79.71 | 18.09 | 0.24 | 0.59 | 0.30 | 3.26 |
dighe2_[0.998] | 79.48 | 18.02 | 80.24 | 17.96 | 79.79 | 17.63 | 0.21 | 0.24 | 0.27 | 1.34 |
dighe2_[0.999] | 79.61 | 16.68 | 80.37 | 17.01 | 79.83 | 17.04 | 0.22 | 0.17 | 0.27 | 1.00 |
fu_[0.997] | 28.73 | 8.15 | 28.87 | 8.83 | 28.81 | 8.32 | 0.05 | 0.33 | 0.18 | 4.00 |
fu_[0.998] | 28.77 | 8.10 | 28.93 | 7.61 | 28.84 | 8.07 | 0.06 | 0.31 | 0.21 | 3.86 |
fu_[0.999] | 28.62 | 7.85 | 28.99 | 7.75 | 28.82 | 8.13 | 0.11 | 0.36 | 0.37 | 4.46 |
inst_10pol_[0.997] | 193.25 | 36.57 | 195.46 | 36.23 | 194.16 | 36.22 | 0.69 | 0.52 | 0.35 | 1.44 |
inst_10pol_[0.998] | 193.26 | 37.49 | 194.90 | 37.79 | 193.96 | 37.53 | 0.48 | 0.28 | 0.25 | 0.75 |
inst_10pol_[0.999] | 192.64 | 37.52 | 195.13 | 38.26 | 193.84 | 37.73 | 0.63 | 0.30 | 0.32 | 0.80 |
inst_16pol_[0.997] | 173.89 | 128.79 | 174.88 | 129.62 | 174.45 | 129.30 | 0.27 | 1.21 | 0.15 | 0.93 |
inst_16pol_[0.998] | 174.48 | 130.68 | 175.05 | 133.02 | 174.69 | 131.56 | 0.18 | 0.89 | 0.10 | 0.68 |
inst_16pol_[0.999] | 174.07 | 130.36 | 175.43 | 131.52 | 174.67 | 131.07 | 0.53 | 0.59 | 0.30 | 0.45 |
inst_2pol_[0.997] | 36.05 | 3.29 | 36.05 | 3.29 | 36.05 | 2.98 | 0.00 | 0.16 | 0.00 | 5.31 |
inst_2pol_[0.998] | 36.05 | 3.09 | 36.05 | 3.09 | 36.05 | 2.83 | 0.00 | 0.15 | 0.00 | 5.15 |
inst_2pol_[0.999] | 36.05 | 2.53 | 36.05 | 2.53 | 36.05 | 2.66 | 0.00 | 0.22 | 0.00 | 8.42 |
inst_3pol_[0.997] | 48.10 | 4.81 | 48.10 | 4.81 | 48.10 | 4.92 | 0.00 | 0.18 | 0.00 | 3.63 |
inst_3pol_[0.998] | 48.10 | 4.67 | 48.10 | 4.67 | 48.10 | 4.81 | 0.00 | 0.20 | 0.00 | 4.16 |
inst_3pol_[0.999] | 48.10 | 4.68 | 48.10 | 4.68 | 48.10 | 4.71 | 0.00 | 0.12 | 0.00 | 2.54 |
inst_4pol_[0.997] | 72.15 | 8.76 | 72.20 | 8.91 | 72.17 | 8.81 | 0.03 | 0.16 | 0.04 | 1.82 |
inst_4pol_[0.998] | 72.15 | 8.45 | 72.30 | 8.67 | 72.18 | 8.58 | 0.05 | 0.17 | 0.07 | 2.04 |
inst_4pol_[0.999] | 72.15 | 8.87 | 72.43 | 8.44 | 72.22 | 8.61 | 0.10 | 0.40 | 0.14 | 4.64 |
inst_5pol_[0.997] | 90.15 | 11.19 | 90.53 | 11.01 | 90.31 | 11.55 | 0.12 | 0.58 | 0.13 | 5.04 |
inst_5pol_[0.998] | 90.18 | 11.90 | 90.45 | 11.99 | 90.30 | 11.84 | 0.10 | 0.16 | 0.11 | 1.37 |
inst_5pol_[0.999] | 90.18 | 12.08 | 90.90 | 12.28 | 90.39 | 12.19 | 0.23 | 0.18 | 0.25 | 1.47 |
inst_6pol_[0.997] | 114.33 | 14.83 | 115.73 | 15.83 | 114.68 | 15.13 | 0.41 | 0.53 | 0.36 | 3.50 |
inst_6pol_[0.998] | 114.45 | 15.37 | 115.25 | 15.46 | 114.73 | 15.55 | 0.27 | 0.30 | 0.23 | 1.93 |
inst_6pol_[0.999] | 114.23 | 15.63 | 115.00 | 15.73 | 114.59 | 15.89 | 0.26 | 0.30 | 0.23 | 1.88 |
inst_7pol_[0.997] | 138.47 | 19.96 | 139.60 | 20.36 | 138.88 | 20.11 | 0.30 | 0.20 | 0.22 | 0.99 |
inst_7pol_[0.998] | 138.34 | 19.83 | 140.02 | 20.06 | 138.91 | 20.08 | 0.52 | 0.23 | 0.38 | 1.13 |
inst_7pol_[0.999] | 138.47 | 19.84 | 140.30 | 19.80 | 139.06 | 19.67 | 0.58 | 0.19 | 0.42 | 0.94 |
inst_8pol_[0.997] | 156.70 | 24.87 | 157.78 | 24.86 | 157.33 | 25.05 | 0.33 | 0.23 | 0.21 | 0.92 |
inst_8pol_[0.998] | 156.98 | 25.17 | 157.83 | 25.00 | 157.34 | 25.31 | 0.27 | 0.34 | 0.17 | 1.32 |
inst_8pol_[0.999] | 157.15 | 25.00 | 158.25 | 25.16 | 157.57 | 24.81 | 0.40 | 0.34 | 0.25 | 1.37 |
inst_9pol_[0.997] | 187.25 | 31.77 | 188.58 | 32.76 | 187.86 | 32.40 | 0.43 | 0.36 | 0.23 | 1.10 |
inst_9pol_[0.998] | 186.95 | 32.63 | 188.08 | 33.55 | 187.56 | 33.70 | 0.41 | 0.59 | 0.22 | 1.74 |
inst_9pol_[0.999] | 187.40 | 33.78 | 188.98 | 33.95 | 188.10 | 33.55 | 0.50 | 0.32 | 0.26 | 0.96 |
inst_26pol_[0.997] | 199.20 | 549.52 | 202.47 | 530.77 | 200.67 | 564.14 | 0.99 | 31.92 | 0.49 | 5.66 |
inst_26pol_[0.998] | 199.32 | 434.97 | 200.64 | 581.02 | 199.95 | 494.60 | 0.44 | 71.27 | 0.22 | 14.41 |
inst_26pol_[0.999] | 199.48 | 418.66 | 201.38 | 418.38 | 200.14 | 427.26 | 0.61 | 13.37 | 0.30 | 3.13 |
rco1_[0.997] | 163.81 | 30.42 | 165.29 | 31.70 | 164.36 | 31.19 | 0.55 | 0.81 | 0.33 | 2.59 |
rco1_[0.998] | 162.78 | 36.21 | 165.31 | 34.67 | 163.97 | 34.36 | 0.67 | 1.16 | 0.41 | 3.37 |
rco1_[0.999] | 163.58 | 37.45 | 164.73 | 37.76 | 164.11 | 37.46 | 0.47 | 0.61 | 0.28 | 1.64 |
rco2_[0.997] | 321.25 | 149.40 | 323.72 | 148.95 | 322.12 | 149.76 | 0.78 | 1.14 | 0.24 | 0.76 |
rco2_[0.998] | 321.12 | 113.98 | 324.15 | 116.29 | 322.23 | 114.74 | 0.85 | 0.95 | 0.26 | 0.83 |
rco2_[0.999] | 321.10 | 123.41 | 323.98 | 123.36 | 322.17 | 122.95 | 1.16 | 0.76 | 0.36 | 0.61 |
rco3_[0.997] | 483.92 | 619.23 | 487.47 | 618.18 | 485.80 | 614.27 | 1.20 | 4.85 | 0.25 | 0.79 |
rco3_[0.998] | 484.65 | 402.16 | 488.76 | 409.30 | 486.67 | 406.48 | 1.41 | 3.67 | 0.29 | 0.90 |
rco3_[0.999] | 485.53 | 268.59 | 491.92 | 267.00 | 488.72 | 267.85 | 1.92 | 1.37 | 0.39 | 0.51 |
shapes2_[0.997] | 230.71 | 74.11 | 232.31 | 76.23 | 231.52 | 73.99 | 0.42 | 0.97 | 0.18 | 1.32 |
shapes2_[0.998] | 230.68 | 80.32 | 232.16 | 79.21 | 231.46 | 79.77 | 0.56 | 0.57 | 0.24 | 0.72 |
shapes2_[0.999] | 230.13 | 83.55 | 232.81 | 82.09 | 231.44 | 83.06 | 0.89 | 1.38 | 0.39 | 1.66 |
shapes4_[0.997] | 451.62 | 749.86 | 454.56 | 757.36 | 452.86 | 764.33 | 0.86 | 11.21 | 0.19 | 1.47 |
shapes4_[0.998] | 454.21 | 473.16 | 457.01 | 480.69 | 455.42 | 479.82 | 1.13 | 3.56 | 0.25 | 0.74 |
shapes4_[0.999] | 455.10 | 367.46 | 457.53 | 369.41 | 456.36 | 370.81 | 0.84 | 3.41 | 0.18 | 0.92 |
spfc_[0.997] | 149.48 | 50.40 | 150.52 | 57.76 | 150.10 | 54.45 | 0.34 | 3.22 | 0.22 | 5.92 |
spfc_[0.998] | 149.14 | 50.57 | 150.84 | 50.25 | 149.95 | 50.74 | 0.45 | 0.90 | 0.30 | 1.78 |
spfc_[0.999] | 149.36 | 48.72 | 150.80 | 48.83 | 150.00 | 48.80 | 0.44 | 0.30 | 0.29 | 0.62 |
trousers_[0.997] | 298.68 | 1873.57 | 302.21 | 1961.91 | 299.98 | 1876.23 | 1.04 | 134.29 | 0.35 | 7.16 |
trousers_[0.998] | 302.02 | 1189.90 | 304.42 | 1121.54 | 303.43 | 1188.92 | 0.86 | 59.51 | 0.28 | 5.01 |
trousers_[0.999] | 301.40 | 1326.50 | 306.61 | 1262.62 | 303.45 | 1363.36 | 1.37 | 95.93 | 0.45 | 7.04 |
Exec. time (avg) | 176.83 | 178.58 | 179.04 |
Instances | GAP | GAP | ||||
---|---|---|---|---|---|---|
Connected (C) | Separated (S) | |||||
Fitness (%) | Time (s) | Time (%) | Fitness (%) | Time (s) | Time (%) | |
albano_[0.997] | 6.70% | 125.05 | −152.10% | 0.10% | 48.41 | −64.06% |
albano_[0.998] | 6.29% | 119.54 | −143.63% | 0.41% | 47.01 | −61.67% |
albano_[0.999] | 6.65% | 115.73 | −143.25% | 0.17% | 45.40 | −62.25% |
blaz1_[0.997] | 1.34% | 18.95 | −60.28% | 0.40% | 3.93 | −12.67% |
blaz1_[0.998] | 1.37% | 18.68 | −59.48% | 0.30% | 5.16 | −16.94% |
blaz1_[0.999] | 1.34% | 17.01 | −54.83% | 0.29% | 5.11 | −17.20% |
blaz2_[0.997] | 1.33% | 179.77 | −153.98% | 0.84% | 38.56 | −32.82% |
blaz2_[0.998] | 1.68% | 131.89 | −144.56% | 0.67% | 28.14 | −32.49% |
blaz2_[0.999] | 1.54% | 132.69 | −136.05% | 0.25% | 31.02 | −32.92% |
blaz3_[0.997] | 0.64% | 204.89 | −51.14% | 0.82% | 335.83 | −59.46% |
blaz3_[0.998] | 0.64% | 135.90 | −49.52% | 0.75% | 203.36 | −54.47% |
blaz3_[0.999] | 0.58% | 107.56 | −49.98% | 0.55% | 123.24 | −51.68% |
dighe1_[0.997] | 0.41% | 0.88 | −7.09% | 0.30% | 2.41 | −10.29% |
dighe1_[0.998] | 0.46% | −0.52 | 3.83% | 0.26% | 2.33 | −10.07% |
dighe1_[0.999] | 0.26% | −2.08 | 14.20% | 0.28% | −2.21 | 8.21% |
dighe2_[0.997] | −0.33% | 5.05 | −64.39% | 0.04% | 1.62 | −9.81% |
dighe2_[0.998] | −0.41% | 4.90 | −64.00% | 0.19% | 0.64 | −3.75% |
dighe2_[0.999] | −0.55% | 4.74 | −64.41% | 0.13% | −0.02 | 0.12% |
fu_[0.997] | 0.16% | 7.45 | −122.90% | 0.34% | 2.72 | −48.48% |
fu_[0.998] | 0.08% | 7.81 | −133.49% | 0.23% | 2.52 | −45.46% |
fu_[0.999] | 0.29% | 7.95 | −142.08% | 0.35% | 2.62 | −47.41% |
inst_10pol_[0.997] | 0.25% | 0.74 | −4.04% | 0.33% | 2.93 | −8.81% |
inst_10pol_[0.998] | 0.42% | 0.64 | −3.51% | 0.47% | 2.83 | −8.16% |
inst_10pol_[0.999] | 0.30% | 0.34 | −1.88% | 0.68% | 3.13 | −9.06% |
inst_16pol_[0.997] | 0.25% | 1.65 | −10.97% | 0.44% | 42.43 | −48.83% |
inst_16pol_[0.998] | 0.28% | 1.79 | −12.24% | 0.49% | 40.19 | −43.99% |
inst_16pol_[0.999] | 0.59% | 1.59 | −11.12% | 0.46% | 40.10 | −44.08% |
inst_2pol_[0.997] | −1.13% | 3.73 | −174.00% | 0.00% | 0.56 | −23.15% |
inst_2pol_[0.998] | −1.13% | 3.43 | −158.72% | 0.00% | 0.49 | −20.76% |
inst_2pol_[0.999] | −1.13% | 3.14 | −167.87% | 0.00% | 0.46 | −20.84% |
inst_3pol_[0.997] | 0.00% | 0.92 | −23.97% | 0.05% | 0.26 | −5.52% |
inst_3pol_[0.998] | 0.00% | −0.04 | 0.86% | 0.04% | −0.33 | 6.48% |
inst_3pol_[0.999] | 0.00% | 1.63 | −56.65% | 0.08% | −0.68 | 12.56% |
inst_4pol_[0.997] | −0.06% | 1.20 | −24.97% | 0.10% | 1.87 | −26.94% |
inst_4pol_[0.998] | 0.00% | 1.08 | −22.49% | 0.06% | 1.65 | −23.91% |
inst_4pol_[0.999] | 0.00% | 0.17 | −3.09% | 0.01% | 1.91 | −28.58% |
inst_5pol_[0.997] | −0.11% | 4.58 | −68.74% | 0.27% | 1.33 | −12.99% |
inst_5pol_[0.998] | −0.41% | 4.80 | −73.22% | 0.14% | 1.88 | −18.86% |
inst_5pol_[0.999] | −0.39% | 4.77 | −72.08% | 0.16% | 2.55 | −26.42% |
inst_6pol_[0.997] | −0.28% | 4.08 | −45.46% | 0.11% | 0.35 | −2.40% |
inst_6pol_[0.998] | −0.14% | 4.83 | −57.96% | 0.04% | 0.38 | −2.51% |
inst_6pol_[0.999] | −0.26% | 4.68 | −57.59% | 0.46% | 0.64 | −4.22% |
inst_7pol_[0.997] | 0.18% | −0.27 | 2.36% | 0.32% | 0.65 | −3.35% |
inst_7pol_[0.998] | 0.22% | −0.50 | 4.37% | 0.33% | 0.50 | −2.54% |
inst_7pol_[0.999] | 0.16% | −0.72 | 6.16% | 0.21% | 0.52 | −2.72% |
inst_8pol_[0.997] | 0.02% | 0.03 | −0.24% | 0.46% | 1.08 | −4.51% |
inst_8pol_[0.998] | 0.22% | −0.04 | 0.29% | 0.27% | 0.97 | −4.00% |
inst_8pol_[0.999] | 0.10% | 0.18 | −1.45% | 0.42% | 1.17 | −4.93% |
inst_9pol_[0.997] | −1.05% | 11.45 | −67.42% | 0.46% | 2.01 | −6.61% |
inst_9pol_[0.998] | −0.98% | 11.12 | −66.92% | 0.31% | 3.01 | −9.80% |
inst_9pol_[0.999] | −1.15% | 9.86 | −61.62% | 0.29% | 2.79 | −9.05% |
inst__[0.997] | 0.35% | 168.92 | −125.12% | 0.21% | 375.36 | −198.83% |
inst__[0.998] | 0.42% | 148.24 | −106.08% | 0.47% | 296.80 | −150.04% |
inst__[0.999] | 0.50% | 124.41 | −89.04% | 0.20% | 224.64 | −110.87% |
rco1_[0.997] | 0.43% | 17.83 | −67.12% | 0.15% | 3.79 | −13.84% |
rco1_[0.998] | 0.43% | 20.16 | −76.71% | 0.31% | 7.29 | −26.94% |
rco1_[0.999] | 0.50% | 23.13 | −87.04% | 0.24% | 10.56 | −39.25% |
rco2_[0.997] | 0.86% | 27.47 | −24.44% | 0.50% | 28.49 | −23.49% |
rco2_[0.998] | 0.21% | 24.50 | −27.93% | 0.62% | 22.35 | −24.19% |
rco2_[0.999] | 0.09% | 23.08 | −23.83% | 0.38% | 24.81 | −25.28% |
rco3_[0.997] | −2.03% | 1281.72 | −408.52% | 0.91% | 184.82 | −43.04% |
rco3_[0.998] | −2.34% | 690.70 | −306.55% | 0.90% | 120.54 | −42.15% |
rco3_[0.999] | −2.50% | 361.83 | −192.88% | 0.47% | 74.57 | −38.58% |
shapes2_[0.997] | 1.90% | 58.87 | −92.15% | 0.26% | 16.36 | −28.40% |
shapes2_[0.998] | 2.01% | 60.99 | −90.44% | 0.13% | 17.39 | −27.88% |
shapes2_[0.999] | 2.44% | 62.44 | −91.04% | 0.20% | 18.58 | −28.81% |
shapes4_[0.997] | 0.42% | 395.34 | −90.54% | 0.78% | 298.93 | −64.23% |
shapes4_[0.998] | 0.51% | 356.40 | −117.24% | 0.31% | 190.48 | −65.83% |
shapes4_[0.999] | 0.67% | 144.00 | −58.96% | 0.36% | 134.37 | −56.83% |
spfc_[0.997] | 1.62% | 36.42 | −115.22% | 0.40% | 25.90 | −90.73% |
spfc_[0.998] | 1.36% | 35.36 | −111.54% | 0.50% | 22.18 | −77.65% |
spfc_[0.999] | 1.65% | 35.71 | −115.67% | 0.41% | 20.72 | −73.79% |
trousers_[0.997] | −1.63% | 3392.58 | −469.80% | 0.29% | 1141.78 | −155.46% |
trousers_[0.998] | −1.71% | 2554.87 | −498.73% | 0.16% | 668.66 | −128.52% |
trousers_[0.999] | −1.06% | 2711.99 | −531.31% | −0.03% | 834.70 | −157.89% |
Instances | GAP | GAP | ||||
---|---|---|---|---|---|---|
Connected (C) | Separated (S) | |||||
Fitness (%) | Time (s) | Time (%) | Fitness (%) | Time (s) | Time (%) | |
albano_[0.997] | 0.04% | −101.95 | 32.97% | −3.65% | −176.00 | 58.67% |
albano_[0.998] | −0.17% | −106.44 | 34.42% | −3.59% | −176.76 | 58.92% |
albano_[0.999] | −0.22% | −112.68 | 36.44% | −4.16% | −181.65 | 60.55% |
blaz1_[0.997] | 1.03% | 7.36 | −17.10% | 0.22% | −5.13 | 12.79% |
blaz1_[0.998] | 1.03% | 7.08 | −16.45% | 0.22% | −4.46 | 11.13% |
blaz1_[0.999] | 1.03% | 5.00 | −11.62% | 0.15% | −5.30 | 13.23% |
blaz2_[0.997] | 0.87% | 122.07 | −69.98% | 0.29% | 67.81 | −76.84% |
blaz2_[0.998] | 0.92% | 48.69 | −27.91% | 0.12% | 26.52 | −30.06% |
blaz2_[0.999] | 0.95% | 55.79 | −31.98% | −0.11% | 37.00 | −41.93% |
blaz3_[0.997] | 0.20% | 408.29 | −207.00% | 0.46% | 697.74 | −343.92% |
blaz3_[0.998] | −0.21% | 213.07 | −108.02% | 0.24% | 373.82 | −184.25% |
blaz3_[0.999] | −0.49% | 125.50 | −63.63% | −0.26% | 158.83 | −78.29% |
dighe1_[0.997] | 0.23% | −33.86 | 71.73% | −0.26% | −22.38 | 46.40% |
dighe1_[0.998] | 0.19% | −34.16 | 72.37% | −0.28% | −22.80 | 47.27% |
dighe1_[0.999] | 0.03% | −34.63 | 73.36% | −0.46% | −23.56 | 48.85% |
dighe2_[0.997] | −0.91% | −10.77 | 45.52% | −0.10% | −20.31 | 52.89% |
dighe2_[0.998] | −0.92% | −11.08 | 46.87% | −0.20% | −20.77 | 54.09% |
dighe2_[0.999] | −1.12% | −11.56 | 48.87% | −0.25% | −21.37 | 55.64% |
fu_[0.997] | −2.79% | −39.70 | 74.60% | −1.96% | −34.01 | 80.34% |
fu_[0.998] | −2.79% | −39.56 | 74.34% | −2.07% | −34.26 | 80.94% |
fu_[0.999] | −2.76% | −39.67 | 74.55% | −2.00% | −34.20 | 80.79% |
inst_10pol_[0.997] | 1.26% | −22.98 | 54.69% | 0.09% | −1.58 | 4.18% |
inst_10pol_[0.998] | 1.28% | −23.01 | 54.76% | 0.19% | −0.27 | 0.71% |
inst_10pol_[0.999] | 1.30% | −23.83 | 56.71% | 0.25% | −0.07 | 0.20% |
inst_16pol_[0.997] | 0.52% | −43.89 | 72.43% | −0.87% | −67.10 | 34.16% |
inst_16pol_[0.998] | 0.34% | −44.14 | 72.84% | −1.00% | −64.85 | 33.02% |
inst_16pol_[0.999] | 0.42% | −44.72 | 73.82% | −0.99% | −65.33 | 33.26% |
inst_2pol_[0.997] | −1.13% | −2.00 | 25.39% | 0.00% | −3.74 | 55.66% |
inst_2pol_[0.998] | −1.13% | −2.27 | 28.88% | 0.00% | −3.88 | 57.84% |
inst_2pol_[0.999] | −1.13% | −2.86 | 36.28% | 0.00% | −4.05 | 60.40% |
inst_3pol_[0.997] | 0.00% | −3.42 | 41.78% | 0.00% | −5.14 | 51.10% |
inst_3pol_[0.998] | 0.00% | −3.61 | 44.15% | 0.00% | −5.24 | 52.17% |
inst_3pol_[0.999] | 0.00% | −3.66 | 44.79% | 0.00% | −5.34 | 53.10% |
inst_4pol_[0.997] | 0.37% | −10.26 | 63.12% | 0.05% | −5.05 | 36.42% |
inst_4pol_[0.998] | 0.43% | −10.38 | 63.91% | 0.04% | −5.27 | 38.07% |
inst_4pol_[0.999] | 0.43% | −10.49 | 64.57% | 0.00% | −5.24 | 37.85% |
inst_5pol_[0.997] | −0.15% | −1.34 | 10.62% | 0.03% | −6.63 | 36.49% |
inst_5pol_[0.998] | −0.46% | −1.24 | 9.84% | 0.04% | −6.34 | 34.89% |
inst_5pol_[0.999] | −0.41% | −1.21 | 9.58% | −0.06% | −5.99 | 32.96% |
inst_6pol_[0.997] | 0.26% | −12.17 | 48.27% | 0.11% | −5.62 | 27.07% |
inst_6pol_[0.998] | 0.44% | −12.04 | 47.76% | 0.06% | −5.20 | 25.05% |
inst_6pol_[0.999] | 0.23% | −12.42 | 49.24% | 0.18% | −4.86 | 23.41% |
inst_7pol_[0.997] | 0.00% | −6.39 | 36.55% | 0.14% | −4.41 | 17.97% |
inst_7pol_[0.998] | 0.00% | −6.47 | 37.01% | 0.12% | −4.44 | 18.12% |
inst_7pol_[0.999] | 0.04% | −6.60 | 37.71% | 0.01% | −4.85 | 19.78% |
inst_8pol_[0.997] | 0.02% | −5.69 | 30.34% | 0.21% | −1.97 | 7.30% |
inst_8pol_[0.998] | 0.10% | −5.86 | 31.26% | 0.20% | −1.72 | 6.37% |
inst_8pol_[0.999] | 0.10% | −6.29 | 33.56% | 0.06% | −2.22 | 8.23% |
inst_9pol_[0.997] | −0.30% | −5.64 | 16.55% | 0.07% | −0.57 | 1.71% |
inst_9pol_[0.998] | −0.28% | −6.34 | 18.62% | 0.23% | 0.73 | −2.22% |
inst_9pol_[0.999] | −0.25% | −8.20 | 24.07% | −0.05% | 0.58 | −1.77% |
inst__[0.997] | −0.01% | −12.10 | 3.83% | −1.55% | 260.88 | −86.03% |
inst__[0.998] | −0.16% | −28.04 | 8.87% | −1.18% | 191.35 | −63.10% |
inst__[0.999] | −0.59% | −51.89 | 16.42% | −1.28% | 124.00 | −40.89% |
rco1_[0.997] | 0.18% | 8.25 | −22.83% | 0.21% | −1.91 | 5.77% |
rco1_[0.998] | 0.19% | 10.30 | −28.49% | 0.45% | 1.26 | −3.81% |
rco1_[0.999] | 0.25% | 13.56 | −37.51% | 0.36% | 4.37 | −13.19% |
rco2_[0.997] | 0.29% | 46.84 | −50.36% | 0.17% | 69.40 | −86.37% |
rco2_[0.998] | 0.00% | 19.22 | −20.66% | 0.13% | 34.39 | −42.79% |
rco2_[0.999] | 0.13% | 26.90 | −28.92% | 0.15% | 42.60 | −53.01% |
rco3_[0.997] | −2.41% | 1432.03 | −876.18% | 0.61% | 464.11 | −309.07% |
rco3_[0.998] | −2.81% | 752.57 | −460.46% | 0.43% | 256.32 | −170.69% |
rco3_[0.999] | −2.93% | 385.99 | −236.16% | 0.01% | 117.68 | −78.37% |
shapes2_[0.997] | 1.29% | 23.85 | −24.11% | −0.21% | −4.83 | 6.13% |
shapes2_[0.998] | 1.35% | 29.53 | −29.86% | −0.18% | 0.95 | −1.20% |
shapes2_[0.999] | 1.46% | 32.13 | −32.49% | −0.17% | 4.24 | −5.38% |
shapes4_[0.997] | −1.37% | 524.54 | −170.60% | 0.24% | 512.09 | −203.02% |
shapes4_[0.998] | −1.51% | 352.92 | −114.78% | −0.33% | 227.59 | −90.23% |
shapes4_[0.999] | −1.98% | 80.75 | −26.26% | −0.53% | 118.57 | −47.01% |
spfc_[0.997] | 0.84% | 8.92 | −15.09% | −0.23% | 2.76 | −5.34% |
spfc_[0.998] | 0.71% | 7.94 | −13.44% | −0.12% | −0.95 | 1.84% |
spfc_[0.999] | 0.81% | 7.48 | −12.65% | −0.16% | −2.89 | 5.58% |
trousers_[0.997] | 4.52% | 3774.72 | −1110.23% | 5.15% | 1570.11 | −512.91% |
trousers_[0.998] | 3.83% | 2727.15 | −802.11% | 4.05% | 882.80 | −288.39% |
trousers_[0.999] | 4.65% | 2882.43 | −847.78% | 4.05% | 1057.25 | −345.37% |
References
- Júnior, B.A.; Pinheiro, P.R. Approaches to tackle the nesting problems. In Artificial Intelligence Perspectives in Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 285–295. [Google Scholar]
- Araújo, L.J.; Panesar, A.; Özcan, E.; Atkin, J.; Baumers, M.; Ashcroft, I. An experimental analysis of deepest bottom-left-fill packing methods for additive manufacturing. Int. J. Prod. Res. 2020, 58, 6917–6933. [Google Scholar] [CrossRef]
- Araújo, L.J.; Özcan, E.; Atkin, J.A.; Baumers, M. Analysis of irregular three-dimensional packing problems in additive manufacturing: A new taxonomy and dataset. Int. J. Prod. Res. 2019, 57, 5920–5934. [Google Scholar] [CrossRef]
- Zhao, X.; Bennell, J.A.; Bektaş, T.; Dowsland, K. A comparative review of 3D container loading algorithms. Int. Trans. Oper. Res. 2016, 23, 287–320. [Google Scholar] [CrossRef]
- Leao, A.A.; Toledo, F.M.; Oliveira, J.F.; Carravilla, M.A.; Alvarez-Valdés, R. Irregular packing problems: A review of mathematical models. Eur. J. Oper. Res. 2020, 282, 803–822. [Google Scholar] [CrossRef]
- Silva, E.F.; Oliveira, L.T.; Oliveira, J.F.; Toledo, F.M.B. Exact approaches for the cutting path determination problem. Comput. Oper. Res. 2019, 112, 104772. [Google Scholar] [CrossRef]
- Dewil, R.; Vansteenwegen, P.; Cattrysse, D. A review of cutting path algorithms for laser cutters. Int. J. Adv. Manuf. Technol. 2016, 87, 1865–1884. [Google Scholar] [CrossRef]
- Chaves, A.A.; Gonçalves, J.F.; Lorena, L.A.N. Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem. Comput. Ind. Eng. 2018, 124, 331–346. [Google Scholar] [CrossRef]
- Amaro Junior, B.; Santos, M.C.; de Carvalho, G.N.; de Araújo, L.J.P.; Pinheiro, P.R. Metaheuristics for the Minimum Time Cut Path Problem with Different Cutting and Sliding Speeds. Algorithms 2021, 14, 305. [Google Scholar] [CrossRef]
- Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Construction heuristics for generating tool paths for laser cutters. Int. J. Prod. Res. 2014, 52, 5965–5984. [Google Scholar] [CrossRef]
- Qu, P.; Du, F. Improved Particle Swarm Optimization for Laser Cutting Path Planning. IEEE Access 2023, 11, 4574–4588. [Google Scholar] [CrossRef]
- Rico-Garcia, H.; Sanchez-Romero, J.L.; Migallon Gomis, H.; Rao, R.V. Parallel implementation of metaheuristics for optimizing tool path computation on CNC machining. Comput. Ind. 2020, 123, 103322. [Google Scholar] [CrossRef]
- Qudeiri, J.A.; Yamamoto, H.; Ramli, R. Optimization of Operation Sequence in CNC Machine Tools Using Genetic Algorithm. J. Adv. Mech. Des. Syst. Manuf. 2007, 1, 272–282. [Google Scholar] [CrossRef]
- Ghaiebi, H.; Solimanpur, M. An ant algorithm for optimization of hole-making operations. Comput. Ind. Eng. 2007, 52, 308–319. [Google Scholar] [CrossRef]
- Medina, N.; Montiel Ross, O.; Sepúlveda, R.; Castillo, O. Tool Path Optimization for Computer Numerical Control Machines based on Parallel ACO. Eng. Lett. 2012, 20, 101–108. [Google Scholar]
- Chvátal, V.; Cook, W.; Dantzig, G.B.; Fulkerson, D.R.; Johnson, S.M. Solution of a large-scale traveling-salesman problem. In 50 Years of Integer Programming 1958–2008; Springer: Berlin/Heidelberg, Germany, 2010; pp. 7–28. [Google Scholar]
- Ahadi, A.; Mozafari, A.; Zarei, A. Touring a sequence of disjoint polygons: Complexity and extension. Theor. Comput. Sci. 2014, 556, 45–54. [Google Scholar] [CrossRef]
- Khan, W.; Hayhurst, D. Two and Three-Dimensional Path Optimization for Production Machinery. J. Manuf. Sci. Eng.-Trans. Asme-J. Manuf. Sci. Eng. 2000, 122, 244–252. [Google Scholar] [CrossRef]
- Erdos, G.; Kemény, Z.; Kovacs, A.; Váncza, J. Planning of Remote Laser Welding Processes. Procedia CIRP 2013, 7, 222–227. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Y.; Liu, J.; Zhou, Z. Integrated and concurrent approach for compound sheet metal cutting and punching. Int. J. Prod. Res. 2010, 39, 1095–1112. [Google Scholar] [CrossRef]
- Yu, W.; Lu, L. A route planning strategy for the automatic garment cutter based on genetic algorithm. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6–11 July 2014; pp. 379–386. [Google Scholar] [CrossRef]
- Arkin, E.M.; Hassin, R. Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 1994, 55, 197–218. [Google Scholar] [CrossRef]
- Veeramani, D.; Kumar, S. Optimization of the nibbling operation on an NC turret punch press. Int. J. Prod. Res. 1998, 36, 1901–1916. [Google Scholar] [CrossRef]
- Manber, U.; Israni, S. Pierce point minimization and optimal torch path determination in flame cutting. J. Manuf. Syst. 1984, 3, 81–89. [Google Scholar] [CrossRef]
- Moreira, L.M.; Oliveira, J.F.; Gomes, A.M.; Ferreira, J.S. Heuristics for a dynamic rural postman problem. Comput. Oper. Res. 2007, 34, 3281–3294. [Google Scholar] [CrossRef]
- Garfinkel, R.S.; Webb, I.R. On crossings, the Crossing Postman Problem, and the Rural Postman Problem. Networks 1999, 34, 173–180. [Google Scholar] [CrossRef]
- Rodrigues, A.; Soeiro Ferreira, J. Cutting path as a Rural Postman Problem: Solutions by Memetic Algorithms. IJCOPI 2012, 3, 31–46. [Google Scholar]
- Chan Han, G.; Joo Na, S. A study on torch path planning in laser cutting processes part 2: Cutting path optimization using simulated annealing. J. Manuf. Syst. 1999, 18, 62–70. [Google Scholar] [CrossRef]
- Lee, M.K.; Kwon, K.B. Cutting path optimization in CNC cutting processes using a two-step genetic algorithm. Int. J. Prod. Res. 2006, 44, 5307–5326. [Google Scholar] [CrossRef]
- Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Cutting path optimization using tabu search. Key Eng. Mater. 2011, 473, 739–748. [Google Scholar] [CrossRef]
- Golden, B.L.; Wong, R.T. Capacitated arc routing problems. Networks 1981, 11, 305–315. [Google Scholar] [CrossRef]
- Usberti, F.L.; França, P.M.; França, A.L.M. The open capacitated arc routing problem. Comput. Oper. Res. 2011, 38, 1543–1555. [Google Scholar] [CrossRef]
- Hajad, M.; Saetang, V.; Dumkum, C.; Jaturanonda, C. Solving the Laser Cutting Path Problem Using Population-Based Simulated Annealing with Adaptive Large Neighborhood Search. Key Eng. Mater. 2020, 833, 29–34. [Google Scholar] [CrossRef]
- Skinderowicz, R. Improving Ant Colony Optimization efficiency for solving large TSP instances. Appl. Soft Comput. 2022, 120, 108653. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; Resende, M.G.C. Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 2011, 17, 487–525. [Google Scholar] [CrossRef]
- Eiben, A.E.; Michalewicz, Z.; Schoenauer, M.; Smith, J.E. Parameter Control in Evolutionary Algorithms. In Parameter Setting in Evolutionary Algorithms; Lobo, F.G., Lima, C.F., Michalewicz, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 19–46. [Google Scholar] [CrossRef]
- Resende, M. Biased random-key genetic algorithms with applications in telecommunications. TOP 2010, 20, 130–153. [Google Scholar] [CrossRef]
- Edmonds, J.; Johnson, E. Matching, Euler Tours and the Chinese Postman. Math. Program. 1973, 5, 88–124. [Google Scholar] [CrossRef]
- Prasetyo, H.; Fauza, G.; Amer, Y.; Lee, S.H. Survey on applications of biased-random key genetic algorithms for solving optimization problems. In Proceedings of the 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 6–9 December 2015; pp. 863–870. [Google Scholar] [CrossRef]
- Spears, V.M.; Jong, K.A.D. On the virtues of parameterized uniform crossover. In Proceedings of the Fourth International Conference on Genetic Algorithms, San Diego, CA, USA, 13–16 July 1991; pp. 230–236. [Google Scholar]
- Amaro Júnior, B.; Pinheiro, P.R.; Coelho, P.V. A parallel biased random-key genetic algorithm with multiple populations applied to irregular strip packing problems. Math. Probl. Eng. 2017, 2017, 1670709. [Google Scholar] [CrossRef]
Parameter | Suggested Value Range |
---|---|
p | |
where | |
where | |
Search Property | ||
---|---|---|
p1 | 271 | |
p2 | 740 | 0.998 |
p3 | 2017 | 0.997 |
Instance | Nodes | Edges | Polygons | |||||
---|---|---|---|---|---|---|---|---|
Initial | Converted | |||||||
(C) | (S) | (C) | (S) | (C) | (S) | (C) | (S) | |
albano | 156 | 164 | 164 | 164 | 173 | 164 | 24 | 24 |
blaz1 | 39 | 44 | 44 | 44 | 46 | 44 | 7 | 7 |
blaz2 | 70 | 80 | 88 | 80 | 89 | 80 | 14 | 13 |
blaz3 | 97 | 132 | 132 | 132 | 130 | 132 | 21 | 21 |
dighe1 | 20 | 54 | 46 | 54 | 38 | 54 | 15 | 15 |
dighe2 | 20 | 46 | 38 | 46 | 30 | 46 | 10 | 10 |
fu | 37 | 43 | 43 | 43 | 51 | 43 | 12 | 12 |
inst_10pol | 20 | 40 | 39 | 40 | 29 | 40 | 10 | 10 |
inst_16pol | 27 | 128 | 64 | 128 | 42 | 128 | 16 | 32 |
inst_2pol | 7 | 8 | 8 | 8 | 8 | 8 | 2 | 2 |
inst_3pol | 8 | 12 | 12 | 12 | 10 | 12 | 3 | 3 |
inst_4pol | 10 | 16 | 16 | 16 | 13 | 16 | 4 | 4 |
inst_5pol | 12 | 20 | 19 | 20 | 16 | 20 | 5 | 5 |
inst_6pol | 13 | 24 | 23 | 24 | 18 | 24 | 6 | 6 |
inst_7pol | 15 | 28 | 27 | 28 | 21 | 28 | 7 | 7 |
inst_8pol | 16 | 32 | 31 | 32 | 23 | 32 | 8 | 8 |
inst_9pol | 18 | 36 | 35 | 36 | 26 | 36 | 9 | 9 |
inst_26pol | 210 | 264 | 264 | 264 | 237 | 264 | 66 | 66 |
rco1 | 33 | 36 | 36 | 36 | 40 | 36 | 7 | 7 |
rco2 | 62 | 72 | 72 | 72 | 81 | 72 | 14 | 14 |
rco3 | 82 | 108 | 108 | 108 | 116 | 108 | 21 | 21 |
shapes2 | 68 | 70 | 70 | 70 | 78 | 70 | 8 | 8 |
shapes4 | 127 | 140 | 140 | 140 | 147 | 140 | 16 | 16 |
spfc | 55 | 55 | 55 | 55 | 63 | 55 | 11 | 11 |
trousers | 350 | 388 | 388 | 388 | 424 | 388 | 64 | 64 |
Instance (Connected) | Solution | Time | GAP | Nodes |
---|---|---|---|---|
inst_2pol | 33.13 | 0.02 | 0.0 | 0 |
inst_3pol | 39.25 | 1.54 | 0.0 | 469 |
inst_4pol | 57.38 | 24.61 | 0.0 | 25,463 |
inst_5pol | 69.63 | 2595.58 | 0.0 | 1,393,088 |
inst_6pol | 102.88 | LIMIT | 1.0 | 587,126 |
inst_7pol | 109.38 | LIMIT | 1.0 | 314,325 |
inst_8pol | 113.61 | LIMIT | 1.0 | 189,994 |
inst_9pol | 181.54 | LIMIT | 1.0 | 114,572 |
inst_10pol | 157.59 | LIMIT | 1.0 | 70,963 |
dighe1.txt | 75.64 | LIMIT | 1.0 | 25,198 |
dighe2.txt | 84.56 | LIMIT | 1.0 | 54,868 |
rco1.txt | 345.63 | LIMIT | 1.0 | 8798 |
blaz1.txt | 449.59 | LIMIT | 1.0 | 2118 |
Instance (Separated) | Solution | Time | GAP | Nodes |
---|---|---|---|---|
inst_2pol | 36.05 | 0.21 | 0.0 | 152 |
inst_3pol | 48.10 | 6.55 | 0.0 | 1618 |
inst_4pol | 72.15 | 138.18 | 0.0 | 48,868 |
inst_5pol | 90.15 | 1039.98 | 0.0 | 95,880 |
inst_6pol | 184.66 | LIMIT | 1.0 | 52,374 |
inst_7pol | 244.31 | LIMIT | 1.0 | 12,773 |
inst_8pol | 260.18 | LIMIT | 1.0 | 21,074 |
inst_9pol | 300.32 | LIMIT | 1.0 | 11,166 |
inst_10pol | 395.04 | LIMIT | 1.0 | 3874 |
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano | 108.17 | 304.68 | 113.10 | 303.76 | 110.97 | 304.17 | 1.46 | 0.54 | 1.32 | 0.18 |
blaz1 | 154.71 | 146.10 | 155.86 | 148.94 | 155.09 | 152.18 | 0.37 | 17.03 | 0.24 | 11.19 |
blaz2 | 269.94 | 302.04 | 271.95 | 301.69 | 270.81 | 301.74 | 0.75 | 0.35 | 0.28 | 0.12 |
blaz3 | 423.96 | 303.11 | 428.01 | 302.96 | 425.39 | 302.75 | 1.42 | 0.48 | 0.33 | 0.16 |
dighe1 | 70.57 | 158.89 | 70.88 | 140.12 | 70.72 | 138.07 | 0.10 | 8.24 | 0.14 | 5.97 |
dighe2 | 53.90 | 88.38 | 54.05 | 89.77 | 53.96 | 99.07 | 0.05 | 10.07 | 0.09 | 10.17 |
fu | 23.82 | 185.16 | 23.95 | 167.60 | 23.89 | 184.48 | 0.04 | 8.75 | 0.15 | 4.75 |
inst_10pol | 127.00 | 106.61 | 127.38 | 83.24 | 127.15 | 90.21 | 0.14 | 8.70 | 0.11 | 9.64 |
inst_16pol | 76.75 | 127.63 | 76.90 | 155.89 | 76.83 | 132.18 | 0.07 | 9.35 | 0.09 | 7.07 |
inst_2pol | 33.13 | 22.73 | 33.13 | 22.73 | 33.13 | 24.08 | 0.00 | 1.36 | 0.00 | 5.63 |
inst_3pol | 39.25 | 28.00 | 39.25 | 28.00 | 39.25 | 27.29 | 0.00 | 0.81 | 0.00 | 2.96 |
inst_4pol | 57.38 | 33.77 | 57.38 | 33.77 | 57.38 | 34.24 | 0.00 | 0.84 | 0.00 | 2.47 |
inst_5pol | 69.63 | 44.46 | 69.63 | 44.46 | 69.63 | 42.25 | 0.00 | 1.51 | 0.00 | 3.58 |
inst_6pol | 81.75 | 52.45 | 81.75 | 52.45 | 81.75 | 51.25 | 0.00 | 2.27 | 0.00 | 4.44 |
inst_7pol | 96.88 | 65.46 | 97.00 | 60.37 | 96.98 | 63.25 | 0.04 | 4.48 | 0.04 | 7.08 |
inst_8pol | 105.75 | 72.59 | 106.00 | 68.80 | 105.82 | 67.04 | 0.09 | 3.05 | 0.08 | 4.55 |
inst_9pol | 124.00 | 103.57 | 124.25 | 73.90 | 124.06 | 82.43 | 0.09 | 8.76 | 0.07 | 10.63 |
inst_26pol | 160.50 | 306.98 | 166.74 | 306.34 | 164.00 | 305.81 | 1.91 | 1.27 | 1.16 | 0.42 |
rco1 | 140.28 | 116.84 | 141.14 | 132.15 | 140.77 | 122.01 | 0.30 | 10.78 | 0.21 | 8.83 |
rco2 | 270.71 | 301.86 | 271.90 | 301.45 | 271.41 | 301.52 | 0.35 | 0.32 | 0.13 | 0.10 |
rco3 | 394.67 | 302.78 | 398.84 | 302.69 | 396.89 | 302.42 | 1.22 | 0.40 | 0.31 | 0.13 |
shapes2 | 215.26 | 293.88 | 217.22 | 301.44 | 216.07 | 297.58 | 0.62 | 4.67 | 0.28 | 1.57 |
shapes4 | 427.55 | 302.73 | 436.58 | 303.90 | 430.10 | 303.17 | 3.14 | 0.53 | 0.73 | 0.17 |
spfc | 144.11 | 236.94 | 144.92 | 212.40 | 144.38 | 227.10 | 0.27 | 13.54 | 0.19 | 5.96 |
trousers | 305.90 | 312.92 | 308.70 | 309.30 | 307.52 | 311.11 | 0.80 | 2.24 | 0.26 | 0.72 |
Exec. time (avg) | 172.82 | 169.93 | 170.70 |
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano | 101.38 | 309.54 | 106.48 | 310.74 | 102.45 | 309.21 | 1.99 | 0.95 | 1.94 | 0.31 |
blaz1 | 156.25 | 44.97 | 157.86 | 38.89 | 156.71 | 43.02 | 0.51 | 2.31 | 0.32 | 5.37 |
blaz2 | 271.97 | 169.48 | 278.18 | 181.48 | 275.21 | 174.44 | 2.24 | 9.97 | 0.81 | 5.71 |
blaz3 | 423.04 | 192.78 | 426.93 | 190.56 | 424.83 | 197.24 | 1.25 | 13.47 | 0.29 | 6.83 |
dighe1 | 71.05 | 40.65 | 71.53 | 55.55 | 71.22 | 47.21 | 0.18 | 5.42 | 0.26 | 11.48 |
dighe2 | 53.94 | 23.29 | 54.26 | 22.96 | 54.06 | 23.65 | 0.08 | 1.52 | 0.15 | 6.41 |
fu | 23.89 | 56.28 | 24.13 | 47.34 | 24.00 | 53.21 | 0.06 | 2.70 | 0.24 | 5.07 |
inst_10pol | 128.69 | 40.99 | 129.50 | 41.32 | 129.01 | 42.02 | 0.23 | 3.33 | 0.18 | 7.94 |
inst_16pol | 77.73 | 58.66 | 78.25 | 62.17 | 77.95 | 60.59 | 0.18 | 3.84 | 0.24 | 6.34 |
inst_2pol | 33.13 | 6.12 | 33.13 | 6.12 | 33.13 | 7.87 | 0.00 | 0.92 | 0.00 | 11.74 |
inst_3pol | 39.25 | 8.07 | 39.25 | 8.07 | 39.25 | 8.18 | 0.00 | 0.17 | 0.00 | 2.03 |
inst_4pol | 57.38 | 17.26 | 57.88 | 13.43 | 57.63 | 16.25 | 0.20 | 2.22 | 0.35 | 13.64 |
inst_5pol | 69.63 | 11.97 | 69.75 | 14.00 | 69.64 | 12.58 | 0.04 | 0.79 | 0.06 | 6.26 |
inst_6pol | 82.00 | 26.12 | 82.75 | 23.96 | 82.32 | 25.22 | 0.26 | 5.49 | 0.32 | 21.79 |
inst_7pol | 96.88 | 18.41 | 97.13 | 17.57 | 96.95 | 17.49 | 0.08 | 1.52 | 0.09 | 8.67 |
inst_8pol | 105.88 | 18.93 | 106.25 | 18.49 | 106.05 | 18.75 | 0.12 | 0.51 | 0.11 | 2.72 |
inst_9pol | 125.50 | 33.27 | 126.00 | 32.53 | 125.61 | 34.07 | 0.17 | 2.49 | 0.13 | 7.31 |
inst_26pol | 144.23 | 318.39 | 150.25 | 315.41 | 146.47 | 316.02 | 2.20 | 1.60 | 1.50 | 0.51 |
rco1 | 141.21 | 36.43 | 142.52 | 39.31 | 141.94 | 36.14 | 0.41 | 1.97 | 0.29 | 5.44 |
rco2 | 274.49 | 90.41 | 278.40 | 91.20 | 275.94 | 93.01 | 1.22 | 3.96 | 0.44 | 4.26 |
rco3 | 401.29 | 155.61 | 404.92 | 157.88 | 402.78 | 163.44 | 1.27 | 6.54 | 0.32 | 4.00 |
shapes2 | 218.98 | 84.77 | 220.79 | 98.40 | 219.82 | 98.90 | 0.63 | 13.19 | 0.28 | 13.34 |
shapes4 | 415.56 | 307.62 | 423.43 | 306.97 | 419.08 | 307.47 | 2.77 | 0.67 | 0.66 | 0.22 |
spfc | 145.45 | 62.94 | 146.77 | 55.37 | 146.09 | 59.11 | 0.36 | 3.16 | 0.25 | 5.35 |
trousers | 281.57 | 342.34 | 293.53 | 338.96 | 288.12 | 340.00 | 4.16 | 2.76 | 1.44 | 0.81 |
Exec. time (avg) | 99.01 | 99.55 | 100.20 |
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano | 113.09 | 303.06 | 116.14 | 303.15 | 113.74 | 303.53 | 0.95 | 0.64 | 0.84 | 0.21 |
blaz1 | 162.23 | 145.88 | 163.41 | 142.45 | 162.82 | 139.82 | 0.32 | 7.05 | 0.20 | 5.04 |
blaz2 | 292.01 | 301.86 | 293.67 | 300.93 | 292.88 | 299.80 | 0.60 | 4.46 | 0.21 | 1.49 |
blaz3 | 493.35 | 302.32 | 499.90 | 302.43 | 496.15 | 302.84 | 1.77 | 0.34 | 0.36 | 0.11 |
dighe1 | 96.18 | 186.45 | 96.66 | 198.26 | 96.40 | 194.69 | 0.16 | 12.22 | 0.17 | 6.28 |
dighe2 | 78.66 | 137.75 | 79.16 | 147.81 | 78.96 | 153.10 | 0.18 | 13.34 | 0.22 | 8.71 |
fu | 28.00 | 137.50 | 28.20 | 140.58 | 28.10 | 141.59 | 0.06 | 4.76 | 0.21 | 3.36 |
inst_10pol | 193.09 | 134.11 | 194.14 | 135.72 | 193.48 | 135.04 | 0.29 | 6.15 | 0.15 | 4.55 |
inst_16pol | 172.74 | 303.31 | 174.69 | 303.12 | 173.59 | 302.65 | 0.63 | 0.65 | 0.36 | 0.21 |
inst_2pol | 36.05 | 24.20 | 36.05 | 24.20 | 36.05 | 24.66 | 0.00 | 1.31 | 0.00 | 5.29 |
inst_3pol | 48.10 | 32.16 | 48.10 | 32.16 | 48.10 | 32.49 | 0.00 | 1.00 | 0.00 | 3.08 |
inst_4pol | 72.15 | 48.82 | 72.15 | 48.82 | 72.15 | 48.15 | 0.00 | 3.31 | 0.00 | 6.87 |
inst_5pol | 90.15 | 53.17 | 90.20 | 60.56 | 90.16 | 57.58 | 0.02 | 4.41 | 0.03 | 7.67 |
inst_6pol | 114.23 | 73.97 | 114.55 | 77.93 | 114.43 | 74.20 | 0.10 | 4.67 | 0.09 | 6.29 |
inst_7pol | 138.47 | 104.92 | 138.91 | 80.33 | 138.70 | 89.79 | 0.16 | 7.09 | 0.11 | 7.90 |
inst_8pol | 156.68 | 101.20 | 157.18 | 102.50 | 156.92 | 102.61 | 0.18 | 6.62 | 0.11 | 6.45 |
inst_9pol | 187.10 | 117.63 | 187.65 | 130.63 | 187.34 | 122.25 | 0.21 | 5.22 | 0.11 | 4.27 |
inst_26pol | 218.68 | 308.02 | 219.84 | 304.34 | 219.16 | 306.23 | 0.33 | 1.40 | 0.15 | 0.46 |
rco1 | 162.78 | 109.34 | 163.88 | 116.15 | 163.25 | 110.32 | 0.30 | 6.24 | 0.19 | 5.66 |
rco2 | 317.76 | 264.95 | 319.63 | 262.81 | 318.71 | 271.21 | 0.60 | 6.22 | 0.19 | 2.29 |
rco3 | 480.66 | 301.41 | 485.71 | 302.02 | 481.99 | 301.92 | 1.38 | 0.42 | 0.29 | 0.14 |
shapes2 | 227.83 | 237.60 | 229.71 | 266.72 | 228.87 | 256.27 | 0.54 | 13.71 | 0.24 | 5.35 |
shapes4 | 453.30 | 302.06 | 455.87 | 303.49 | 454.13 | 302.92 | 0.84 | 0.51 | 0.18 | 0.17 |
spfc | 147.77 | 195.91 | 148.81 | 196.75 | 148.21 | 202.18 | 0.30 | 17.37 | 0.21 | 8.59 |
trousers | 343.11 | 312.32 | 347.59 | 306.85 | 346.43 | 309.98 | 1.33 | 2.23 | 0.38 | 0.72 |
Exec. time (avg) | 181.60 | 183.63 | 183.43 |
Instances | Best | Worst | Average | Std. Deviation | Variation | |||||
---|---|---|---|---|---|---|---|---|---|---|
Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | Fitness | Exec. | |
albano | 107.88 | 301.77 | 109.96 | 301.59 | 108.97 | 299.99 | 0.56 | 4.34 | 0.51 | 1.45 |
blaz1 | 163.59 | 39.04 | 166.29 | 37.48 | 164.34 | 40.09 | 0.83 | 2.27 | 0.51 | 5.66 |
blaz2 | 295.40 | 89.47 | 298.28 | 82.66 | 296.89 | 88.25 | 0.94 | 3.86 | 0.32 | 4.38 |
blaz3 | 495.29 | 194.61 | 500.55 | 180.00 | 497.09 | 202.88 | 1.32 | 12.68 | 0.27 | 6.25 |
dighe1 | 97.09 | 48.74 | 97.57 | 49.69 | 97.28 | 48.24 | 0.18 | 2.73 | 0.19 | 5.66 |
dighe2 | 79.37 | 40.46 | 80.09 | 39.89 | 79.63 | 38.40 | 0.20 | 1.73 | 0.25 | 4.50 |
fu | 28.16 | 41.89 | 28.35 | 39.42 | 28.25 | 42.33 | 0.07 | 3.76 | 0.24 | 8.88 |
inst_10pol | 193.90 | 37.91 | 195.08 | 37.28 | 194.33 | 37.80 | 0.42 | 2.43 | 0.21 | 6.42 |
inst_16pol | 172.20 | 220.74 | 173.85 | 189.20 | 172.95 | 196.40 | 0.57 | 12.97 | 0.33 | 6.60 |
inst_2pol | 36.05 | 5.96 | 36.05 | 5.96 | 36.05 | 6.71 | 0.00 | 0.49 | 0.00 | 7.23 |
inst_3pol | 48.10 | 10.19 | 48.10 | 10.19 | 48.10 | 10.05 | 0.00 | 0.36 | 0.00 | 3.63 |
inst_4pol | 72.15 | 14.61 | 72.40 | 12.80 | 72.21 | 13.85 | 0.09 | 0.94 | 0.13 | 6.82 |
inst_5pol | 90.15 | 18.59 | 90.73 | 18.70 | 90.34 | 18.18 | 0.19 | 1.53 | 0.21 | 8.42 |
inst_6pol | 114.60 | 19.37 | 115.23 | 20.15 | 114.80 | 20.75 | 0.23 | 1.26 | 0.20 | 6.07 |
inst_7pol | 138.66 | 23.88 | 139.60 | 22.55 | 139.08 | 24.52 | 0.33 | 1.37 | 0.24 | 5.58 |
inst_8pol | 157.20 | 27.25 | 158.25 | 24.11 | 157.65 | 27.03 | 0.32 | 1.63 | 0.20 | 6.03 |
inst_9pol | 187.03 | 30.68 | 188.83 | 32.33 | 188.00 | 32.97 | 0.47 | 1.70 | 0.25 | 5.17 |
inst_26pol | 196.50 | 304.46 | 201.26 | 303.18 | 197.61 | 303.26 | 1.44 | 0.65 | 0.73 | 0.21 |
rco1 | 164.06 | 31.18 | 165.53 | 36.59 | 164.71 | 33.10 | 0.47 | 2.02 | 0.28 | 6.09 |
rco2 | 321.88 | 83.18 | 323.96 | 77.48 | 322.66 | 80.36 | 0.85 | 3.10 | 0.26 | 3.86 |
rco3 | 486.86 | 153.02 | 491.18 | 159.72 | 488.79 | 150.16 | 1.49 | 7.87 | 0.31 | 5.24 |
shapes2 | 230.52 | 79.09 | 231.73 | 76.11 | 231.04 | 78.82 | 0.46 | 3.62 | 0.20 | 4.59 |
shapes4 | 452.26 | 243.26 | 455.89 | 231.39 | 453.94 | 252.24 | 1.12 | 16.11 | 0.25 | 6.39 |
spfc | 149.41 | 55.16 | 150.18 | 55.40 | 149.76 | 51.69 | 0.26 | 2.80 | 0.17 | 5.42 |
trousers | 308.86 | 306.82 | 334.58 | 305.88 | 316.26 | 306.12 | 8.61 | 0.79 | 2.72 | 0.26 |
Exec. time (avg) | 96.85 | 93.99 | 96.17 |
Instances | GAP | GAP | ||||
---|---|---|---|---|---|---|
Connected (C) | Separated (S) | |||||
Fitness (%) | Time (s) | Time (%) | Fitness (%) | Time (s) | Time (%) | |
albano | 7.68% | 5.04 | −1.66% | 4.19% | −3.54 | 1.17% |
blaz1 | −1.04% | −109.15 | 71.73% | −0.94% | −99.73 | 71.33% |
blaz2 | −1.63% | −127.31 | 42.19% | −1.37% | −211.56 | 70.57% |
blaz3 | 0.13% | −105.50 | 34.85% | −0.19% | −99.96 | 33.01% |
dighe1 | −0.71% | −90.87 | 65.81% | −0.92% | −146.45 | 75.22% |
dighe2 | −0.18% | −75.42 | 76.13% | −0.85% | −114.69 | 74.91% |
fu | −0.48% | −131.27 | 71.16% | −0.57% | −99.26 | 70.10% |
inst_10pol | −1.47% | −48.19 | 53.42% | −0.44% | −97.24 | 72.01% |
inst_16pol | −1.46% | −71.59 | 54.16% | 0.37% | −106.25 | 35.11% |
inst_2pol | 0.00% | −16.21 | 67.32% | 0.00% | −17.95 | 72.78% |
inst_3pol | 0.00% | −19.10 | 70.02% | 0.00% | −22.44 | 69.07% |
inst_4pol | −0.44% | −17.99 | 52.54% | −0.09% | −34.30 | 71.23% |
inst_5pol | −0.02% | −29.67 | 70.21% | −0.19% | −39.40 | 68.43% |
inst_6pol | −0.70% | −26.03 | 50.79% | −0.33% | −53.45 | 72.03% |
inst_7pol | 0.02% | −45.77 | 72.35% | −0.27% | −65.27 | 72.69% |
inst_8pol | −0.21% | −48.29 | 72.03% | −0.47% | −75.58 | 73.66% |
inst_9pol | −1.25% | −48.36 | 58.67% | −0.35% | −89.28 | 73.03% |
inst_26pol | 10.69% | 10.21 | −3.34% | 9.84% | −2.97 | 0.97% |
rco1 | −0.83% | −85.87 | 70.38% | −0.90% | −77.22 | 70.00% |
rco2 | −1.67% | −208.51 | 69.15% | −1.24% | −190.86 | 70.37% |
rco3 | −1.48% | −138.98 | 45.96% | −1.41% | −151.76 | 50.26% |
shapes2 | −1.74% | −198.68 | 66.76% | -0.95% | −177.45 | 69.24% |
shapes4 | 2.56% | 4.30 | −1.42% | 0.04% | −50.68 | 16.73% |
spfc | −1.19% | −167.99 | 73.97% | −1.05% | −150.49 | 74.44% |
trousers | 6.31% | 28.88 | −9.28% | 8.71% | −3.86 | 1.24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Junior, B.A.; de Carvalho, G.N.; Santos, M.C.; Pinheio, P.R.; Celedonio, J.W.L. Evolutionary Algorithms for Optimization Sequence of Cut in the Laser Cutting Path Problem. Appl. Sci. 2023, 13, 10133. https://doi.org/10.3390/app131810133
Junior BA, de Carvalho GN, Santos MC, Pinheio PR, Celedonio JWL. Evolutionary Algorithms for Optimization Sequence of Cut in the Laser Cutting Path Problem. Applied Sciences. 2023; 13(18):10133. https://doi.org/10.3390/app131810133
Chicago/Turabian StyleJunior, Bonfim Amaro, Guilherme Nepomuceno de Carvalho, Marcio Costa Santos, Placido Rogerio Pinheio, and Joao Willian Lemos Celedonio. 2023. "Evolutionary Algorithms for Optimization Sequence of Cut in the Laser Cutting Path Problem" Applied Sciences 13, no. 18: 10133. https://doi.org/10.3390/app131810133
APA StyleJunior, B. A., de Carvalho, G. N., Santos, M. C., Pinheio, P. R., & Celedonio, J. W. L. (2023). Evolutionary Algorithms for Optimization Sequence of Cut in the Laser Cutting Path Problem. Applied Sciences, 13(18), 10133. https://doi.org/10.3390/app131810133