
Citation: Junior, B.A.; de Carvalho,

G.N.; Santos, M.C.; Pinheio, P.R.;

Celedonio, J.W.L. Evolutionary

Algorithms for Optimization

Sequence of Cut in the Laser Cutting

Path Problem. Appl. Sci. 2023, 13,

10133. https://doi.org/10.3390/

app131810133

Academic Editor: Chilukuri K.

Mohan

Received: 3 August 2023

Revised: 4 September 2023

Accepted: 5 September 2023

Published: 8 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Evolutionary Algorithms for Optimization Sequence of Cut in
the Laser Cutting Path Problem
Bonfim Amaro Junior 1, Guilherme Nepomuceno de Carvalho 2,†, Marcio Costa Santos 3,†,
Placido Rogerio Pinheio 1,4,*,† and Joao Willian Lemos Celedonio 2,†

1 Department of Computer Science, State University of Ceara, Fortaleza 60714903, Brazil;
bonfim.amaro@uece.br

2 Department of Computer Science, Federal University of Ceara, Russas 62900000, Brazil;
guilhermenepomuceno46@gmail.com (G.N.d.C.); willianhophip@alu.ufc.br (J.W.L.C.)

3 Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte 31270901, Brazil;
marciocs@ufmg.br

4 Department of Applied Informatics, University of Fortaleza, Fortaleza 60811905, Brazil
* Correspondence: placido@unifor.br
† These authors contributed equally to this work.

Abstract: Efficiently cutting smaller two-dimensional parts from a larger surface area is a recurring
challenge in many manufacturing environments. This point falls under the cut-and-pack (C&P)
problems. This study specifically focused on a specialization of the cut path determination (CPD)
known as the laser cutting path planning (LCPP) problem. The LCPP aims to determine a sequence
of cutting and sliding movements for the head that minimizes the parts’ separation time. It is
important to note that both cutting and glide speeds (moving the head without cutting) can vary
depending on the equipment, despite their importance in real-world scenarios. This study investigates
an adaptive biased random-key genetic algorithm (ABRKGA) and a heuristic to create improved
individuals applied to LCPP. Our focus is on dealing with more meaningful instances that resemble
real-world requirements. The experiments in this article used parameter values for typical laser
cutting machines to assess the feasibility of the proposed methods compared to an existing strategy.
The results demonstrate that solutions based on metaheuristics are competitive and that the inclusion
of heuristics in the creation of the initial population benefits the execution of the evolutionary strategy
in the treatment of practical problems, achieving better performance in terms of the quality of
solutions and computational time.

Keywords: evolutionary metaheuristics; laser cutting path; biased random-key genetic algorithm

1. Introduction

Researchers frequently aspire to reduce production costs by considering the context of
cutting materials. Integrating CAD (computer-aided design) and CAM (computer-aided
manufacturing) systems has significantly enhanced the production capacity of device tools
for generating NC (numerical control) programs. Consequently, developers have created
numerous commercial computer system packages to automate the NC programming
process for diverse cutting applications. This advancement has resulted in the extensive
adoption of automated devices across manufacturing industries, enabling the precise
cutting of various materials such as clothes, papers, glasses, and sheet metals.

For example, cutting clothes involves working with polygon-shaped pieces that must
be carefully positioned on a “strip” to minimize waste. This process, known as cutting and
packing (C&P), is classified as an optimization problem. It aims to efficiently arrange items
within a given space, maintaining the same dimension [1,2]. Employing heuristics and exact
techniques for C&P can provide a significant commercial advantage [3]. For comprehensive
surveys on C&P problems, refer to [4,5].

Appl. Sci. 2023, 13, 10133. https://doi.org/10.3390/app131810133 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810133
https://doi.org/10.3390/app131810133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-1718-1712
https://doi.org/10.3390/app131810133
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810133?type=check_update&version=1

Appl. Sci. 2023, 13, 10133 2 of 42

In the nesting process, which is the initial stage, the objective is to minimize the
amount of raw material required. This process can also involve additional constraints
specific to the application at hand. Laser cutting, for instance, is a widely used technique
for separating sheet metal items, making it one of the primary methods employed once an
optimal layout has been determined.

Once a suitable arrangement of polygons (layout) has been found, the next step
is to compute the optimal cutting path the cutting device should follow to minimize
the processing time. This problem is known as the cutting path determination problem
(CPDP) [6]. The CPDP focuses on determining the most efficient cutting path for a tool or
machine to manufacture a specific part or product.

Cutting can be categorized into two main categories: complete cutting, where each
polygon is cut entirely before moving on to the next polygon, and partial cutting, where an
item can be cut in portions, allowing for switching between partially cut pieces during the
cutting process. The CPDP plays a crucial role in the manufacturing industry, and extensive
research has been conducted to develop efficient algorithms and approaches to solve this
problem across various manufacturing processes. The aim is to optimize the cutting path
and minimize processing time, leading to improved efficiency and productivity in the
manufacturing industry.

Various studies have explored the impact of laser cutting materials, specifically by
examining the effects of processing heat and different speed parameters on cutting quality.
However, our research specifically focuses on reducing the empty laser cutting path,
mainly when dealing with instances involving connected and separate nested pieces. We
incorporate two parameters to represent the air movement (Vm) and cutting speeds (Vc) of
a laser cutting machine. Thus, we are able to simulate the elapsed time to cut the pieces in
different paths. It is worth reinforcing that such processes can be time consuming in most
applications and gains, however tiny, represent a large improvement overall.

We encounter the laser cutting path planning (LCPP) problem in this context. LCPP is
a specific type of CPDP that aims to quickly determine a cutting path that minimizes the
overall time required to cut all parts from the given layout. This optimization considers
two crucial parameters: Vm and Vc. The total time involved in the laser cutting operation
consists of the actual processing time and the movement time, during which the laser
head moves without cutting between different nodes and edges (representing the items).
Consequently, the actual processing time can be determined once the machine and material
cut speed limitations are correctly defined. By optimizing the laser head’s traversal distance
between different items, the time spent on air movement can be reduced.

LCPP is an extension of the well-known traveling salesman problem (TSP), a typical
NP-hard problem [7]. Consequently, algorithms that aim to provide optimal solutions for
LCPP face exponentially increasing computational time as the number of layout pieces
grows. Hence, heuristic methods that offer approximate solutions are justified and neces-
sary for solving industrial-scale problems. Metaheuristic methods have gained popularity
among researchers as they can discover approximate solutions often close to optimal.
On the other hand, approaches based on mathematical formulations have proven impracti-
cal for real-world examples, but they can serve as valuable guides for potential methods.
This paper presents the self-adapted parameters biased random-key genetic algorithm
(ABRKGA) [8] to address the laser cutting path planning problem. We also present a
heuristic approach based on Eulerian paths to generate high-quality initial individuals.
Our methods outperform existing approaches, and our promising results are compared
with those presented in [9] and discussed in detail in Section 4.3.

The rest of this paper is organized as follows: Section 2 provides a formal definition
of LCPP, Section 3 presents an overview of current approaches for tool path generation,
and Section 4 highlights the critical aspects of the ABRKGA approach and the Eulerian
concept for constructing an excellent initial population. Section 5 focuses on the test
instances and compares the performance with the best-known solutions, presented in [9].
Finally, Section 6 draws conclusions based on the findings of this research.

Appl. Sci. 2023, 13, 10133 3 of 42

2. The Laser Cutting Path Problem (LCPP)

A laser cutting machine is an automated device for precise cutting and design projects
in various industries. It offers high cutting speed, narrow kerf, excellent cutting quality,
and versatility. The laser cutting path is crucial in determining the cutting quality, process-
ing efficiency, and energy consumption, directly impacting production costs. The required
time is divided into cutting and air time (head movement between different edges/patterns)
in the laser cutting process. Therefore, the specific CPDP applied to laser cutting machines
is known as laser cutting path planning (LCPP).

The primary objective of the LCPP problem is to optimize the cutting time, which
depends on two key parameters that simulate the laser cutting device: cutting velocity
(Vc) and air-moving (or sliding) velocity (Vm) of the cutting head. The first parameter is
influenced by the machine’s hardware, the shape of the pieces in the input layout, and the
characteristics of the material being cut. The second parameter controls the speed at which
the cutting head moves without cutting. In this study, we aim to address a generalized
type of CPDP [6] considering the earlier constraints, distinguishing it from the research
conducted by Derwil et al. [10].

Furthermore, LCPP involves optimizing the distances between cutting points where
no cutting is performed, reducing air time. Therefore, strategies must minimize the length
of unnecessary laser head movements. This situation can also be considered an “empty
trip” problem in laser cutting [11].

Figure 1 illustrates an optimal solution obtained by input layout instance. Note
that, in the LCPP problem, the choice process for every solution considers the source
(S) coordinates (x = 0, y = 0). Usually, the top-left corner of the laser cut machines.
The main question is: starting from the source point, how can a laser cutting machine
(a computational method) select the best sequence of edges that minimizes the complete
cutting process time?

Furthermore, in Figure 1, the LCPP considers the initial and the final air time (repre-
sented by a dashed line, a sequence with the numbers 1 and 18). In every cutting process,
the head of the device will move without cutting from the origin to the first point of the
input layout (sequence number 1). The same happens when all the edges are cut, and the
head must return to the origin (sequence number 18). Thus, it only moves the head when
it does not perform a cut. The cost function uses a Vm parameter and the Chebyschev
distance between points to compute the time required for that movement. All the rest
of the head machine moves (sequences 2–17) increase the final process time to cut the
demand of an input layout. For this case, each cut uses the parameter Vc and the size of the
edge. Note that the sequence numbers 11 and 12 represent the same edge. Nonetheless,
we divide common points for our proposal to increase path possibilities. For example,
the node of the square that touches the triangle allows one edge division between sequence
numbers 11 and 12.

Figure 1. An optimal solution example for laser cutting path planning.

Appl. Sci. 2023, 13, 10133 4 of 42

2.1. Formal Definition

In this paper, we use a graph representation to tackle the LCPP. A graph G = (V, E) is
an ordered pair of two sets, V the set of vertices and E ⊆ {uv | u, v ∈ V}, the set of edges.
If E ⊆ V ×V, we say that the graph is directed and, if for each element uv of E we have a
value wuv associated with it, we say that the graph is weighted and that wuv is the weight
of the edge uv.

Given a graph G = (V, E), we say that v is adjacent to u if vu ∈ E and for a vertex
v ∈ V, we call the neighborhood of v in G the set of all vertices adjacent to v in G and
denote such a set by NG(v) = {u | u ∈ V, uv ∈ E}. A walk W = [[e1, . . . , ek]] in G is a
sequence of edges from G such that, for all i ∈ {1, . . . , k− 1} we have that ei = wv and
ei+1 = vu, in other words, the second endpoint of an edge is the first of the next edge. We
are given a complete weighted graph G = (V, E) with weights wvu for each edge, a set of q
required edges R = {r1, . . . , rq} such that R ⊆ E and two numerical constants, Vc and Vm,
representing the cutting speed and the gliding speed for a cutting laser machine.

In this context, the laser cutting path problem (LCPP) can be defined as the optimiza-
tion problem where one wants to minimize the sum of the weights of the edges in the walk
multiplied by the proper speed, meaning that the edges in R must be multiplied by Vc
exactly once. All the other edges (including the other appearances of the edges in R) must
be multiplied by Vm. More formally, let W = [e1, . . . , ek] be a walk in G and W(R) be the set
of edges obtained from W by removing the first, and only the first, occurrence of an edge in
R. We define the cost of W as sz(W) = ∑

e∈W(R)
Vmwe + ∑

e∈R
Vcwe; the LCPP problem could

be defined as presented in (1).

min
W∈W(R)

∑
e∈W(R)

Vmwe + ∑
e∈R

Vcwe (1)

2.2. An Integer Programming Formulation

A mathematical model serves several purposes. Firstly, it provides a common language
that enables effective communication between researchers, practitioners, and stakeholders.
Mathematical notation can precisely describe the problem and its requirements, facilitating
a shared understanding among different parties.

The model is crucial for formalizing an LCPP: We have two sets of binary variables.
The first set of variables are variables xuv,i that represent wherever the cutting edge uv is the
i-th edge to be cut or not. These variables represent the LCPP solution since this represents
the order in which one must cut the pieces. As we know the cut order for the cutting edges,
to compute the total cost of this solution, one only needs to determine the edges used as
slight edges. Such information is encoded by the second set of binary variables used to
represent whether or not we require edge uv to be used as a sliding edge in the time i. This
variable is defined as yuv,i for all uv ∈ E and i ∈ {1, . . . , q}. Under such variables, we can
define the following model.

min
q−1

∑
i=1

∑
uv∈E

Vmwu,vyuv,i +
q

∑
i=1

∑
uv∈R

Vcwu,vxuv,i (2a)

s.t.
q

∑
i=1

xuv,i = 1 ∀uv ∈ R, (2b)

∑
uv∈E

(xuv,i + xvu,i) = 1 ∀i ∈ {1, . . . , q}, (2c)

∑
u∈V−{v}

xuv,i + ∑
p∈V−{w}

xwp,i+1 − 1 ≤ yvw,i ∀uv ∈ E \ R, ∀i ∈ {1, . . . , q− 1}, (2d)

xuv,i ∈ {0, 1}∀uv ∈ R, i ∈ {1, . . . , q}, (2e)

yuv,i ∈ {0, 1}∀uv ∈ E ⊆ R, i ∈ {1, . . . , q} (2f)

Appl. Sci. 2023, 13, 10133 5 of 42

The objective function (2a) computes the cost of a given solution under the form of an
ordering of the required edges; constraints (2b) and constraints (2c) enforce a total ordering
of the edges in R, (2c) enforces that each position is an edge, and (2b) ensures that every
edge is listed; constraints (2d) compute the movements outside the required edges; and
finally, constraints (2e) and constraints (2f) define the bounds on the variables.

Notice that the model encodes the solution as a sequence of edges to be crossed as it is
building the path of the solution. Moreover, notice that the formulation has a large number
of variables, O(|V|3), and a large number of constraints O(|V|2). The computational results
show that this large number of variables take their tool in the formulation and serve as a
motivation for the proposition of heuristic methods.

3. Literature Review

Researchers have attempted to apply metaheuristics to various processing methods
to minimize the inefficient “airtime” during the operation of cutting devices [12]. GA
(genetic algorithm) and BRKGA (biased random-key genetic algorithm) have been used to
determine the optimal arrangement of edges for a set of operations located in asymmetrical
positions and diverse classes [9,13]. The ant colony optimization (ACO) algorithm has been
employed to minimize tool switching time and tool airtime in hole-making operations [14],
as well as to discover the optimal travel path by determining the best ordering for hole-
cutting operations [15].

The literature encompasses various research studies on algorithmic techniques for
CPD. Dewil et al. [7] presented and classified these methods based on the approach used to
traverse the vertices of the polygons. They identified three categories: the touring polygons
problem [16,17], traveling salesman problem (TSP) [18,19], generalized TSP (GTPS) [20,21],
and TSP with neighborhoods (TSP-N) [22].

Derwil et al. [10] classified CPD problems based on the flexibility of selecting an initial
contour entry point and whether a piece is partially cut before the cutting head device
moves to another object. The first category includes situations with continuous cutting,
where the cut can start from any point along the perimeter of the pieces [22,23]. In such
cases, the entry point should be the same for both entry and exit. The second category is
referred to as endpoint cutting, which pertains to problems where the cut starts and ends at
predefined vertices of the polygons [24,25]. The final category is intermittent cutting, which
imposes no constraints on the points that can be used to enter or exit the cutting [26,27].

Additional objectives in CPD include minimizing the path length of the cutting trajec-
tory across contours and considering the impact of heat on the cutting path sequence [28].
Another potential constraint is the requirement for a predefined cutting sequence of items
without any sliding movements [29]. Manber and Israni [24] addressed the sequencing
problem of a torch (flame cutter machine) for cutting regular and irregular parts placed on
a surface. Their approach aimed to improve the cutting process by minimizing the number
of piercings, which refers to small holes made near each piece.

One approach for solving CPD problems is to use linear integer models to determine
the optimal sequence of actions that minimizes the overall cutting time for a given set of
parts [30]. Building on this, Dewil et al. [10] further extended the work presented in [30] by
incorporating additional constraints that reflect real-world conditions. For instance, the re-
lationships between inner and outer contours arise from holes in parts, pieces positioned
within holes, or elements nested within enclosed waste areas. Considering the inner–outer
contour relationship means an inner contour must be cut entirely before the outer shape
is cut.

In summary, the cutting sequence requires all pieces of an inner contour to be cut before
the final element of its outer contour is cut. Additionally, imposing a set of constraints
on primary cuts is feasible. In specific layouts, each regular cut is enclosed by a contour
formed by its two surrounding contours. Therefore, it is not permitted for a regular cut to
connect both of its surrounding contours.

Appl. Sci. 2023, 13, 10133 6 of 42

Another set of significant constraints arises from the observation that when a regular
cut intersects the contour of two surrounding contours, the disconnected contour can slide,
rendering the remaining cutting process infeasible. The laser must move into the cut kerf
to achieve precise cutting of the remaining contour objects. This event is not permissible
if high part quality is required, and a pre-cut should have been made earlier. Similarly,
when cutting a part, a small pre-cut can be created in a neighboring element if the laser
head needs to start cutting from that location later on. Dewil et al. [7] also consider several
non-trivial extensions, such as collisions, bridges, and thermal effects, which further add to
the practical complexities of the problem.

An alternative approach involves mapping CPD to graph-based problems, such as the
capacitated node routing problem (NRP), also known as the vehicle routing or dispatch
problem [31]. This mapping allows for using mathematical models to optimize CPD [6,32].
These techniques handle CPD by manipulating a mathematical formulation based on the
NRP problem and a derived model for the traveling salesman problem (TSP). This strategy
is particularly effective in obtaining optimal solutions for instances with approximately
2000 edges within a reasonable time frame. The formulation presented in [6] achieved
optimal results for more significant instances, with up to 712 edges and a maximum of
560 nodes.

It is important to note that using mathematical models in practical instances with tens
of thousands of edges and nodes has proven impractical. A viable approach is to employ
heuristics and metaheuristics to solve graph-based problems equivalent to the original
CPD problem. For instance, Moreira et al. [25] adopted this technique by considering the
surface as having an elevation (height) and allowing objects to fall as they are being cut.
This approach qualifies for exploring alternative strategies that efficiently handle more
extensive and complex instances.

Similarly, the empty path problems in laser cutting can be seen as an extension of the
traveling salesman problem (TSP), a well-known NP-hard problem. Hajad et al. [33] pro-
pose an approach for addressing the laser cutting path problem, formulated as a generalized
traveling salesman problem (GTSP). Their study combines population-based simulated
annealing (SA) with adaptive large neighborhood search (ALNS). Recombination tech-
niques, such as swap, reversion, insertion, and removal–insertion, are applied alternately
using a fitness proportionate sampling mechanism. In each iteration, the cultural algorithm
selection method manages 35% of the population to reduce computational execution time
while maintaining solution quality. The results indicate that this method can solve problems
of various sizes with a reasonable error percentage compared to the best-known solutions.

The study by Hajad et al. [33] demonstrates a promising approach for tackling the laser
cutting path problem, utilizing a combination of population-based simulated annealing
and adaptive extensive neighborhood search techniques. Their method effectively solves
problems of different scales and provides satisfactory accuracy compared to the best-
known solutions.

Skinderowicza [34] introduced a modified version of the ant colony optimization
(ACO) algorithm called focused ACO (FACO). This approach incorporates a mechanism to
manage potential differences between newly generated and previously selected solutions.
The main objective is to create a more focused search procedure that allows for the discovery
of improvements while maintaining the quality of the existing solution. A computational
study using various traveling salesman problem (TSP) datasets was conducted to evaluate
the performance of FACO. The results showed that FACO outperforms state-of-the-art ACO
algorithms significantly when solving large TSP instances. FACO could find high-quality
solutions within less than an hour using an eight-core commodity CPU.

Overall, Skinderowicza’s FACO algorithm presents a promising enhancement to the
traditional ACO approach, demonstrating improved performance in solving large-scale
TSP instances. The efficient computational performance of FACO makes it a valuable tool
for tackling optimization problems with practical significance.

Appl. Sci. 2023, 13, 10133 7 of 42

It is worth noting that mathematical formulations have proven to be impractical for
more real-world examples. A practicable technique is using metaheuristics that employ
a graph-based representation similar to the traditional CPD problem. However, we in-
corporate the air and cut speeds as additional considerations. We employ the adaptive
biased random-key genetic algorithm (ABRKGA) [8], combined with an Eulerian heuris-
tic, to construct the initial population and generate new individuals during the entire
execution process.

By integrating the ABRKGA and the Eulerian heuristic, we aim to overcome the
challenges posed by practical instances and enhance the efficiency of the solution pro-
cess. This hybrid approach combines the benefits of both metaheuristics and heuristic
techniques, allowing us to explore the solution space effectively and generate high-quality
initial solutions.

In general, the proposed approach of utilizing the ABRKGA and Eulerian heuristic in
conjunction with a graph-based representation addresses the limitations of traditional math-
ematical formulations. This combination of techniques provides a promising framework
for solving practical CPD problems, considering the complexities of real-world scenarios
and optimizing the air and cut speeds.

4. Overview of Application of ABRKGA to LCPP
4.1. Introduction

Metaheuristics serve as practical tools for acquiring high-quality solutions to com-
binatorial optimization problems. Nevertheless, during the design phase, developers
must carefully consider various aspects, including solution representation, objective func-
tion calculation, constraints handling, neighborhood structures, initial solution selection,
and parameter configuration. These decisions present numerous alternatives, and selecting
the most suitable options becomes essential in attaining reasonable solutions for a given
optimization problem.

The biased random-key genetic algorithm (BRKGA), put forward by Goncalves and
Resende [35], presents an evolutionary algorithm that streamlines several choices men-
tioned above. It relies on the notion of random keys to depict a solution and employs a
decoder function to transform the random-key solution into an optimized solution for the
problem. Consequently, developers must implement the problem-specific decoder and
adjust the method’s parameters.

Nonetheless, a crucial aspect of metaheuristics is the impact of parameters on the
efficiency and effectiveness of exploring the solution space. These parameters necessitate
configuration in every metaheuristic. However, the values are only sometimes optimal
for specific problems or instances, and they may not be suitable considering the available
computational time for execution. Consequently, conducting an efficient configuration of
parameter values utilized in each specific application is essential.

The execution of evolutionary algorithms can involve configuration parameters as
constants at the beginning of the execution or allowing flexibility in adjusting them as the
process unfolds. In [36], the authors present a classification of parameter configuration
techniques for evolutionary algorithms. Parameter values can be predetermined before the
execution and remain fixed throughout the search (offline), or the parameter values can be
dynamically modified during the execution (online).

In this section, we present a self-adapted params BRKGA, [8] (ABRKGA), aiming
to balance exploration and exploitation considering the context of LCPP representation.
The parameter values are modified according to deterministic rules (e.g., varying over
the number of iterations) or adapted based on information obtained during the search
(e.g., the quality of the solution found). Parameters can also be included in the solution
representation and evolve during the search process (self-adaptive control). We know this
approach does not necessarily reduce the number of parameters; however, the authors
proposed simplifying the parameter configuration. Figure 2 depicts the evolutionary
progression of the proposed ABRKGA.

Appl. Sci. 2023, 13, 10133 8 of 42

Figure 2. The ABRKGA workflow. Adapted from [8].

4.2. Initialization and Basic Concepts

Similarly to [9], the execution will be performed on a laser cutting machine that
moves along coordinates (x, y). The input parameters will define the head movement
speed (Vm) and cutting speed (Vc). These values may vary according to equipment needs.
The Chebyshev distance was considered to calculate the required time for a machine to
extract parts from the inputs.

The input parameters of our approach include the following:

• p—population size (representing the set of solutions viable in each iteration);
• pe—elite size partition of the population (representing the portion of the population

that is selected as elite);
• pm—mutant size partition of the population (representing the portion of the solutions

that are submitted to our mutation procedure);
• ρe—probability of inheriting the key from an elite parent;
• maxgen—maximum number of generations;
• γ—value based on the running available time and (0 ≤ γ < 1);
• Vm—the device head movement speed value;
• Vc—the device head cutting speed value.

We apply five classical parameters of BRKGA [37] (p, pe, pm, ρe, maxgen), and also
consider (α, β, γ) (ABRKGA) [36] and (Vm,Vc), specific parameters of LCPP. The variables
ρe and β exhibit self-adjusting characteristics, while the remaining variables are modified
using deterministic principles, except Vm and Vc which are constant for the whole execution.
Users must specify a solitary fresh parameter γ depending on the available duration of
execution. The objective of the ABRKGA is to employ parameter adjustment to facilitate
increased exploration during the initial stage of the search and enhanced exploitation
throughout the evolutionary progression.

The ABRKGA creates an initial population comprising p randomly generated key
vectors (individuals). Each individual’s chromosome consists of 2n + 2 genes, randomly
generated with a uniform probability from the range [0, 1]. The representation of a possible
solution for LCPP is divided into three parts. Each individual is encoded by a vector of
random keys (1,2, ..., n , n + 1, ..., 2n, 2n + 1, 2n + 2), where n corresponds to the number
of edges (n = |R|) that must be cut from the input layout. The n’s first positions define
the cutting order of each required edge, and the next n’s indexes denote the direction of
the cut. Finally, the remaining positions (2n + 1) and (2n + 2) are utilized to calculate the
self-adjusting parameters ρe and β, correspondingly. Figure 3 illustrates the three elements
of individual representation.

Appl. Sci. 2023, 13, 10133 9 of 42

Figure 3. Encoder and decoder for an individual representation.

It is necessary to emphasize that the cutting process starts from the original system
of each device (source) and returns with the movement head at the end (regress). This
research considers point (0,0) as the source because the industrial cutting machine applies
the same idea. In this context, Figure 4 shows a visual solution considering an input layout
and the same individual presented in Figure 3.

input layout

1

2

3

4

(0,0)
Source

Encoder
and

Decoder

1

24

3

5

6

(0,0)
Source

solution

(Source and Regress) Cutting Air movement (no cut)

Figure 4. Input layout and solution constructed, for example illustrated in Figure 3.

Therefore, the fitness of each individual (f itness(i)) and, consequently, the quality
of the solutions is linked to the cutting time of an input layout. It is crucial to compute
the fitness function for each i to count the time to cut the necessary edges (Tcut) and the
movements of the head from the origin to the initially chosen node of the layout and back
to the source (to f f set). Then, we use the head movement speed (Vm) and cutting speed (Vc)
to calculate the value of Tcut.

Figure 5 shows the (i , i + 1) step of the f itness function. Note that (i) typifies the edge
to be cut in time(i), and (n + i) the direction, see Figure 3. The position individual[i] = 4
and individual[n + i] = 1 indicates that the edge labeled with 4 must be separated
with the direction of nodes (0 → 3). Note that the complete cutting time (CCT) is in-
cremented by Chebyshevdist(edge(i))/Vc. The next element, individual[i + 1] = 5 and
individual[n + i + 1] = 1, needs to perform the air movement only to then cut edge 5
in the direction (1 → 5). Thus, add to CCT Chebyshevdist(airEdge(i.v, (i + 1).u))/Vm +
Chebyshevdist(edge(i + 1))/Vc. The time considered to cut in i and i + 1 is computed by
this function CT(edge(i), edge(i + 1)):

CT((u, v), (z, w)) =

{
Dist(u, v)/Vc + Dist(v, z)/Vc, if v = z.
Dist(u, v)/Vc + Dist(v, z)/Vm + Dist(z, w)/Vc, otherwise.

(3)

Appl. Sci. 2023, 13, 10133 10 of 42

7 2

5 3

4 0

6

1

Individual

1

2 3

4
7

8

9

10 6

5

4 0.75

i+1i n+(i+1)n+i

i()

5

Vc

i+1()Vmi+1()Vc

0.57

Figure 5. Example of the quality value computed between i and i + 1 indexes of individual vec-
tor representation.

In other words, the faster the cut is made, the higher the quality of the individual.
Therefore, Equation (4) denotes the fitness function for an individual i, Equation (5) denotes
the best individual i of a population P, and Equation (6) the quality of a population k. These
concepts are expressed more formally as:

f itness(indi[e1, e2, ..., en, ...]) = (
n−1

∑
e=1

CT(edge(e), edge(e + 1))) + to f f set (4)

bestik = indik ∈ Pk ⇐⇒ ∀j ∈ {1, 2, ..., p} : f itness(indik) ≥ f itness(indij) (5)

PQk =
popsize(K)

∑
i=1

f itness(indi)/popsize(K) (6)

The quality of the solutions generated and inserted into the population, either initially
or during the execution of the evolutionary algorithm, has a positive impact when associ-
ated with some knowledge about the problem at hand. In light of this, we apply a strategy
to transform the input graph (computational representation of the layout) into another
graph containing at least one Eulerian path. Thus, this heuristic guides the construction
of the initial population. Section 4.3 describes the heuristic in the context of solutions for
the LCPP.

4.3. An Eulerian Heuristic to Generate Improved Individuals for LCPP

Consider an LCPP context. Examine the provided layout (Figure 6) and note that it can
commence from a single point and traverse every edge precisely once without changing the
device mode (always cutting). The term traversable describes graphs in which it is possible
to begin at a vertex and trace all the edges without lifting the pen off the page or retracing
any edge. There are two categories of traversable graphs:

• A graph is called Eulerian if it possesses a closed trail, known as an Eulerian trail or an
Eulerian circuit, which starts and ends at the same vertex while traversing every edge.

• A graph with an open trail, where the trail begins and ends at distinct vertices while
traversing every edge, is called semi-Eulerian. Alternatively, it can be denoted as
having a semi-Eulerian trail.

Appl. Sci. 2023, 13, 10133 11 of 42

It is feasible to ascertain whether an undirected graph is Eulerian or semi-Eulerian
without the need to identify the trail explicitly: if a graph exhibits precisely two vertices
with an odd degree, it is classified as semi-Eulerian (Figure 6a). These two vertices serve
as the start and end points of the open semi-Eulerian trail. If a graph consists entirely of
even-degree vertices, it is categorized as Eulerian (Figure 6b). The closed Eulerian trail can
commence from any vertex within the graph.

Figure 6. Each graph has a trail that utilizes each edge exactly once. The trail on the left (a) is
open, commencing and ending at different vertices. Conversely, the graph on the right (b) is closed,
allowing any vertices to be the start and end points.

In this context, we consider the concept, as mentioned earlier, to improve individual
fitness, whereas solutions tend to have fewer unnecessary air moves. In [9], the authors
construct the initial population with a random order of edges. This fact impacts several air
movements. Our idea is to consider four specific cases on the generation of initial solutions:

1. We assume the input layout is connected and contains all nodes with even degrees
(Eulerian graph). Then, the heuristic can find an Eulerian circuit and needs to use
one air movement (source to nearest node) and another (nearest node back to origin).
In this case, we have the minimum time required to cut all items.
Note: To return the sequence of edges at the Eulerian circuit, we apply a linear time
implementation adapted from [38] with NetworkX (Python library).

2. We assume the input layout is connected and contains precisely two vertices that
have odd degrees (semi-Eulerian graph). In this way, the initial population comprises
solutions with path routes that necessarily pass through both odd-degree vertices.
The idea is that the metaheuristic finds the combination that minimizes the end-cut
time in the LCPP, assuming that a good solution must pass through the starting and
ending points.

3. We assume the input layout is connected and contains more than two nodes with odd
degrees. In this case, the heuristic seeks to transform the graph’s vertices that have
odd degrees into even degrees, adding new edges between them until only two odd
edges remain in the semi-Eulerian graph (2).

4. We consider the possibility that the input layouts present items without contact
between them. This situation occurs when the cut needs to maintain a safe area for
the edges.

In this procedure, edges between odd vertices enter the solution and are counted as
displacement. Algorithm 1 shows the pseudocode for applying the heuristic to the graph.
First, the edges are divided into two sets with even and odd degrees, then the code checks
if the graph is semi-Eulerian. Otherwise, the displacements are added between them until
only two even vertices remain.

Algorithm 2 shows the pseudocode of how we apply the heuristic to individual
generation. Initially, we select a vertex and edge of this vertex, add it to the individual,
and later, walk on the edges that can be reached from the initial vertex. When it is not
possible, we choose another vertex that was not selected, repeating the process until all
edges of the graph are covered.

Appl. Sci. 2023, 13, 10133 12 of 42

Algorithm 1: Eulerian Heuristc Algorithm
Input : E = (uv1, uv2, ..., uvn)
Output : E′ = (uv′1, uv′2, ..., uv′n)

1 E′ ← ∅;
2 listVertexDegreeEven← ∅;
3 listVertexDegreeOdd← ∅;
4 for i = 0 to length(E) do
5 edge← E[i];
6 listVertexDegreeEven← listVertexDegreeEven ∪

VertexDegreeEven(edge[0]) ∪ VertexDegreeOdd(edge[1]);
7 listVertexDegreeOdd← listVertexDegreeOdd ∪ VertexDegreeOdd(edge[0]) ∪

VertexDegreeOdd(edge[1]);
8 end
9 if length(listVertexDegreeOdd) = 0 & length(listVertexDegreeOdd) = 2 then

10 E′ ← E;
11 else
12 while length(listVertexDegreeOdd) > 0 do
13 if length(listVertexDegreeOdd) = 1 then
14 edge← listVertexDegreeOdd.remove(0);
15 E′ ← E′ ∪ edge;
16 else
17 vertex ← choiceRandomVertex(listVertexDegreeOdd);
18 displacement← generateDisplacement(vertex);
19 listVertexDegreeOdd.remove(vertex);
20 E′ ← E′ ∪ displacement;
21 end
22 end
23 end
24 return E′;

Algorithm 2: Eulerian Heuristic Individual Generation
Input : E = (u1v1, u2v2, ..., unvn)
Output : I = (u1v′1, u2v′2, ..., unv′n)

1 I ← ∅;
2 vertex = SelectRandomVertex(E);
3 edge = SelectRandomEdgeFromVertex(vertex);
4 while length(E) > 0 do
5 I ← I ∪ {edge};
6 E← E− {edge};
7 if VertexHasEdgeIn(edge[1], E) then
8 vertex = edge[1];
9 edge = SelectRandomEdgeFromVertex(vertex);

10 else
11 vertex = SelectRandomVertex(E);
12 edge = {edge[1], vertex};
13 end
14 end
15 return I;

4.4. New Generation Process

During the core stage of the algorithm, the ABRKGA metaheuristic comprises six com-
ponents in every successive iteration. The first step is to decode each individual, described

Appl. Sci. 2023, 13, 10133 13 of 42

in Section 4.2. The upper limit of generations determines the termination condition for
ABRKGA, computed using the parameter γ. The population size in each generation is ad-
justed using the same parameter. Note that the value of γ is determined in the initialization
phase, considering the allotted run time.

The parameters undergo updates based on deterministic rules that consider the ad-
vancement of the evolutionary process. The evolutionary process defines the two self-
adaptive parameters ρe and β as they are included within the chromosomes; see Figure 3.
We explain the methodology of online parameter control during the search process, aiming
to enhance population variance and prevent premature convergence, considering popula-
tion size, number of generations, top/mutation partitions, and the crossover process.

Defining the parameter p is complex for real-instance problems. Furthermore, varying
sizes could be advantageous during different stages of the search. For instance, at the
beginning of the process, a larger population size may be beneficial to explore the search
space and discover promising regions. As the subsequent generations progress, reducing
the population size could be advantageous for refining the solutions.

According to [39], users of BRKGA typically select a population size ranging from
100 to 1000 individuals. It is worth noting that choosing smaller populations may lead to
premature convergence towards local minima due to the limited information in the elite
partition. Conversely, employing substantial populations increases computational time.

In this context, the new generation process initiates with the maximum population
size (p = pmax). As each generation progresses, the population size (p) for each generation
(k) diminishes by a factor of:

pk+1 = pk ∗ γ (7)

The quantity of offspring is adjusted to determine the size of the new population,
which is defined by Equation (7). This strategy reduces the possible solutions at each
generation. Then, a restart procedure is executed when the population size falls below
a threshold of pmin individuals. This restart procedure involves preserving only the re-
stricted chromosome list (RCL) individuals, explained next, in the current population while
generating pmax − |RCL| new individuals at random.

Additionally, these parameters are utilized in the calculation of the stop criterion
through Equation (8), which determines the maximum number of generations (maxgen) for
the ABRKGA. Consequently, a minor reduction in population size (with γ values close
to 1) results in fewer generations. Conversely, if the population size decreases faster, it
necessitates more generations and restarts.

maxgen = γ(logpmin
γ − pmax) (8)

In order to generalize, the population chromosomes are arranged in ascending order,
placing the best chromosomes at the top and the worst at the bottom. This arrangement
applies to minimization problems, as is the case for LCPP. The population is divided
into two groups, with the best individuals retained in a restricted chromosome list (RCL).
The RCL consists of individuals whose fitness surpasses a threshold value (fe) determined
by the parameter α within the range [0, 1]:

fe = fmin + α(fmax − fmin) (9)

The fitness of the best individual in the current population is denoted as fmin, while
the fitness of the poorest individual is represented as fmax. When α = 0, only individuals
with the highest fitness are included in the RCL, whereas α = 1 includes all individuals in
the RCL. The value of parameter α is adjusted periodically based on the progress of the
search. The maximum number of individuals that can be included in the RCL is limited by
pe. Lastly, the individuals in the RCL are replicated and carried over to the next population.

The parameter α determines the number of elite individuals by influencing the size of
the RCL (defined by Equation (9)). Initially, α is set to 0.3 and decreases with each generation

Appl. Sci. 2023, 13, 10133 14 of 42

according to Equation (10). The minimum value for α is 0.1. This range accounts for the
suboptimal solutions commonly encountered in the early generations and the tendency
for population stagnation after a certain number of iterations. This range was considered
equality in the proposal of Chaves et al. [8].

α = 0.10 + (1− gk
maxgen

) ∗ (0.30− 0.10) (10)

The parameters ke (ranging from 0.10 to 0.25) and km (ranging from 0.05 to 0.20) are
employed to determine the elite (pe) and mutant (pm) partitions within the population.
Once again, the objective of the search process is to promote diversification during the
initial phase and gradually intensify the focus as the population evolves.

The parameter control ke is defined by Equation (11), while km is defined by Equation (12),
with gk representing the current generation. Consequently, the maximum size of the elite
partition is smaller in the early generations when the average quality of individuals is lower.
However, this number progressively increases in subsequent generations. Conversely,
the number of mutants decreases as the search process unfolds.

ke = 0.10 +
gk

maxgen
∗ (0.25− 0.10) (11)

km = 0.05 + (1− gk
maxgen

) ∗ (0.20− 0.05) (12)

In order to maintain diversification within the RCL, perturbations are employed
to enable the ABRKGA to break free from local optima and overcome the limitations
of solely introducing random individuals. Identical fitness values solely determine the
similarity between individuals, for simplicity. This perturbation strategy involves randomly
swapping values in a vector of random keys, with the strength of perturbation defined by
the self-adaptive parameter β, which ranges from 0.001 to 0.1.

A random variable is generated for each chromosome gene for each similar individual.
This random variable determines whether a specific random key will undergo modification
through gene swaps at random positions. This probability is set to a low value, other-
wise, the search process may devolve into randomness. The parameter β is included in
position 2n + 2 of the chromosome and evolves alongside the other genes associated with
the problem.

Within this framework, individuals with identical fitness values are subjected to
perturbations, with the intensity of perturbation determined by β, a self-adaptive parameter.
The value of β, calculated using Equation (13), is incorporated into chromosome c at position
2n + 2 and undergoes evolutionary changes.

β = 0.001 + c2n+2 ∗ (0.1− 0.001) (13)

The mutation stage produces a set of pm mutant individuals through a random generation
process. The identical module for generating the initial population creates these mutants.

The crossover process combines p − |RCL| − pm pairs of parents through mating,
with one parent chosen from the RCL and the other randomly selected from the remaining
population. The parameterized uniform crossover technique [40] is applied, which involves
generating uniform random numbers rj within the range of [0, 1] for each gene of the
chromosome. For each gene position j, if rj is less than or equal to ρe, then the offspring
inherits the j-th allele from the RCL parent; otherwise, it inherits the allele from the other
parent. The value of the self-adaptive parameter ρe, located at position 2n + 1 of the
chromosome, is always selected from the non-RCL parent.

The parameterized uniform crossover is designed to prioritize the inheritance of
alleles from the RCL parent chromosomes. This method is achieved through the self-
adaptive parameter ρe, which determines the probability of an offspring inheriting the

Appl. Sci. 2023, 13, 10133 15 of 42

vector component from the RCL parent. The calculation of ρe, as defined by Equation (14),
involves the utilization of the random-key 2n + 1 from the non-RCL chromosome c.

ρe = 0.65 + c2n+1 ∗ (0.80− 0.65) (14)

It is essential to point out that the values for defining the calculations of the ABRKGA
control parameters equations are based on the work of [39,41]. Table 1 presents each
suggested value range for the parameters applied. Furthermore, the parameter γ is a
configuration parameter, but it is relatively straightforward to adjust. Like in [8], we have
defined three specific values for γ ∈ 0.999, 0.998, 0.997 based on the available running time.
All of these values lead to a gradual decrease in population size. The primary distinction
lies in the maximum number of generations, affecting the running time and solution space.
Table 2 provides an overview of the γ and maxgen values and their respective characteristics.
p1 : The search is conducted within a reasonable computational time, ensuring that the
minimum population size remains around 70% of the initial population size. p2: The search
process is executed within a reasonable time, necessitating the restart of the population to
its maximum size once. p3: The search is carried out over an extended duration, requiring
four population restarts to be performed.

Table 1. Parameter definitions and recommended value ranges.

Parameter Suggested Value Range

p ≈ [100, 1000]
pe max[3, ke ∗ p] where ke ∈ [0.10, 0.25]
pm max[1, km ∗ p] where km ∈ [0.05, 0.20]
ρe 0.65 ≤ ρe ≤ 0.80

maxgen [50, 500]

Table 2. Available options for parameter γ.

Search Property maxgen γ

p1 271 0.999
p2 740 0.998
p3 2017 0.997

The objective of the ABRKGA is to utilize parameter tuning to enhance exploration
during the initial phase of the search and increase exploitation throughout the evolutionary
process. The evolutionary process of the ABRKGA is depicted in Figure 2. The decoder
represents the problem-dependent component, responsible for converting random-key
vectors into solutions and evaluating their fitness. On the other hand, the remaining
components are problem-agnostic and can be reused in a general-purpose framework.
Using an Eulerian path heuristic, we also consider a specialized initial population and
new individual mutation. Algorithm 3 provides the pseudocode for our adaptation for
ABRKGA to tackle LCPP. The procedure’s input parameters are the required cutting edges
(n) and the specific ABRKGA parameter γ.

Appl. Sci. 2023, 13, 10133 16 of 42

Algorithm 3: Pseudocode of ABRKGA to tackle LCPP

1 procedure ABRKGA(n, γ, Vc, Vm)
2 if input layout has a Eulerian circuit then
3 apply an offset (use Vm) to the point closest to the origin
4 individual = path back to origin
5 compute fitness of individual
6 return individual
7 end
8 else
9 Apply Eulerian path heuristic at input data /* see Section 4.3 */

10 Create a population POP, consisting of p vectors of 2n + 2 random keys
11 while (maxgen not reached) do
12 Compute the fitness (use Vm and Vc) of each newly generated solution

within Pop.
13 Update (p, α, ke, km) /* see Equations (7) and (10)–(12) */
14 Divide Pop, into two distinct sets: RCL and non− RCL.
15 Initialize the population of the next generation. POP+ = RCL
16 Apply perturbations to the similar solutions within POP+ /* use the

intensity parameter β. */
17 Create mutants POPm, for the next generation.
18 POP+ = POP+ ∪ POPm
19 /* crossover process lines */
20 for (i = 1 to p− |RCL| − |POPm|) do
21 Select parent a at random from RCL
22 Select parent b at random from non− RCL
23 Set ρe with random-key b[2n + 1] /* see Equation (14) */
24 for (j = 1 to 2n + 2) do
25 if random() < ρe then
26 c[j] = a[j]
27 end
28 else
29 c[j] = b[j]
30 end
31 end
32 POP+ = POP+ ∪ {c}
33 end
34 Update population POP = POP+

35 end
36 return individual with argmin{ f itness(x)|x ∈ Pop}
37 end

5. Computational Results

The computational experiments were performed on a machine with a max turbo
clock speed of 4.90 GHz, 11th Gen Intel(R) Core(TM) i7-11700 processor, 16 GB RAM,
and running the Windows 10 operational system. All algorithms were implemented using
the Python language version 3.7. The input data consisted of layout instances extracted
using the research developed by Amaro et al. [41], resulting in SVG files. The subsequent
sections provide details about the benchmark instances (Section 5.1), the results obtained
with the execution of the LCPP model (Section 5.2), a comparison between BRKGA x
e-BRKGA (Section 5.3), ABRKGA without and with an improved initial population with
the Eulerian heuristic (Section 5.4), called here e-ABRKGA, and the e-BRKGA x e-ABRKGA
in Section (5.5). Please refer to the Data Availability Statement for complete information on
the data used and constructed in this paper.

Appl. Sci. 2023, 13, 10133 17 of 42

5.1. Instances

We utilized a set of 50 problem instances to evaluate the presented approaches. These
instances were categorized based on the possible presence of space between the pieces
in the input layout, categorized as connected (C) instances (see Figures A1 and A2 in
Appendix A.1) or separated (S) instances (see Figures A3–A5 in Appendix A.2). The space
between items in the latter group enables the utilization of support, which is common
in particular material cutting applications. We generated the dataset using the nesting
approach outlined in [41], and for all tests, the laser machine parameters considered, Vc
(cut) and Vm (air), were 16.67 mm/s and 400 mm/s, respectively.

In [9], several hyperparameter settings have been tested for the GA and the BRKGA
heuristics, executed ten times for each instance. The authors chose the best-performing
configuration, which will be compared with our approach. In Table 3, we present the
instances along with the corresponding number of vertices, the count of edges (for both
the original and adapted layouts with the edge joints), and the number of polygons. We
also tested ABRKGA with the value of γ presented in Table 2 and we have chosen to use a
maximum (pmax = 1000) and minimum (pmin = 100), executing each instance ten times.

Some instances present different vertices and edges due to applying the join procedure
and split edges in the original input layout. It is necessary to highlight that joining segments
are treated as particular cases of splitting edges. The algorithm of preprocessing input
data, extracted by [6], converts the input file into a graph before addressing the LCPP.
This conversion process can increase the number of edges of the original layout due to
the realization of edge separation that occurs when a node of one figure touches the edge
of another. For example, in Figure 6a) the “end” point separates edge 1 and edge 8. This
procedure needs to occur to connect (C) groups of instances.

Table 3. The properties of each instance were applied in our computational experiments. The table
presents each instance’s number of nodes, edges, and polygons: (C) connected pieces and (S) separated.

Instance Nodes Edges PolygonsInitial Converted
(C) (S) (C) (S) (C) (S) (C) (S)

albano 156 164 164 164 173 164 24 24
blaz1 39 44 44 44 46 44 7 7
blaz2 70 80 88 80 89 80 14 13
blaz3 97 132 132 132 130 132 21 21

dighe1 20 54 46 54 38 54 15 15
dighe2 20 46 38 46 30 46 10 10

fu 37 43 43 43 51 43 12 12
inst_10pol 20 40 39 40 29 40 10 10
inst_16pol 27 128 64 128 42 128 16 32
inst_2pol 7 8 8 8 8 8 2 2
inst_3pol 8 12 12 12 10 12 3 3
inst_4pol 10 16 16 16 13 16 4 4
inst_5pol 12 20 19 20 16 20 5 5
inst_6pol 13 24 23 24 18 24 6 6
inst_7pol 15 28 27 28 21 28 7 7
inst_8pol 16 32 31 32 23 32 8 8
inst_9pol 18 36 35 36 26 36 9 9
inst_26pol 210 264 264 264 237 264 66 66

rco1 33 36 36 36 40 36 7 7
rco2 62 72 72 72 81 72 14 14
rco3 82 108 108 108 116 108 21 21

shapes2 68 70 70 70 78 70 8 8
shapes4 127 140 140 140 147 140 16 16

spfc 55 55 55 55 63 55 11 11
trousers 350 388 388 388 424 388 64 64

Appl. Sci. 2023, 13, 10133 18 of 42

5.2. Results for the MIP Flow Model

In this subsection, we report the results obtained for the proposed MIP model. The
model was implemented in JULIA 1.8.1 using JuMP library version 0.9, and the computa-
tional tests were carried out on a machine with a Linux Ubuntu 20.04 operational system,
16 GB of RAM, and an i7 processor with eight cores and 2.7 Hz speed. We set a time limit of
1 h (3600 s) for each instance. This value was adopted arbitrarily to establish a time control
for the execution and validation of the model on the tests. The significance of 3600 s was
considered reasonable by our team. We aim to consider the optimal results obtained and
check with the BRKGA, ABRKGA, and variations.

Tables 4 and 5 present results for the MIP flow model in the set of instances connected
and separated. The column instance notes the name of the instance; column solution
reports the best solution obtained by the model; column time is the elapsed time in seconds
if the model reached the time limit of 1 h, this is represented by LIMIT; column gap registers
the gap as presented by the solver at the end of execution; and column nodes reports the
number of nodes in the branch and bound tree.

We filter instances containing a maximum of 40 nodes to carry out tests with the model.
The results of Tables 4 and 5 show that the MIP model can only solve a small number of the
instances (four in both cases), and the instances that were solved have a small size (number
of vertices plus the number of edges). One can verify that the models reach the time limit
for most instances. Furthermore, for some instances, it was trapped in the root node of the
branch and bound tree, and for the instance blaz2 of the separated benchmark, the model
could not even be produced due to memory issues.

Table 4. Results for the MIP flow model on the connected set of instances.

Instance (Connected) Solution Time GAP Nodes

inst_2pol 33.13 0.02 0.0 0
inst_3pol 39.25 1.54 0.0 469
inst_4pol 57.38 24.61 0.0 25,463
inst_5pol 69.63 2595.58 0.0 1,393,088
inst_6pol 102.88 LIMIT 1.0 587,126
inst_7pol 109.38 LIMIT 1.0 314,325
inst_8pol 113.61 LIMIT 1.0 189,994
inst_9pol 181.54 LIMIT 1.0 114,572
inst_10pol 157.59 LIMIT 1.0 70,963
dighe1.txt 75.64 LIMIT 1.0 25,198
dighe2.txt 84.56 LIMIT 1.0 54,868

rco1.txt 345.63 LIMIT 1.0 8798
blaz1.txt 449.59 LIMIT 1.0 2118

Table 5. Results for the MIP flow model on the separated set of instances.

Instance (Separated) Solution Time GAP Nodes

inst_2pol 36.05 0.21 0.0 152
inst_3pol 48.10 6.55 0.0 1618
inst_4pol 72.15 138.18 0.0 48,868
inst_5pol 90.15 1039.98 0.0 95,880
inst_6pol 184.66 LIMIT 1.0 52,374
inst_7pol 244.31 LIMIT 1.0 12,773
inst_8pol 260.18 LIMIT 1.0 21,074
inst_9pol 300.32 LIMIT 1.0 11,166

inst_10pol 395.04 LIMIT 1.0 3874

All these remarks lead us to conclude that, although this model presents a theoretical
contribution to LCPP, it still needs to be a practical method, and heuristic methods are
needed to tackle large instances. However, we intend to use the results presented by the

Appl. Sci. 2023, 13, 10133 19 of 42

model as an initial guide for the solutions of the computational experiments proposed in
this research.

5.3. Comparison of Results for BRKGA vs. e-BRKGA

This section shows the first comparison between some strategies discussed in the
context of this paper. Thus, the results of BRKGA, as presented by [9], are confronted with
the same strategy. However, we incorporate the Eulerian heuristic into the mechanism
for creating the initial population. We will refer to this approach as e-BRKGA to simplify
the terms.

The same parameters (p = 1000; pe = 0.30; pm = 0.15) were applied to both ap-
proaches, and the stopping rule was approximately 300 s of time execution or 100 generations
without improvement on the best solution found. Table 6 (BRKGA) and Table 7 (e-BRKGA)
present the best, worst, average, standard deviation, and coefficient of variation for the
ten computational runs of each instance from the connected group (C). The same structure
was adopted in Table 8 (BRKGA) and Table 9, except that these two other tables represent
execution for the separated group (S).

The first point deserving highlight in the analysis of the results is the average compu-
tational time of the approaches. Considering the “average” column, the average computa-
tional time for all executions in Table 6 was 170.70 s. In contrast, in Table 7, it is possible to
observe that the e-BRKGA required a time 41.30% less than BRKGA, approximately 100.20 s.
Considering the group (S), the average execution times of instances (Table 8) is 183.43 s,
while the same attribute found in Table 9 is 96.17 s. This fact characterizes a gain of 47.57%
of the e-BRKGA with respect to the BRKGA.

The coefficient of variation (variation column) allows the determination of the preci-
sion of the measurements and the variability within samples. Regarding the execution time,
we highlight the variation in the instances “blaz1”, “dighe2”, and “inst_9pol” from group
(C), which were the only ones that showed values higher than 10% (moderate variation).

In the instances from Table 7, the entries “dighe1”, “inst_2pol”, “inst_4pol”, and
“shapes2” also fall under a moderate aspect regarding the variation in the samples. The only
instance that draws attention to the context of the coefficient of variation is “inst_6pol”,
with a value of 21.79%. Even so, there still needs to be a sizable relative variability in the
data about the mean. Tables 8 and 9 present the execution time variation, presenting all
values less than 10%.

In summary, we can consider the execution times based on their respective averages
due to the low value of the coefficient of variation attribute. We also highlight that 76% of
the instances in group (C) and 80% in group (S) have GAPs (see Table 10) more significant
than 50% concerning the difference in execution times for e-BRKGA.

Even in the column of the best and worst solutions found, when the developed
Eulerian heuristic is applied to the initial population, it presents gains in execution time
when applying e-BRKGA to LCPP. In the group of instances (C), only four instances had
a longer execution time for e-BRKGA. However, for the set (S), no e-BRKGA execution
took more computational time than BRKGA. All evolution graphs (best individual fitness x
number of generation) are available in Data Availability Statement.

Table 6. BRKGA applied to the connected set of instances (C).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano 108.17 304.68 113.10 303.76 110.97 304.17 1.46 0.54 1.32 0.18
blaz1 154.71 146.10 155.86 148.94 155.09 152.18 0.37 17.03 0.24 11.19
blaz2 269.94 302.04 271.95 301.69 270.81 301.74 0.75 0.35 0.28 0.12
blaz3 423.96 303.11 428.01 302.96 425.39 302.75 1.42 0.48 0.33 0.16

dighe1 70.57 158.89 70.88 140.12 70.72 138.07 0.10 8.24 0.14 5.97

Appl. Sci. 2023, 13, 10133 20 of 42

Table 6. Cont.

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

dighe2 53.90 88.38 54.05 89.77 53.96 99.07 0.05 10.07 0.09 10.17
fu 23.82 185.16 23.95 167.60 23.89 184.48 0.04 8.75 0.15 4.75

inst_10pol 127.00 106.61 127.38 83.24 127.15 90.21 0.14 8.70 0.11 9.64
inst_16pol 76.75 127.63 76.90 155.89 76.83 132.18 0.07 9.35 0.09 7.07
inst_2pol 33.13 22.73 33.13 22.73 33.13 24.08 0.00 1.36 0.00 5.63
inst_3pol 39.25 28.00 39.25 28.00 39.25 27.29 0.00 0.81 0.00 2.96
inst_4pol 57.38 33.77 57.38 33.77 57.38 34.24 0.00 0.84 0.00 2.47
inst_5pol 69.63 44.46 69.63 44.46 69.63 42.25 0.00 1.51 0.00 3.58
inst_6pol 81.75 52.45 81.75 52.45 81.75 51.25 0.00 2.27 0.00 4.44
inst_7pol 96.88 65.46 97.00 60.37 96.98 63.25 0.04 4.48 0.04 7.08
inst_8pol 105.75 72.59 106.00 68.80 105.82 67.04 0.09 3.05 0.08 4.55
inst_9pol 124.00 103.57 124.25 73.90 124.06 82.43 0.09 8.76 0.07 10.63
inst_26pol 160.50 306.98 166.74 306.34 164.00 305.81 1.91 1.27 1.16 0.42

rco1 140.28 116.84 141.14 132.15 140.77 122.01 0.30 10.78 0.21 8.83
rco2 270.71 301.86 271.90 301.45 271.41 301.52 0.35 0.32 0.13 0.10
rco3 394.67 302.78 398.84 302.69 396.89 302.42 1.22 0.40 0.31 0.13

shapes2 215.26 293.88 217.22 301.44 216.07 297.58 0.62 4.67 0.28 1.57
shapes4 427.55 302.73 436.58 303.90 430.10 303.17 3.14 0.53 0.73 0.17

spfc 144.11 236.94 144.92 212.40 144.38 227.10 0.27 13.54 0.19 5.96
trousers 305.90 312.92 308.70 309.30 307.52 311.11 0.80 2.24 0.26 0.72

Exec. time (avg) 172.82 169.93 170.70

Table 7. e-BRKGA applied to the connected set of instances (C).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano 101.38 309.54 106.48 310.74 102.45 309.21 1.99 0.95 1.94 0.31
blaz1 156.25 44.97 157.86 38.89 156.71 43.02 0.51 2.31 0.32 5.37
blaz2 271.97 169.48 278.18 181.48 275.21 174.44 2.24 9.97 0.81 5.71
blaz3 423.04 192.78 426.93 190.56 424.83 197.24 1.25 13.47 0.29 6.83

dighe1 71.05 40.65 71.53 55.55 71.22 47.21 0.18 5.42 0.26 11.48
dighe2 53.94 23.29 54.26 22.96 54.06 23.65 0.08 1.52 0.15 6.41

fu 23.89 56.28 24.13 47.34 24.00 53.21 0.06 2.70 0.24 5.07
inst_10pol 128.69 40.99 129.50 41.32 129.01 42.02 0.23 3.33 0.18 7.94
inst_16pol 77.73 58.66 78.25 62.17 77.95 60.59 0.18 3.84 0.24 6.34
inst_2pol 33.13 6.12 33.13 6.12 33.13 7.87 0.00 0.92 0.00 11.74
inst_3pol 39.25 8.07 39.25 8.07 39.25 8.18 0.00 0.17 0.00 2.03
inst_4pol 57.38 17.26 57.88 13.43 57.63 16.25 0.20 2.22 0.35 13.64
inst_5pol 69.63 11.97 69.75 14.00 69.64 12.58 0.04 0.79 0.06 6.26
inst_6pol 82.00 26.12 82.75 23.96 82.32 25.22 0.26 5.49 0.32 21.79
inst_7pol 96.88 18.41 97.13 17.57 96.95 17.49 0.08 1.52 0.09 8.67
inst_8pol 105.88 18.93 106.25 18.49 106.05 18.75 0.12 0.51 0.11 2.72
inst_9pol 125.50 33.27 126.00 32.53 125.61 34.07 0.17 2.49 0.13 7.31
inst_26pol 144.23 318.39 150.25 315.41 146.47 316.02 2.20 1.60 1.50 0.51

rco1 141.21 36.43 142.52 39.31 141.94 36.14 0.41 1.97 0.29 5.44
rco2 274.49 90.41 278.40 91.20 275.94 93.01 1.22 3.96 0.44 4.26
rco3 401.29 155.61 404.92 157.88 402.78 163.44 1.27 6.54 0.32 4.00

shapes2 218.98 84.77 220.79 98.40 219.82 98.90 0.63 13.19 0.28 13.34
shapes4 415.56 307.62 423.43 306.97 419.08 307.47 2.77 0.67 0.66 0.22

spfc 145.45 62.94 146.77 55.37 146.09 59.11 0.36 3.16 0.25 5.35
trousers 281.57 342.34 293.53 338.96 288.12 340.00 4.16 2.76 1.44 0.81

Exec. time (avg) 99.01 99.55 100.20

Appl. Sci. 2023, 13, 10133 21 of 42

Table 8. BRKGA applied to the separated set of instances (S).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano 113.09 303.06 116.14 303.15 113.74 303.53 0.95 0.64 0.84 0.21
blaz1 162.23 145.88 163.41 142.45 162.82 139.82 0.32 7.05 0.20 5.04
blaz2 292.01 301.86 293.67 300.93 292.88 299.80 0.60 4.46 0.21 1.49
blaz3 493.35 302.32 499.90 302.43 496.15 302.84 1.77 0.34 0.36 0.11

dighe1 96.18 186.45 96.66 198.26 96.40 194.69 0.16 12.22 0.17 6.28
dighe2 78.66 137.75 79.16 147.81 78.96 153.10 0.18 13.34 0.22 8.71

fu 28.00 137.50 28.20 140.58 28.10 141.59 0.06 4.76 0.21 3.36
inst_10pol 193.09 134.11 194.14 135.72 193.48 135.04 0.29 6.15 0.15 4.55
inst_16pol 172.74 303.31 174.69 303.12 173.59 302.65 0.63 0.65 0.36 0.21
inst_2pol 36.05 24.20 36.05 24.20 36.05 24.66 0.00 1.31 0.00 5.29
inst_3pol 48.10 32.16 48.10 32.16 48.10 32.49 0.00 1.00 0.00 3.08
inst_4pol 72.15 48.82 72.15 48.82 72.15 48.15 0.00 3.31 0.00 6.87
inst_5pol 90.15 53.17 90.20 60.56 90.16 57.58 0.02 4.41 0.03 7.67
inst_6pol 114.23 73.97 114.55 77.93 114.43 74.20 0.10 4.67 0.09 6.29
inst_7pol 138.47 104.92 138.91 80.33 138.70 89.79 0.16 7.09 0.11 7.90
inst_8pol 156.68 101.20 157.18 102.50 156.92 102.61 0.18 6.62 0.11 6.45
inst_9pol 187.10 117.63 187.65 130.63 187.34 122.25 0.21 5.22 0.11 4.27
inst_26pol 218.68 308.02 219.84 304.34 219.16 306.23 0.33 1.40 0.15 0.46

rco1 162.78 109.34 163.88 116.15 163.25 110.32 0.30 6.24 0.19 5.66
rco2 317.76 264.95 319.63 262.81 318.71 271.21 0.60 6.22 0.19 2.29
rco3 480.66 301.41 485.71 302.02 481.99 301.92 1.38 0.42 0.29 0.14

shapes2 227.83 237.60 229.71 266.72 228.87 256.27 0.54 13.71 0.24 5.35
shapes4 453.30 302.06 455.87 303.49 454.13 302.92 0.84 0.51 0.18 0.17

spfc 147.77 195.91 148.81 196.75 148.21 202.18 0.30 17.37 0.21 8.59
trousers 343.11 312.32 347.59 306.85 346.43 309.98 1.33 2.23 0.38 0.72

Exec. time (avg) 181.60 183.63 183.43

To consider the quality of the solutions (objective function value), as the second point
of analysis of the results, Tables 6–10 reveal the best and average solutions of each approach
and the “GAP” column that presents a comparison between the potentials (solution quality
and computational time) of each strategy. For the two values incorporated in the “GAP”
column, if the “fitness” or “time (%)” values are positive, it indicates a percentage gain.
This improvement can be either in terms of the average solution quality or the execution
speed of e-BRKGA compared to BRKGA or vice versa, depending on the sign.

For example, consider the “albano” instance, the first row in Table 10. The “fitness (%)”
value in the “GAP connected” column between the approaches is 7.68%, and regarding
the “time (%)” column, it is −1.66%. These numbers mean that the value of the “fitness”
column for the e-BRKGA average multiplied by (1 + 7.68%) is approximately equal to the
average “fitness” of the BRKGA. Furthermore, the “time (%)” column value for the “GAP
connected” implies that the BRKGA executed in a time that, when multiplied by (1 + 1.66%),
is approximately equal to the time spent by e-BRKGA. A positive GAP percentage α
represents gains to e-BRKGA in the proportion α. Otherwise, the improvement α is reached
by the BRKGA approach.

From Table 10, it is possible to verify that the BRKGA achieved a better average in
the quality of results in 17 instances (negative percentages), tied in 2, and lost in 6 when
considering the group of instances (C). For this analysis, it is essential to observe that
among the six instances where e-BRKGA had a better average fitness, five have the highest
number of nodes and edges in the input graph: “albano”, “blaz3”, “inst_26pol”, “shapes4”,
and “trousers”; see Table 3.

Notice that e-BRKGA found, on average, a 7.68% improvement, with an execution
time 1.66% higher, meaning 5.04 s slower than BRKGA, considering the “albano” instance.
A more significant gain occurs with the “inst_26pol” instance, reaching a 10.69% improve-

Appl. Sci. 2023, 13, 10133 22 of 42

ment with a 3.34% longer execution time. In “trousers”, the average fitness gain was 6.31%
in 28.88 s (−9.28%) more for the algorithm to stop.

On the other hand, in some instances, e-BRKGA improved compared to BRKGA, both
in the average fitness and execution time. The entries “blaz3” and “inst_7pol” demonstrated
slight gains in fitness, 0.13% and 0.02%, respectively. However, in terms of execution time,
the improvement reaches 34.85% (105.50 s) for “blaz3” and 72.35% (45.77 s) for “inst_7pol.

For the group of separated instances (S), the results exhibit similar characteristics of
(C), except for the execution time of e-BRKGA, which is better in all instances. In this
examination, it is crucial to note that out of the five instances where e-BRKGA showed a
superior average fitness: ”albano“, “inst_16pol”, “inst_26pol”, “shapes4”, and “trousers”.

The conclusion of this initial round of test analyses is well supported in Table 10.
The strategy of initializing the population with the Eulerian heuristic for LCPP directly
influenced the two aspects discussed here: solution quality and computational execution
speed. Notably, in both the group (C) and group (S) datasets, the difference in fitness values
when BRKGA averages better is relatively small, less than 2%. This information leads to
the preference of the e-BRKGA approach over BRKGA for the LCPP problem, considering
the computational execution times.

Table 9. e-BRKGA applied to the separated set of instances (S).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano 107.88 301.77 109.96 301.59 108.97 299.99 0.56 4.34 0.51 1.45
blaz1 163.59 39.04 166.29 37.48 164.34 40.09 0.83 2.27 0.51 5.66
blaz2 295.40 89.47 298.28 82.66 296.89 88.25 0.94 3.86 0.32 4.38
blaz3 495.29 194.61 500.55 180.00 497.09 202.88 1.32 12.68 0.27 6.25

dighe1 97.09 48.74 97.57 49.69 97.28 48.24 0.18 2.73 0.19 5.66
dighe2 79.37 40.46 80.09 39.89 79.63 38.40 0.20 1.73 0.25 4.50

fu 28.16 41.89 28.35 39.42 28.25 42.33 0.07 3.76 0.24 8.88
inst_10pol 193.90 37.91 195.08 37.28 194.33 37.80 0.42 2.43 0.21 6.42
inst_16pol 172.20 220.74 173.85 189.20 172.95 196.40 0.57 12.97 0.33 6.60
inst_2pol 36.05 5.96 36.05 5.96 36.05 6.71 0.00 0.49 0.00 7.23
inst_3pol 48.10 10.19 48.10 10.19 48.10 10.05 0.00 0.36 0.00 3.63
inst_4pol 72.15 14.61 72.40 12.80 72.21 13.85 0.09 0.94 0.13 6.82
inst_5pol 90.15 18.59 90.73 18.70 90.34 18.18 0.19 1.53 0.21 8.42
inst_6pol 114.60 19.37 115.23 20.15 114.80 20.75 0.23 1.26 0.20 6.07
inst_7pol 138.66 23.88 139.60 22.55 139.08 24.52 0.33 1.37 0.24 5.58
inst_8pol 157.20 27.25 158.25 24.11 157.65 27.03 0.32 1.63 0.20 6.03
inst_9pol 187.03 30.68 188.83 32.33 188.00 32.97 0.47 1.70 0.25 5.17
inst_26pol 196.50 304.46 201.26 303.18 197.61 303.26 1.44 0.65 0.73 0.21

rco1 164.06 31.18 165.53 36.59 164.71 33.10 0.47 2.02 0.28 6.09
rco2 321.88 83.18 323.96 77.48 322.66 80.36 0.85 3.10 0.26 3.86
rco3 486.86 153.02 491.18 159.72 488.79 150.16 1.49 7.87 0.31 5.24

shapes2 230.52 79.09 231.73 76.11 231.04 78.82 0.46 3.62 0.20 4.59
shapes4 452.26 243.26 455.89 231.39 453.94 252.24 1.12 16.11 0.25 6.39

spfc 149.41 55.16 150.18 55.40 149.76 51.69 0.26 2.80 0.17 5.42
trousers 308.86 306.82 334.58 305.88 316.26 306.12 8.61 0.79 2.72 0.26

Exec. time (avg) 96.85 93.99 96.17

Appl. Sci. 2023, 13, 10133 23 of 42

Table 10. GAP comparison BRKGA x e-BRKGA to connected (C) and separated (S) instances.

Instances
GAP GAP

Connected (C) Separated (S)
Fitness (%) Time (s) Time (%) Fitness (%) Time (s) Time (%)

albano 7.68% 5.04 −1.66% 4.19% −3.54 1.17%
blaz1 −1.04% −109.15 71.73% −0.94% −99.73 71.33%
blaz2 −1.63% −127.31 42.19% −1.37% −211.56 70.57%
blaz3 0.13% −105.50 34.85% −0.19% −99.96 33.01%

dighe1 −0.71% −90.87 65.81% −0.92% −146.45 75.22%
dighe2 −0.18% −75.42 76.13% −0.85% −114.69 74.91%

fu −0.48% −131.27 71.16% −0.57% −99.26 70.10%
inst_10pol −1.47% −48.19 53.42% −0.44% −97.24 72.01%
inst_16pol −1.46% −71.59 54.16% 0.37% −106.25 35.11%
inst_2pol 0.00% −16.21 67.32% 0.00% −17.95 72.78%
inst_3pol 0.00% −19.10 70.02% 0.00% −22.44 69.07%
inst_4pol −0.44% −17.99 52.54% −0.09% −34.30 71.23%
inst_5pol −0.02% −29.67 70.21% −0.19% −39.40 68.43%
inst_6pol −0.70% −26.03 50.79% −0.33% −53.45 72.03%
inst_7pol 0.02% −45.77 72.35% −0.27% −65.27 72.69%
inst_8pol −0.21% −48.29 72.03% −0.47% −75.58 73.66%
inst_9pol −1.25% −48.36 58.67% −0.35% −89.28 73.03%
inst_26pol 10.69% 10.21 −3.34% 9.84% −2.97 0.97%

rco1 −0.83% −85.87 70.38% −0.90% −77.22 70.00%
rco2 −1.67% −208.51 69.15% −1.24% −190.86 70.37%
rco3 −1.48% −138.98 45.96% −1.41% −151.76 50.26%

shapes2 −1.74% −198.68 66.76% -0.95% −177.45 69.24%
shapes4 2.56% 4.30 −1.42% 0.04% −50.68 16.73%

spfc −1.19% −167.99 73.97% −1.05% −150.49 74.44%
trousers 6.31% 28.88 −9.28% 8.71% −3.86 1.24%

5.4. Comparison of Results for ABRKGA vs. e-ABRKGA

This section presents the second comparison between the ABRKGA strategies within
this paper, explicitly pitting them against the same strategy that incorporates the Eulerian
heuristic in the mechanism for creating the initial population. Through this comparison, we
aimed to evaluate the performance of both ABRKGA variants and the Eulerian heuristic-
based procedure.

The set of three parameters for α = {0.997, 0.998, 0.999} were applied for both ap-
proaches. Table A1 (ABRKGA) and Table A2 (e-ABRKGA) show the best, worst, mean,
standard deviation, and coefficient of variation for the ten computational runs of each in-
stance of the connected group (C). The same structure was adopted in Table A3 (ABRKGA)
and Table A4 (e-ABRKGA), except that these two other tables represent the execution for
the separate group (S).

In this second analysis, the first point that deserves attention in analyzing the results
is the average time of the approaches. Considering the “average” column, the average
time of all executions in Table A1 was 86.09 s. On the other hand, in Table A2, it is
possible to observe that the e-ABRKGA required a time 219.69% longer than the ABRKGA,
approximately 275.18 s. Considering group (S), the average execution time of the instances
(Table A3) is 101.04 s, while the same attribute found in Table A4 is 179.04 s. This is a 77.2%
gain for ABRKGA over e-ABRKGA.

In Tables A2 and A4, the variation in execution times all show values less than 15%.
In e-ABRKGA, both the instances of groups (C) and (S) presented a longer execution time
because they use their stopping criteria. All evolution graphs (best individual fitness x
number of generation) are available in the Data Availability Statement.

To consider the quality of the solutions, as the second point of analysis of the re-
sults, Tables A1–A5 reveal the best and average solutions of each approach and the “GAP”
column that maintains the comparison between the potentials (solution quality and compu-

Appl. Sci. 2023, 13, 10133 24 of 42

tational time) of each strategy. For the two values incorporated in the “GAP” column, if the
“fitness” or “time (%)” values are positive, it indicates a percentage gain. This improvement
can be either in terms of the average solution quality or the execution speed of ABRKGA
compared to e-ABRKGA or vice versa, depending on the sign.

From Table A5, it is possible to verify that e-ABRKGA obtained the best average in
the quality of the results in 48 instances with its set of parameters (positive percentages),
tied in 5, and lost in 22 when considering the group of instances (C). For the (S) instances,
the e-ABRKGA only lost in the “trousers” instance with α = {0.999}.

Notice that e-ABRKGA found, on average, a 6.7% improvement, with an execution
time 152.1% higher, meaning 125.05 s slower than ABRKGA, considering the “albano”
instance with α = {0.997}.

For the group of separate instances (S), the results show similar characteristics to
(C), except for the execution time of e-ABRKGA, which is worse in all instances. In this
examination, it is essential to note that in almost all instances e-ABRKGA presented a
superior average fitness.

The results from the second round of test analyses are strongly supported by the
data presented in Table A5. The strategy of initializing the population with the Eulerian
heuristic for LCPP had a direct impact, now negative, assuming the relation solution
quality versus computational execution speed. Particularly noteworthy is the observation
that in the datasets of groups (C) and group (S), the difference in fitness values when the
average ABRKGA result is superior is relatively small, being less than 3%. Simultaneously,
the ABRKGA approach demonstrated execution times up to 500% shorter than the e-
ABRKGA method. These results show that the ABRKGA approach outperforms the e-
ABRKGA approach for the LCPP problem, particularly when considering computational
execution times. Therefore, for practical applications where efficiency is a significant factor,
the ABRKGA strategy is the preferred choice.

5.5. Comparison of Results for e-BRKGA vs. e-ABRKGA

This section shows the third comparison between strategies incorporating the Eulerian
heuristic in Sections 5.3 and 5.4. The e-BRKGA is compared using the parameters p = 1000;
pe = 0.30; pm = 0.15 and the e-ABRKGA with the parameters α = {0.997, 0.998, 0.999}.

In this third analysis, the first point that deserves attention in analyzing the results is
the average time of the approaches. Considering the “average” column, the average time of
all executions in Table 7 was 100.20 s. On the other hand, in Table A2, it is possible to observe
that the e-ABRKGA required a time 174.63% greater than the e-BRKGA, approximately
275.18 s. Considering group (S), the average execution time of the instances (Table 9) is
96.17 s, while the same attribute found in Table A4 is 179.04 s. This fact characterizes a gain
of 86.17% for e-BRKGA with respect to e-ABRKGA.

To consider the quality of the solutions as the second point of analysis of the results,
Tables 7, 9, A2, A4 and A6 reveal the best and average solutions of each approach and
the “GAP” column that presents the comparison between the potentials (solution quality
and computational time) of each strategy. For the two values incorporated in the “GAP”
column, if the “fitness” or “time (%)” values are positive, this indicates a percentage gain.
This improvement can be either in terms of the average solution quality or the execution
speed of e-BRKGA compared to e-ABRKGA or vice versa, depending on the sign.

From Table A6, it is possible to verify that e-ABRKGA obtained the best average in
the quality of the results in 41 instances with its set of parameters (positive percentages),
tied in 6, and lost in 28 when considering the group of instances (C). For the (S) instances,
the e-ABRKGA lost in 30, tied in 7, and won in 38 instances.

Note that e-ABRKGA found, in the best result, an improvement of 4.65%, with an
execution time 847.78% higher, that is, 2882.43 s slower than e-BRKGA, considering in-
stance “albano” with α = {0.999} for group (C). For group (S), the result was similar,
an improvement of 5.15%, with an execution time 512.91% higher, that is, 1570.11 s slower
than e-BRKGA, considering the instance “albano” with α = {0.997}.

Appl. Sci. 2023, 13, 10133 25 of 42

The findings of this third round of test analyses are strongly substantiated by the
data presented in Table A6. Using the Eulerian heuristic in initializing the population for
LCPP impacted the two aspects under consideration: solution quality and computational
execution speed. It is worth noting that in the group (C) and group (S) datasets, the disparity
in fitness values when the average e-BRKGA result is superior is relatively minor, generally
below 3%. Moreover, the e-BRKGA approach exhibited significantly shorter computational
execution times, often up to 1000% faster.

These results consistently point to the superiority of the e-BRKGA approach over
e-ABRKGA when considering the LCPP problem and its computational execution times.
The e-BRKGA strategy outperforms the e-ABRKGA variant, striking a commendable bal-
ance between solution optimality and computational efficiency. Therefore, for practical
applications with faster results, the e-BRKGA approach emerges as the more favorable
choice over the e-ABRKGA approach.

6. Conclusions

This research paper presents the LCPP (laser cutting path planning) problem, which
effectively captures real-world conditions by evaluating distinct cutting and air-moving
speeds. The consequence of cutting and sliding rates in actual machinery is often over-
looked in the existing literature, making this investigation a valuable contribution to the
field. By presenting a self-adaptive parameters evolutionary approach, namely, the adaptive
biased random-key genetic algorithm (ABRKGA), and a heuristic to try to construct more
significant fitness of individuals, the authors demonstrate their effectiveness in tackling
practical instances of the problem. These methods hold promise in addressing functional
challenges related to the LCPP in real-world systems.

Computational tests were conducted to conclude our investigation, comprising four
distinct scenarios and considering 50 available instances in the literature [9]. In the first
scenario, tests are conducted using the conceptual model in mathematical programming
proposed for the LCPP (Section 2.2). Our findings revealed that the optimal solution was
obtained only for instances containing a maximum of 20 nodes and 20 edges within a
runtime limit of 1 h.

The other three experiments (Sections 5.3–5.5) were designed to facilitate a comparative
analysis between solution quality and execution time. By conducting these experiments,
our objective was to assess how different approaches or algorithms perform in terms of
finding high-quality solutions within a limited time frame. This comparison allows us
to understand the trade-offs between solution optimality and computational efficiency,
providing valuable insights into the strengths and weaknesses of each method under
consideration. Such an analysis is crucial in selecting the most suitable approach for
practical applications, where finding reasonably good solutions is often paramount. In this
context, we conclude, through the analysis of the test tables, that applying the heuristic in
conjunction with BRKGA provided the best trade-off between solution quality and speed.
Additionally, ABRKGA can be an excellent alternative when there is no prior study on
layout patterns for the LCPP.

Accurate thermal evaluation methods can be seamlessly integrated into cutting path
algorithms without substantially increasing computation time. As a result, there is a
compelling motivation for CAM software developers to integrate these strategies into
their software solutions. This enhanced flexibility empowers businesses to tailor their
manufacturing processes in response to evolving objectives, ensuring better adaptability in
the dynamic market landscape. For future work, the objective is to leverage this versatile
framework (e-BRKGA and ABRKGA) to tackle more complex multi-objective optimizations
of laser cutting paths, thereby further enhancing the already promising results obtained
through an essential linear combination of diverse objective functions. This continuous
pursuit of optimization will enable industries to unlock greater efficiencies and precision in
their manufacturing operations.

Appl. Sci. 2023, 13, 10133 26 of 42

Author Contributions: Conceptualization, B.A.J.; data curation, M.C.S. and G.N.d.C.; methodology,
J.W.L.C., B.A.J. and M.C.S.; software, G.N.d.C.; validation, B.A.J.; writing—original draft, M.C.S.,
B.A.J. and P.R.P.; writing—review and editing, B.A.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/GUIKAR741/evolutionary-algorithms-lcpp, accessed on
25 August 2023 . The folder “algorithms” includes the codes of the two approaches developed for
this paper. The folder “instances” holds all input SVG layouts. The folder “results” present the
numerical experimental data. The folder “result-evolution process” contains the evolution graph of
the best solution (Y) with the number of generations (X), and the folder “results-draw” shows the
images of the path sequence found (each instance x execution).

Acknowledgments: Bonfim Amaro Junior was supported by and is grateful to the Edson Queiroz
Foundation/University of Fortaleza. Plácido Rogério Pinheiro is grateful to the Edson Queiroz Foun-
dation/University of Fortaleza and to the Brazilian National Council for Scientific and Technological
Development (CNPq).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABRKGA Adaptive biased random-key genetic algorithm
ACO Ant colony optimization
ALNS Adaptive large neighborhood search
BRKGA Biased random-key genetic algorithm
CAD Computer-aided design
CAM Computer-aided manufacturing
C&P Cutting and packing
CPD Cut path determination
FACO Focused ant colony optimization
GA Genetic algorithm
GTSP Generalized traveling salesman problem
LCPP Laser cutting path planning
NC Numerical control
NRP Node routing problem
SVG Scalable vector graphics
RCL Restricted chromosome list
SA Simulated annealing
TSP Traveling salesman problem
TSP-N Traveling salesman problem with neighborhoods

https://github.com/GUIKAR741/evolutionary-algorithms-lcpp

Appl. Sci. 2023, 13, 10133 27 of 42

Appendix A. Images of Input Layouts

Appendix A.1. Connected Instances

albano blaz1 blaz2

blaz3

dighe1

dighe2fu inst_01_2pol

inst_01_3pol

inst_01_4pol

inst_01_5pol

inst_01_6pol
shapes2

shapes4
spfc_instance

trousers

Figure A1. Instances with connected items. Part (1/2).

Appl. Sci. 2023, 13, 10133 28 of 42

inst_01_7pol

inst_01_8pol

inst_01_9pol

inst_01_10pol

inst_01_16pol

inst_01_26pol

rco1 rco2

rco3

Figure A2. Instances with connected items. Part (2/2).

Appl. Sci. 2023, 13, 10133 29 of 42

Appendix A.2. Separated Instances

albano

blaz1

blaz2

blaz3

dighe1

dighe2

fu

inst_01_2pol

inst_01_3pol

inst_01_4pol

inst_01_5pol

Figure A3. Instances with separated items. Part (1/3).

Appl. Sci. 2023, 13, 10133 30 of 42

inst_01_6pol

inst_01_7pol

inst_01_8pol

inst_01_9pol inst_01_10pol

inst_01_16pol

inst_01_26pol

shapes2

Figure A4. Instances with separated items. Part (2/3).

Appl. Sci. 2023, 13, 10133 31 of 42

rco2

rco3

shapes4

spfc_instance

rco1

trousers

Figure A5. Instances with separated items. Part (3/3).

Appendix B. Results Tables

Table A1. ABRKGA applied to the connected set of instances (C).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano_[0.997] 109.45 81.85 110.43 82.59 109.77 82.21 0.34 1.09 0.31 1.32
albano_[0.998] 108.94 83.98 110.00 82.08 109.52 83.23 0.29 0.79 0.26 0.95
albano_[0.999] 109.65 80.55 110.51 79.69 109.99 80.79 0.27 0.94 0.24 1.16
blaz1_[0.997] 156.29 31.45 158.21 31.69 157.21 31.43 0.60 0.39 0.38 1.23
blaz1_[0.998] 156.81 30.97 157.86 32.53 157.25 31.41 0.37 0.53 0.24 1.70
blaz1_[0.999] 156.29 30.48 158.14 31.15 157.21 31.01 0.69 0.62 0.44 1.99
blaz2_[0.997] 274.19 113.44 278.75 117.19 276.49 116.74 1.33 1.37 0.48 1.18
blaz2_[0.998] 275.66 90.41 279.38 89.69 277.36 91.24 0.94 0.97 0.34 1.06
blaz2_[0.999] 275.81 96.73 278.40 97.11 276.86 97.53 0.76 1.46 0.27 1.50
blaz3_[0.997] 424.31 400.35 428.85 404.89 426.69 400.65 1.67 3.31 0.39 0.83
blaz3_[0.998] 426.51 276.21 429.76 276.08 428.49 274.41 1.07 1.82 0.25 0.66
blaz3_[0.999] 428.02 212.58 432.00 215.66 429.43 215.19 1.04 2.22 0.24 1.03

dighe1_[0.997] 71.10 12.37 71.77 13.04 71.35 12.46 0.23 0.42 0.32 3.40

Appl. Sci. 2023, 13, 10133 32 of 42

Table A1. Cont.

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

dighe1_[0.998] 71.15 13.93 72.14 15.95 71.42 13.56 0.29 1.29 0.40 9.52
dighe1_[0.999] 71.02 20.58 71.76 11.97 71.38 14.66 0.20 4.12 0.28 28.09
dighe2_[0.997] 54.15 7.78 54.60 7.99 54.37 7.84 0.15 0.24 0.28 3.12
dighe2_[0.998] 54.17 7.91 54.56 7.72 54.34 7.66 0.13 0.14 0.24 1.82
dighe2_[0.999] 54.23 7.36 54.61 7.49 54.37 7.36 0.13 0.13 0.25 1.72

fu_[0.997] 24.64 5.89 24.82 6.70 24.71 6.06 0.08 0.38 0.31 6.30
fu_[0.998] 24.61 5.24 24.84 5.73 24.69 5.85 0.08 0.37 0.32 6.40
fu_[0.999] 24.59 5.77 24.95 5.73 24.74 5.59 0.11 0.12 0.44 2.17

inst_10pol_[0.997] 127.31 18.00 128.44 18.78 127.71 18.30 0.34 0.26 0.27 1.42
inst_10pol_[0.998] 127.19 17.64 128.94 18.03 127.89 18.37 0.50 0.49 0.39 2.67
inst_10pol_[0.999] 127.00 17.31 128.13 17.97 127.72 17.85 0.36 0.29 0.28 1.65
inst_16pol_[0.997] 77.35 14.55 78.23 15.38 77.74 15.05 0.31 0.37 0.40 2.43
inst_16pol_[0.998] 77.28 14.75 78.33 14.62 77.91 14.66 0.31 0.20 0.39 1.34
inst_16pol_[0.999] 77.78 14.17 78.55 14.75 78.09 14.28 0.27 0.28 0.34 1.93
inst_2pol_[0.997] 33.13 2.18 33.13 2.18 33.13 2.14 0.00 0.06 0.00 2.80
inst_2pol_[0.998] 33.13 2.01 33.13 2.01 33.13 2.16 0.00 0.19 0.00 8.89
inst_2pol_[0.999] 33.13 1.80 33.13 1.80 33.13 1.87 0.00 0.14 0.00 7.30
inst_3pol_[0.997] 39.25 6.06 39.25 6.06 39.25 3.84 0.00 1.01 0.00 26.36
inst_3pol_[0.998] 39.25 2.85 39.25 2.85 39.25 4.61 0.00 1.31 0.00 28.44
inst_3pol_[0.999] 39.25 3.17 39.25 3.17 39.25 2.88 0.00 0.20 0.00 7.01
inst_4pol_[0.997] 57.38 5.04 57.38 5.04 57.38 4.80 0.00 0.17 0.00 3.48
inst_4pol_[0.998] 57.38 4.62 57.38 4.62 57.38 4.79 0.00 0.28 0.00 5.93
inst_4pol_[0.999] 57.38 5.64 57.38 5.64 57.38 5.58 0.00 0.31 0.00 5.52
inst_5pol_[0.997] 69.63 6.65 69.75 6.50 69.66 6.67 0.06 0.10 0.09 1.49
inst_5pol_[0.998] 69.63 6.19 70.00 6.71 69.67 6.55 0.12 0.17 0.17 2.66
inst_5pol_[0.999] 69.63 6.76 69.75 6.74 69.65 6.61 0.05 0.31 0.08 4.70
inst_6pol_[0.997] 81.75 8.30 82.38 8.50 81.88 8.97 0.23 0.55 0.28 6.10
inst_6pol_[0.998] 81.75 8.25 82.00 8.47 81.84 8.34 0.10 0.15 0.12 1.74
inst_6pol_[0.999] 81.75 7.97 82.13 8.19 81.91 8.12 0.15 0.15 0.18 1.85
inst_7pol_[0.997] 96.88 10.75 97.50 11.30 97.13 11.36 0.19 0.32 0.20 2.83
inst_7pol_[0.998] 97.00 12.93 97.88 11.91 97.18 11.52 0.28 0.81 0.29 7.01
inst_7pol_[0.999] 96.88 11.73 97.38 11.30 97.08 11.61 0.22 0.50 0.23 4.31
inst_8pol_[0.997] 105.75 13.06 106.75 12.83 106.05 13.03 0.29 0.17 0.27 1.32
inst_8pol_[0.998] 105.75 13.73 106.75 12.92 106.18 12.93 0.37 0.37 0.35 2.90
inst_8pol_[0.999] 105.75 12.16 106.50 12.25 106.05 12.28 0.24 0.27 0.23 2.24
inst_9pol_[0.997] 124.13 16.52 125.50 16.89 124.68 16.98 0.43 0.60 0.34 3.52
inst_9pol_[0.998] 124.00 16.61 125.50 16.73 124.74 16.61 0.43 0.17 0.34 1.02
inst_9pol_[0.999] 124.00 15.92 125.13 16.54 124.50 16.01 0.33 0.27 0.27 1.67

inst_26pol_[0.997] 146.11 134.68 149.09 133.96 146.99 135.00 0.86 2.26 0.58 1.67
inst_26pol_[0.998] 146.29 139.31 148.45 142.15 147.33 139.75 0.69 2.58 0.47 1.85
inst_26pol_[0.999] 146.71 138.98 150.06 139.59 148.07 139.72 0.90 1.41 0.61 1.01

rco1_[0.997] 140.98 26.05 143.70 27.41 142.29 26.56 0.81 0.48 0.57 1.81
rco1_[0.998] 141.84 26.47 143.34 26.01 142.28 26.28 0.44 0.52 0.31 1.99
rco1_[0.999] 141.61 24.82 142.94 25.53 142.29 26.57 0.43 1.40 0.30 5.28
rco2_[0.997] 276.80 112.56 278.61 112.74 277.53 112.39 0.65 0.92 0.23 0.82
rco2_[0.998] 275.61 88.67 277.43 87.02 276.52 87.73 0.69 0.80 0.25 0.91
rco2_[0.999] 274.42 96.80 276.87 97.30 275.83 96.84 0.70 1.40 0.25 1.44
rco3_[0.997] 402.96 310.02 407.02 312.44 404.28 313.75 1.29 3.45 0.32 1.10
rco3_[0.998] 402.55 222.08 406.46 229.15 404.62 225.31 1.32 3.23 0.33 1.43
rco3_[0.999] 403.49 186.90 406.39 187.75 404.48 187.60 0.95 1.85 0.24 0.98

shapes2_[0.997] 219.86 62.61 223.11 64.44 221.18 63.88 1.01 1.14 0.46 1.79
shapes2_[0.998] 220.30 66.52 222.53 67.67 221.32 67.44 0.63 0.66 0.28 0.97
shapes2_[0.999] 221.04 67.50 223.20 68.73 222.04 68.59 0.76 0.65 0.34 0.94

Appl. Sci. 2023, 13, 10133 33 of 42

Table A1. Cont.

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

shapes4_[0.997] 425.10 434.26 428.50 431.76 426.62 436.66 1.24 6.01 0.29 1.38
shapes4_[0.998] 426.22 306.57 429.41 308.92 427.58 303.99 1.07 7.88 0.25 2.59
shapes4_[0.999] 428.66 241.17 433.44 246.15 430.30 244.22 1.44 2.63 0.34 1.08

spfc_[0.997] 146.64 31.29 148.12 31.53 147.25 31.61 0.43 0.28 0.29 0.89
spfc_[0.998] 146.43 31.21 147.94 32.05 147.06 31.70 0.52 0.42 0.35 1.32
spfc_[0.999] 146.78 30.35 147.92 31.02 147.34 30.87 0.43 0.37 0.29 1.19

trousers_[0.997] 268.61 717.63 273.28 724.13 270.71 722.14 1.46 14.19 0.54 1.97
trousers_[0.998] 271.50 481.03 274.61 537.23 272.44 512.28 1.14 23.39 0.42 4.57
trousers_[0.999] 270.75 510.17 273.38 510.43 271.84 510.43 1.02 3.72 0.38 0.73

Exec. time (avg) 85.34 86.65 86.09

Table A2. e-ABRKGA applied to the connected set of instances (C).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano_[0.997] 102.03 207.58 102.94 207.05 102.42 207.26 0.30 1.24 0.29 0.60
albano_[0.998] 102.12 200.52 103.60 203.93 102.63 202.77 0.44 1.80 0.42 0.89
albano_[0.999] 102.27 191.72 103.34 195.22 102.68 196.52 0.32 2.17 0.31 1.10
blaz1_[0.997] 154.64 50.01 155.20 51.37 155.10 50.38 0.18 0.55 0.11 1.10
blaz1_[0.998] 154.64 49.65 155.20 50.65 155.10 50.10 0.18 0.52 0.11 1.04
blaz1_[0.999] 154.64 48.14 155.20 48.17 155.10 48.02 0.18 0.33 0.11 0.68
blaz2_[0.997] 271.76 295.15 276.37 298.51 272.81 296.51 1.32 2.21 0.48 0.74
blaz2_[0.998] 270.84 221.09 274.62 225.43 272.68 223.12 1.25 1.46 0.46 0.65
blaz2_[0.999] 271.46 230.73 275.32 233.02 272.59 230.22 1.17 1.88 0.43 0.82
blaz3_[0.997] 421.23 601.05 426.37 604.82 423.98 605.54 1.54 3.44 0.36 0.57
blaz3_[0.998] 423.29 413.60 427.56 409.67 425.74 410.32 1.50 1.70 0.35 0.41
blaz3_[0.999] 424.69 322.69 428.82 321.57 426.92 322.75 1.47 2.89 0.34 0.90

dighe1_[0.997] 70.77 13.25 71.49 13.61 71.05 13.35 0.20 0.16 0.27 1.16
dighe1_[0.998] 70.88 13.12 71.38 13.27 71.09 13.04 0.15 0.12 0.21 0.90
dighe1_[0.999] 71.04 12.72 71.51 12.48 71.20 12.58 0.15 0.12 0.22 0.98
dighe2_[0.997] 54.41 13.21 54.75 12.64 54.55 12.88 0.11 0.22 0.20 1.69
dighe2_[0.998] 54.48 12.39 54.68 12.68 54.56 12.57 0.06 0.14 0.12 1.10
dighe2_[0.999] 54.46 11.89 55.03 12.40 54.67 12.09 0.20 0.15 0.37 1.26

fu_[0.997] 24.40 12.95 24.94 13.34 24.67 13.51 0.16 0.35 0.65 2.55
fu_[0.998] 24.38 13.67 24.88 13.40 24.67 13.65 0.15 0.32 0.63 2.31
fu_[0.999] 24.27 12.94 24.91 13.60 24.67 13.54 0.19 0.39 0.77 2.84

inst_10pol_[0.997] 127.00 19.13 127.88 18.83 127.39 19.04 0.24 0.25 0.18 1.31
inst_10pol_[0.998] 127.00 18.80 127.81 18.84 127.36 19.01 0.20 0.27 0.16 1.41
inst_10pol_[0.999] 127.00 18.17 127.63 18.09 127.34 18.19 0.20 0.23 0.16 1.24
inst_16pol_[0.997] 77.28 16.67 77.95 16.51 77.55 16.70 0.19 0.22 0.25 1.29
inst_16pol_[0.998] 77.50 17.42 77.93 16.04 77.69 16.45 0.15 0.40 0.20 2.41
inst_16pol_[0.999] 77.35 16.04 78.18 15.83 77.63 15.87 0.25 0.19 0.33 1.21
inst_2pol_[0.997] 33.50 5.88 33.50 5.88 33.50 5.87 0.00 0.20 0.00 3.46
inst_2pol_[0.998] 33.50 5.38 33.50 5.38 33.50 5.60 0.00 0.23 0.00 4.08
inst_2pol_[0.999] 33.50 4.36 33.50 4.36 33.50 5.01 0.00 0.41 0.00 8.27
inst_3pol_[0.997] 39.25 4.89 39.25 4.89 39.25 4.76 0.00 0.11 0.00 2.25
inst_3pol_[0.998] 39.25 4.58 39.25 4.58 39.25 4.57 0.00 0.18 0.00 3.90
inst_3pol_[0.999] 39.25 4.92 39.25 4.92 39.25 4.52 0.00 0.19 0.00 4.29
inst_4pol_[0.997] 57.38 6.15 57.75 6.16 57.41 5.99 0.12 0.14 0.21 2.36
inst_4pol_[0.998] 57.38 5.79 57.50 6.06 57.38 5.86 0.04 0.16 0.07 2.74
inst_4pol_[0.999] 57.38 5.77 57.38 5.77 57.38 5.76 0.00 0.08 0.00 1.35
inst_5pol_[0.997] 69.63 11.96 70.13 11.02 69.74 11.25 0.18 0.49 0.25 4.37
inst_5pol_[0.998] 69.63 11.45 70.13 11.84 69.95 11.35 0.18 0.27 0.26 2.35
inst_5pol_[0.999] 69.63 11.21 70.25 11.35 69.92 11.38 0.24 0.15 0.35 1.33
inst_6pol_[0.997] 81.88 13.28 82.38 13.23 82.10 13.05 0.20 0.19 0.24 1.44

Appl. Sci. 2023, 13, 10133 34 of 42

Table A2. Cont.

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

inst_6pol_[0.998] 81.75 12.66 82.25 13.52 81.95 13.18 0.14 0.40 0.17 3.07
inst_6pol_[0.999] 81.88 12.87 82.38 13.16 82.13 12.80 0.17 0.21 0.21 1.67
inst_7pol_[0.997] 96.88 11.03 97.13 11.08 96.95 11.10 0.10 0.15 0.11 1.37
inst_7pol_[0.998] 96.88 11.09 97.00 10.97 96.97 11.01 0.05 0.16 0.05 1.43
inst_7pol_[0.999] 96.88 11.57 97.00 11.36 96.92 10.89 0.06 0.40 0.07 3.71
inst_8pol_[0.997] 105.75 13.47 106.25 12.98 106.02 13.06 0.16 0.18 0.15 1.36
inst_8pol_[0.998] 105.75 12.64 106.25 12.75 105.94 12.89 0.18 0.19 0.17 1.46
inst_8pol_[0.999] 105.75 12.76 106.50 12.48 105.94 12.46 0.26 0.18 0.24 1.43
inst_9pol_[0.997] 125.63 28.27 126.25 28.11 125.99 28.43 0.19 0.26 0.15 0.92
inst_9pol_[0.998] 125.75 27.78 126.25 27.24 125.97 27.73 0.16 0.48 0.13 1.74
inst_9pol_[0.999] 125.75 26.09 126.13 25.43 125.93 25.87 0.12 0.34 0.10 1.32

inst_26pol_[0.997] 145.32 310.40 147.52 295.21 146.49 303.92 0.69 6.84 0.47 2.25
inst_26pol_[0.998] 145.64 279.32 147.77 293.59 146.71 287.98 0.61 8.47 0.42 2.94
inst_26pol_[0.999] 146.39 261.52 148.40 268.48 147.33 264.13 0.64 2.03 0.43 0.77

rco1_[0.997] 141.31 43.82 142.40 44.36 141.68 44.39 0.29 0.35 0.20 0.79
rco1_[0.998] 141.35 45.61 142.17 46.86 141.67 46.44 0.28 2.04 0.20 4.39
rco1_[0.999] 141.17 52.97 142.10 52.95 141.58 49.70 0.26 2.78 0.18 5.59
rco2_[0.997] 273.93 138.93 276.66 139.57 275.13 139.86 1.01 0.93 0.37 0.67
rco2_[0.998] 274.91 113.39 277.22 112.39 275.93 112.23 0.82 1.25 0.30 1.11
rco2_[0.999] 274.77 120.76 276.38 120.09 275.59 119.92 0.58 0.70 0.21 0.58
rco3_[0.997] 409.02 1582.20 416.47 1622.53 412.49 1595.47 2.22 19.13 0.54 1.20
rco3_[0.998] 408.78 906.03 418.29 927.53 414.10 916.01 3.33 8.62 0.80 0.94
rco3_[0.999] 406.78 544.03 424.24 556.58 414.57 549.43 5.95 3.72 1.43 0.68

shapes2_[0.997] 215.98 123.75 218.04 123.12 216.98 122.75 0.63 0.77 0.29 0.63
shapes2_[0.998] 216.36 129.00 218.14 129.50 216.86 128.43 0.53 1.39 0.25 1.08
shapes2_[0.999] 215.81 130.11 217.27 131.53 216.61 131.03 0.45 1.28 0.21 0.97
shapes4_[0.997] 423.63 729.75 426.50 737.99 424.83 832.01 0.92 77.01 0.22 9.26
shapes4_[0.998] 422.93 654.05 427.32 734.14 425.41 660.39 1.36 34.04 0.32 5.15
shapes4_[0.999] 424.58 381.28 430.23 380.46 427.40 388.22 1.66 11.73 0.39 3.02

spfc_[0.997] 144.46 67.95 145.58 67.80 144.87 68.03 0.40 0.37 0.28 0.55
spfc_[0.998] 144.49 66.69 145.96 67.17 145.06 67.05 0.53 0.33 0.37 0.50
spfc_[0.999] 144.39 67.95 145.73 64.31 144.91 66.58 0.42 2.31 0.29 3.47

trousers_[0.997] 269.45 4044.48 282.95 4618.07 275.11 4114.72 4.91 258.25 1.78 6.28
trousers_[0.998] 271.72 3042.26 283.93 3331.27 277.10 3067.14 3.52 183.45 1.27 5.98
trousers_[0.999] 270.86 3308.09 278.55 3386.72 274.73 3222.42 2.87 239.20 1.04 7.42

Exec. time (avg) 272.99 287.97 275.18 11.95

Table A3. ABRKGA applied to the separated set of instances (S).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano_[0.997] 112.58 76.25 114.07 75.22 113.06 75.58 0.46 0.87 0.41 1.15
albano_[0.998] 112.70 76.92 114.27 75.76 113.35 76.23 0.46 1.15 0.41 1.51
albano_[0.999] 112.94 71.98 114.37 72.61 113.69 72.94 0.51 1.02 0.45 1.40
blaz1_[0.997] 163.99 30.85 165.62 30.13 164.64 31.03 0.55 1.37 0.33 4.41
blaz1_[0.998] 163.49 29.72 165.55 30.77 164.48 30.47 0.73 0.87 0.44 2.84
blaz1_[0.999] 163.32 29.42 166.21 29.44 164.59 29.68 0.91 0.47 0.56 1.57
blaz2_[0.997] 297.25 116.10 302.22 117.62 298.54 117.50 1.43 0.89 0.48 0.76
blaz2_[0.998] 297.66 86.53 300.15 86.52 298.54 86.63 0.91 1.17 0.31 1.35
blaz2_[0.999] 296.97 96.52 299.54 95.22 297.99 94.23 0.90 1.45 0.30 1.54
blaz3_[0.997] 496.93 556.37 502.51 571.44 498.86 564.79 1.42 7.82 0.29 1.38
blaz3_[0.998] 498.22 357.06 501.63 376.76 499.66 373.33 1.09 10.03 0.22 2.69
blaz3_[0.999] 498.88 234.87 504.08 235.78 501.13 238.47 1.65 3.25 0.33 1.36

Appl. Sci. 2023, 13, 10133 35 of 42

Table A3. Cont.

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

dighe1_[0.997] 97.43 23.32 98.16 23.26 97.83 23.44 0.22 0.30 0.22 1.28
dighe1_[0.998] 97.56 23.03 98.15 22.90 97.81 23.11 0.20 0.78 0.20 3.37
dighe1_[0.999] 97.60 22.04 98.46 23.39 98.01 26.88 0.29 5.45 0.30 20.28
dighe2_[0.997] 79.32 16.27 80.17 16.34 79.75 16.48 0.28 0.36 0.35 2.19
dighe2_[0.998] 79.75 16.12 80.22 16.79 79.94 16.99 0.19 0.91 0.24 5.37
dighe2_[0.999] 79.53 15.81 80.36 17.19 79.94 17.06 0.26 0.78 0.32 4.55

fu_[0.997] 28.78 5.66 29.04 5.74 28.91 5.60 0.07 0.10 0.24 1.77
fu_[0.998] 28.81 5.54 29.09 5.47 28.91 5.55 0.08 0.09 0.29 1.66
fu_[0.999] 28.80 5.55 29.05 5.39 28.92 5.52 0.08 0.26 0.26 4.65

inst_10pol_[0.997] 193.84 34.05 195.91 33.62 194.80 33.29 0.65 0.41 0.33 1.22
inst_10pol_[0.998] 194.00 35.04 196.05 35.16 194.89 34.70 0.61 0.45 0.31 1.29
inst_10pol_[0.999] 194.65 34.54 195.88 35.04 195.17 34.59 0.38 0.38 0.19 1.09
inst_16pol_[0.997] 174.69 85.67 175.94 90.47 175.22 86.88 0.39 1.98 0.22 2.28
inst_16pol_[0.998] 174.93 91.13 176.06 91.78 175.54 91.36 0.36 0.48 0.20 0.52
inst_16pol_[0.999] 175.15 90.58 176.10 92.67 175.48 90.97 0.31 0.98 0.18 1.07
inst_2pol_[0.997] 36.05 2.36 36.05 2.36 36.05 2.42 0.00 0.09 0.00 3.61
inst_2pol_[0.998] 36.05 2.08 36.05 2.08 36.05 2.34 0.00 0.17 0.00 7.11
inst_2pol_[0.999] 36.05 2.21 36.05 2.21 36.05 2.20 0.00 0.16 0.00 7.23
inst_3pol_[0.997] 48.10 4.55 48.30 5.10 48.12 4.66 0.06 0.27 0.13 5.86
inst_3pol_[0.998] 48.10 4.92 48.30 3.97 48.12 5.14 0.06 1.25 0.13 24.40
inst_3pol_[0.999] 48.10 3.81 48.30 7.75 48.14 5.39 0.08 1.83 0.18 33.91
inst_4pol_[0.997] 72.15 7.23 72.50 7.05 72.24 6.94 0.14 0.20 0.19 2.82
inst_4pol_[0.998] 72.15 6.56 72.40 6.70 72.23 6.92 0.11 0.38 0.15 5.46
inst_4pol_[0.999] 72.15 6.16 72.43 7.12 72.23 6.69 0.11 0.39 0.16 5.85
inst_5pol_[0.997] 90.20 10.16 91.00 10.18 90.56 10.22 0.28 0.14 0.31 1.41
inst_5pol_[0.998] 90.15 9.80 91.03 9.91 90.43 9.96 0.30 0.26 0.33 2.56
inst_5pol_[0.999] 90.25 9.54 91.23 10.04 90.53 9.64 0.28 0.16 0.31 1.63
inst_6pol_[0.997] 114.45 14.30 115.48 14.47 114.80 14.78 0.32 0.41 0.28 2.80
inst_6pol_[0.998] 114.23 15.52 115.63 15.22 114.78 15.17 0.49 0.90 0.43 5.95
inst_6pol_[0.999] 114.62 15.25 115.93 14.59 115.12 15.25 0.37 0.50 0.32 3.31
inst_7pol_[0.997] 138.76 18.75 140.26 19.30 139.33 19.46 0.41 0.41 0.29 2.13
inst_7pol_[0.998] 138.91 19.54 140.56 19.79 139.37 19.58 0.50 0.21 0.36 1.10
inst_7pol_[0.999] 138.58 19.21 140.18 19.27 139.36 19.15 0.62 0.32 0.45 1.68
inst_8pol_[0.997] 157.43 23.40 159.43 24.18 158.05 23.97 0.74 0.39 0.47 1.61
inst_8pol_[0.998] 156.65 23.63 159.08 24.81 157.76 24.33 0.68 0.56 0.43 2.29
inst_8pol_[0.999] 157.15 23.68 159.50 23.40 158.23 23.64 0.81 0.46 0.51 1.96
inst_9pol_[0.997] 187.73 31.02 189.70 29.77 188.73 30.39 0.56 0.40 0.30 1.30
inst_9pol_[0.998] 187.40 30.10 189.33 31.58 188.15 30.69 0.71 0.60 0.38 1.97
inst_9pol_[0.999] 187.93 30.76 189.45 31.55 188.65 30.77 0.48 0.43 0.25 1.40
inst_26pol_[0.997] 200.11 187.88 202.12 188.32 201.10 188.78 0.74 1.50 0.37 0.80
inst_26pol_[0.998] 199.62 197.76 202.22 199.08 200.89 197.81 0.85 1.18 0.43 0.60
inst_26pol_[0.999] 199.87 203.37 201.45 200.57 200.54 202.62 0.50 3.85 0.25 1.90

rco1_[0.997] 163.32 26.56 165.62 26.95 164.61 27.40 0.68 0.71 0.41 2.59
rco1_[0.998] 163.26 26.49 165.72 27.72 164.49 27.07 0.82 0.43 0.50 1.59
rco1_[0.999] 163.49 26.71 165.57 26.56 164.51 26.90 0.72 0.45 0.44 1.66
rco2_[0.997] 322.21 122.50 325.50 119.63 323.73 121.27 1.06 1.58 0.33 1.31
rco2_[0.998] 322.67 90.66 326.16 93.85 324.25 92.39 1.22 1.12 0.38 1.22
rco2_[0.999] 322.36 97.28 324.82 99.31 323.40 98.14 0.80 0.87 0.25 0.89
rco3_[0.997] 487.92 435.70 493.13 430.93 490.28 429.45 1.42 3.15 0.29 0.73
rco3_[0.998] 489.61 288.38 493.18 285.21 491.07 285.95 1.32 2.02 0.27 0.71
rco3_[0.999] 489.55 196.50 492.82 195.90 491.01 193.28 1.17 3.60 0.24 1.86

shapes2_[0.997] 231.16 56.62 233.01 58.93 232.11 57.63 0.60 1.00 0.26 1.74
shapes2_[0.998] 230.59 63.62 233.13 61.43 231.76 62.38 0.81 1.17 0.35 1.87
shapes2_[0.999] 230.93 63.93 233.08 64.30 231.90 64.48 0.72 1.14 0.31 1.77

Appl. Sci. 2023, 13, 10133 36 of 42

Table A3. Cont.

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

shapes4_[0.997] 454.80 464.50 458.54 484.06 456.44 465.41 1.13 11.18 0.25 2.40
shapes4_[0.998] 454.91 291.62 458.95 287.36 456.82 289.34 1.29 4.15 0.28 1.43
shapes4_[0.999] 456.35 235.71 461.07 237.20 458.01 236.44 1.52 4.79 0.33 2.03

spfc_[0.997] 149.98 28.08 151.45 28.40 150.70 28.55 0.46 0.46 0.30 1.63
spfc_[0.998] 150.15 28.53 151.54 28.58 150.70 28.56 0.38 0.23 0.25 0.80
spfc_[0.999] 149.94 28.08 152.21 28.04 150.61 28.08 0.68 0.50 0.45 1.77

trousers_[0.997] 298.75 718.47 302.70 745.63 300.84 734.46 1.57 21.92 0.52 2.99
trousers_[0.998] 302.52 511.29 305.81 526.19 303.92 520.26 1.09 11.52 0.36 2.21
trousers_[0.999] 301.90 543.22 305.16 511.10 303.36 528.66 1.03 22.34 0.34 4.23

Exec. time (avg) 100.47 101.47 101.04

Table A4. e-ABRKGA applied to the separated set of instances (S).

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

albano_[0.997] 112.20 123.00 113.63 125.04 112.95 123.99 0.50 0.84 0.44 0.68
albano_[0.998] 112.05 123.38 113.87 123.47 112.89 123.23 0.61 0.80 0.54 0.65
albano_[0.999] 112.68 117.12 114.36 119.64 113.51 118.35 0.49 1.02 0.43 0.86
blaz1_[0.997] 163.18 34.58 164.83 34.67 163.99 34.96 0.55 0.52 0.34 1.49
blaz1_[0.998] 163.56 35.14 164.44 36.59 163.99 35.63 0.29 0.55 0.18 1.55
blaz1_[0.999] 163.43 34.79 164.93 35.49 164.10 34.79 0.43 0.39 0.26 1.13
blaz2_[0.997] 295.37 155.92 298.16 156.77 296.04 156.05 0.83 0.98 0.28 0.63
blaz2_[0.998] 295.70 114.84 297.81 116.00 296.55 114.77 0.66 0.84 0.22 0.73
blaz2_[0.999] 296.18 127.34 298.83 126.18 297.23 125.25 0.77 1.26 0.26 1.01
blaz3_[0.997] 493.40 900.49 496.67 892.15 494.79 900.63 1.17 8.43 0.24 0.94
blaz3_[0.998] 493.20 573.28 498.01 576.61 495.92 576.70 1.40 5.48 0.28 0.95
blaz3_[0.999] 494.74 354.22 502.46 357.07 498.38 361.71 2.06 4.52 0.41 1.25

dighe1_[0.997] 97.35 25.64 98.03 25.76 97.54 25.86 0.23 0.17 0.23 0.66
dighe1_[0.998] 97.16 25.33 97.88 25.68 97.55 25.44 0.21 0.22 0.22 0.87
dighe1_[0.999] 97.30 24.61 98.05 24.85 97.73 24.68 0.25 0.15 0.25 0.63
dighe2_[0.997] 79.26 17.65 80.14 19.72 79.71 18.09 0.24 0.59 0.30 3.26
dighe2_[0.998] 79.48 18.02 80.24 17.96 79.79 17.63 0.21 0.24 0.27 1.34
dighe2_[0.999] 79.61 16.68 80.37 17.01 79.83 17.04 0.22 0.17 0.27 1.00

fu_[0.997] 28.73 8.15 28.87 8.83 28.81 8.32 0.05 0.33 0.18 4.00
fu_[0.998] 28.77 8.10 28.93 7.61 28.84 8.07 0.06 0.31 0.21 3.86
fu_[0.999] 28.62 7.85 28.99 7.75 28.82 8.13 0.11 0.36 0.37 4.46

inst_10pol_[0.997] 193.25 36.57 195.46 36.23 194.16 36.22 0.69 0.52 0.35 1.44
inst_10pol_[0.998] 193.26 37.49 194.90 37.79 193.96 37.53 0.48 0.28 0.25 0.75
inst_10pol_[0.999] 192.64 37.52 195.13 38.26 193.84 37.73 0.63 0.30 0.32 0.80
inst_16pol_[0.997] 173.89 128.79 174.88 129.62 174.45 129.30 0.27 1.21 0.15 0.93
inst_16pol_[0.998] 174.48 130.68 175.05 133.02 174.69 131.56 0.18 0.89 0.10 0.68
inst_16pol_[0.999] 174.07 130.36 175.43 131.52 174.67 131.07 0.53 0.59 0.30 0.45
inst_2pol_[0.997] 36.05 3.29 36.05 3.29 36.05 2.98 0.00 0.16 0.00 5.31
inst_2pol_[0.998] 36.05 3.09 36.05 3.09 36.05 2.83 0.00 0.15 0.00 5.15
inst_2pol_[0.999] 36.05 2.53 36.05 2.53 36.05 2.66 0.00 0.22 0.00 8.42
inst_3pol_[0.997] 48.10 4.81 48.10 4.81 48.10 4.92 0.00 0.18 0.00 3.63
inst_3pol_[0.998] 48.10 4.67 48.10 4.67 48.10 4.81 0.00 0.20 0.00 4.16
inst_3pol_[0.999] 48.10 4.68 48.10 4.68 48.10 4.71 0.00 0.12 0.00 2.54
inst_4pol_[0.997] 72.15 8.76 72.20 8.91 72.17 8.81 0.03 0.16 0.04 1.82
inst_4pol_[0.998] 72.15 8.45 72.30 8.67 72.18 8.58 0.05 0.17 0.07 2.04
inst_4pol_[0.999] 72.15 8.87 72.43 8.44 72.22 8.61 0.10 0.40 0.14 4.64
inst_5pol_[0.997] 90.15 11.19 90.53 11.01 90.31 11.55 0.12 0.58 0.13 5.04
inst_5pol_[0.998] 90.18 11.90 90.45 11.99 90.30 11.84 0.10 0.16 0.11 1.37

Appl. Sci. 2023, 13, 10133 37 of 42

Table A4. Cont.

Instances Best Worst Average Std. Deviation Variation
Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec. Fitness Exec.

inst_5pol_[0.999] 90.18 12.08 90.90 12.28 90.39 12.19 0.23 0.18 0.25 1.47
inst_6pol_[0.997] 114.33 14.83 115.73 15.83 114.68 15.13 0.41 0.53 0.36 3.50
inst_6pol_[0.998] 114.45 15.37 115.25 15.46 114.73 15.55 0.27 0.30 0.23 1.93
inst_6pol_[0.999] 114.23 15.63 115.00 15.73 114.59 15.89 0.26 0.30 0.23 1.88
inst_7pol_[0.997] 138.47 19.96 139.60 20.36 138.88 20.11 0.30 0.20 0.22 0.99
inst_7pol_[0.998] 138.34 19.83 140.02 20.06 138.91 20.08 0.52 0.23 0.38 1.13
inst_7pol_[0.999] 138.47 19.84 140.30 19.80 139.06 19.67 0.58 0.19 0.42 0.94
inst_8pol_[0.997] 156.70 24.87 157.78 24.86 157.33 25.05 0.33 0.23 0.21 0.92
inst_8pol_[0.998] 156.98 25.17 157.83 25.00 157.34 25.31 0.27 0.34 0.17 1.32
inst_8pol_[0.999] 157.15 25.00 158.25 25.16 157.57 24.81 0.40 0.34 0.25 1.37
inst_9pol_[0.997] 187.25 31.77 188.58 32.76 187.86 32.40 0.43 0.36 0.23 1.10
inst_9pol_[0.998] 186.95 32.63 188.08 33.55 187.56 33.70 0.41 0.59 0.22 1.74
inst_9pol_[0.999] 187.40 33.78 188.98 33.95 188.10 33.55 0.50 0.32 0.26 0.96
inst_26pol_[0.997] 199.20 549.52 202.47 530.77 200.67 564.14 0.99 31.92 0.49 5.66
inst_26pol_[0.998] 199.32 434.97 200.64 581.02 199.95 494.60 0.44 71.27 0.22 14.41
inst_26pol_[0.999] 199.48 418.66 201.38 418.38 200.14 427.26 0.61 13.37 0.30 3.13

rco1_[0.997] 163.81 30.42 165.29 31.70 164.36 31.19 0.55 0.81 0.33 2.59
rco1_[0.998] 162.78 36.21 165.31 34.67 163.97 34.36 0.67 1.16 0.41 3.37
rco1_[0.999] 163.58 37.45 164.73 37.76 164.11 37.46 0.47 0.61 0.28 1.64
rco2_[0.997] 321.25 149.40 323.72 148.95 322.12 149.76 0.78 1.14 0.24 0.76
rco2_[0.998] 321.12 113.98 324.15 116.29 322.23 114.74 0.85 0.95 0.26 0.83
rco2_[0.999] 321.10 123.41 323.98 123.36 322.17 122.95 1.16 0.76 0.36 0.61
rco3_[0.997] 483.92 619.23 487.47 618.18 485.80 614.27 1.20 4.85 0.25 0.79
rco3_[0.998] 484.65 402.16 488.76 409.30 486.67 406.48 1.41 3.67 0.29 0.90
rco3_[0.999] 485.53 268.59 491.92 267.00 488.72 267.85 1.92 1.37 0.39 0.51

shapes2_[0.997] 230.71 74.11 232.31 76.23 231.52 73.99 0.42 0.97 0.18 1.32
shapes2_[0.998] 230.68 80.32 232.16 79.21 231.46 79.77 0.56 0.57 0.24 0.72
shapes2_[0.999] 230.13 83.55 232.81 82.09 231.44 83.06 0.89 1.38 0.39 1.66
shapes4_[0.997] 451.62 749.86 454.56 757.36 452.86 764.33 0.86 11.21 0.19 1.47
shapes4_[0.998] 454.21 473.16 457.01 480.69 455.42 479.82 1.13 3.56 0.25 0.74
shapes4_[0.999] 455.10 367.46 457.53 369.41 456.36 370.81 0.84 3.41 0.18 0.92

spfc_[0.997] 149.48 50.40 150.52 57.76 150.10 54.45 0.34 3.22 0.22 5.92
spfc_[0.998] 149.14 50.57 150.84 50.25 149.95 50.74 0.45 0.90 0.30 1.78
spfc_[0.999] 149.36 48.72 150.80 48.83 150.00 48.80 0.44 0.30 0.29 0.62

trousers_[0.997] 298.68 1873.57 302.21 1961.91 299.98 1876.23 1.04 134.29 0.35 7.16
trousers_[0.998] 302.02 1189.90 304.42 1121.54 303.43 1188.92 0.86 59.51 0.28 5.01
trousers_[0.999] 301.40 1326.50 306.61 1262.62 303.45 1363.36 1.37 95.93 0.45 7.04

Exec. time (avg) 176.83 178.58 179.04

Table A5. GAP comparison ABRKGA x e-ABRKGA to connected (C) and separated (S) instances.

Instances
GAP GAP

Connected (C) Separated (S)
Fitness (%) Time (s) Time (%) Fitness (%) Time (s) Time (%)

albano_[0.997] 6.70% 125.05 −152.10% 0.10% 48.41 −64.06%
albano_[0.998] 6.29% 119.54 −143.63% 0.41% 47.01 −61.67%
albano_[0.999] 6.65% 115.73 −143.25% 0.17% 45.40 −62.25%
blaz1_[0.997] 1.34% 18.95 −60.28% 0.40% 3.93 −12.67%
blaz1_[0.998] 1.37% 18.68 −59.48% 0.30% 5.16 −16.94%
blaz1_[0.999] 1.34% 17.01 −54.83% 0.29% 5.11 −17.20%
blaz2_[0.997] 1.33% 179.77 −153.98% 0.84% 38.56 −32.82%
blaz2_[0.998] 1.68% 131.89 −144.56% 0.67% 28.14 −32.49%
blaz2_[0.999] 1.54% 132.69 −136.05% 0.25% 31.02 −32.92%
blaz3_[0.997] 0.64% 204.89 −51.14% 0.82% 335.83 −59.46%

Appl. Sci. 2023, 13, 10133 38 of 42

Table A5. Cont.

Instances
GAP GAP

Connected (C) Separated (S)
Fitness (%) Time (s) Time (%) Fitness (%) Time (s) Time (%)

blaz3_[0.998] 0.64% 135.90 −49.52% 0.75% 203.36 −54.47%
blaz3_[0.999] 0.58% 107.56 −49.98% 0.55% 123.24 −51.68%

dighe1_[0.997] 0.41% 0.88 −7.09% 0.30% 2.41 −10.29%
dighe1_[0.998] 0.46% −0.52 3.83% 0.26% 2.33 −10.07%
dighe1_[0.999] 0.26% −2.08 14.20% 0.28% −2.21 8.21%
dighe2_[0.997] −0.33% 5.05 −64.39% 0.04% 1.62 −9.81%
dighe2_[0.998] −0.41% 4.90 −64.00% 0.19% 0.64 −3.75%
dighe2_[0.999] −0.55% 4.74 −64.41% 0.13% −0.02 0.12%

fu_[0.997] 0.16% 7.45 −122.90% 0.34% 2.72 −48.48%
fu_[0.998] 0.08% 7.81 −133.49% 0.23% 2.52 −45.46%
fu_[0.999] 0.29% 7.95 −142.08% 0.35% 2.62 −47.41%

inst_10pol_[0.997] 0.25% 0.74 −4.04% 0.33% 2.93 −8.81%
inst_10pol_[0.998] 0.42% 0.64 −3.51% 0.47% 2.83 −8.16%
inst_10pol_[0.999] 0.30% 0.34 −1.88% 0.68% 3.13 −9.06%
inst_16pol_[0.997] 0.25% 1.65 −10.97% 0.44% 42.43 −48.83%
inst_16pol_[0.998] 0.28% 1.79 −12.24% 0.49% 40.19 −43.99%
inst_16pol_[0.999] 0.59% 1.59 −11.12% 0.46% 40.10 −44.08%
inst_2pol_[0.997] −1.13% 3.73 −174.00% 0.00% 0.56 −23.15%
inst_2pol_[0.998] −1.13% 3.43 −158.72% 0.00% 0.49 −20.76%
inst_2pol_[0.999] −1.13% 3.14 −167.87% 0.00% 0.46 −20.84%
inst_3pol_[0.997] 0.00% 0.92 −23.97% 0.05% 0.26 −5.52%
inst_3pol_[0.998] 0.00% −0.04 0.86% 0.04% −0.33 6.48%
inst_3pol_[0.999] 0.00% 1.63 −56.65% 0.08% −0.68 12.56%
inst_4pol_[0.997] −0.06% 1.20 −24.97% 0.10% 1.87 −26.94%
inst_4pol_[0.998] 0.00% 1.08 −22.49% 0.06% 1.65 −23.91%
inst_4pol_[0.999] 0.00% 0.17 −3.09% 0.01% 1.91 −28.58%
inst_5pol_[0.997] −0.11% 4.58 −68.74% 0.27% 1.33 −12.99%
inst_5pol_[0.998] −0.41% 4.80 −73.22% 0.14% 1.88 −18.86%
inst_5pol_[0.999] −0.39% 4.77 −72.08% 0.16% 2.55 −26.42%
inst_6pol_[0.997] −0.28% 4.08 −45.46% 0.11% 0.35 −2.40%
inst_6pol_[0.998] −0.14% 4.83 −57.96% 0.04% 0.38 −2.51%
inst_6pol_[0.999] −0.26% 4.68 −57.59% 0.46% 0.64 −4.22%
inst_7pol_[0.997] 0.18% −0.27 2.36% 0.32% 0.65 −3.35%
inst_7pol_[0.998] 0.22% −0.50 4.37% 0.33% 0.50 −2.54%
inst_7pol_[0.999] 0.16% −0.72 6.16% 0.21% 0.52 −2.72%
inst_8pol_[0.997] 0.02% 0.03 −0.24% 0.46% 1.08 −4.51%
inst_8pol_[0.998] 0.22% −0.04 0.29% 0.27% 0.97 −4.00%
inst_8pol_[0.999] 0.10% 0.18 −1.45% 0.42% 1.17 −4.93%
inst_9pol_[0.997] −1.05% 11.45 −67.42% 0.46% 2.01 −6.61%
inst_9pol_[0.998] −0.98% 11.12 −66.92% 0.31% 3.01 −9.80%
inst_9pol_[0.999] −1.15% 9.86 −61.62% 0.29% 2.79 −9.05%

inst__[0.997] 0.35% 168.92 −125.12% 0.21% 375.36 −198.83%
inst__[0.998] 0.42% 148.24 −106.08% 0.47% 296.80 −150.04%
inst__[0.999] 0.50% 124.41 −89.04% 0.20% 224.64 −110.87%
rco1_[0.997] 0.43% 17.83 −67.12% 0.15% 3.79 −13.84%
rco1_[0.998] 0.43% 20.16 −76.71% 0.31% 7.29 −26.94%
rco1_[0.999] 0.50% 23.13 −87.04% 0.24% 10.56 −39.25%
rco2_[0.997] 0.86% 27.47 −24.44% 0.50% 28.49 −23.49%
rco2_[0.998] 0.21% 24.50 −27.93% 0.62% 22.35 −24.19%
rco2_[0.999] 0.09% 23.08 −23.83% 0.38% 24.81 −25.28%
rco3_[0.997] −2.03% 1281.72 −408.52% 0.91% 184.82 −43.04%
rco3_[0.998] −2.34% 690.70 −306.55% 0.90% 120.54 −42.15%

Appl. Sci. 2023, 13, 10133 39 of 42

Table A5. Cont.

Instances
GAP GAP

Connected (C) Separated (S)
Fitness (%) Time (s) Time (%) Fitness (%) Time (s) Time (%)

rco3_[0.999] −2.50% 361.83 −192.88% 0.47% 74.57 −38.58%
shapes2_[0.997] 1.90% 58.87 −92.15% 0.26% 16.36 −28.40%
shapes2_[0.998] 2.01% 60.99 −90.44% 0.13% 17.39 −27.88%
shapes2_[0.999] 2.44% 62.44 −91.04% 0.20% 18.58 −28.81%
shapes4_[0.997] 0.42% 395.34 −90.54% 0.78% 298.93 −64.23%
shapes4_[0.998] 0.51% 356.40 −117.24% 0.31% 190.48 −65.83%
shapes4_[0.999] 0.67% 144.00 −58.96% 0.36% 134.37 −56.83%

spfc_[0.997] 1.62% 36.42 −115.22% 0.40% 25.90 −90.73%
spfc_[0.998] 1.36% 35.36 −111.54% 0.50% 22.18 −77.65%
spfc_[0.999] 1.65% 35.71 −115.67% 0.41% 20.72 −73.79%

trousers_[0.997] −1.63% 3392.58 −469.80% 0.29% 1141.78 −155.46%
trousers_[0.998] −1.71% 2554.87 −498.73% 0.16% 668.66 −128.52%
trousers_[0.999] −1.06% 2711.99 −531.31% −0.03% 834.70 −157.89%

Table A6. GAP comparison e-BRKGA x e-ABRKGA to connected (C) and separated (S) instances.

Instances
GAP GAP

Connected (C) Separated (S)
Fitness (%) Time (s) Time (%) Fitness (%) Time (s) Time (%)

albano_[0.997] 0.04% −101.95 32.97% −3.65% −176.00 58.67%
albano_[0.998] −0.17% −106.44 34.42% −3.59% −176.76 58.92%
albano_[0.999] −0.22% −112.68 36.44% −4.16% −181.65 60.55%
blaz1_[0.997] 1.03% 7.36 −17.10% 0.22% −5.13 12.79%
blaz1_[0.998] 1.03% 7.08 −16.45% 0.22% −4.46 11.13%
blaz1_[0.999] 1.03% 5.00 −11.62% 0.15% −5.30 13.23%
blaz2_[0.997] 0.87% 122.07 −69.98% 0.29% 67.81 −76.84%
blaz2_[0.998] 0.92% 48.69 −27.91% 0.12% 26.52 −30.06%
blaz2_[0.999] 0.95% 55.79 −31.98% −0.11% 37.00 −41.93%
blaz3_[0.997] 0.20% 408.29 −207.00% 0.46% 697.74 −343.92%
blaz3_[0.998] −0.21% 213.07 −108.02% 0.24% 373.82 −184.25%
blaz3_[0.999] −0.49% 125.50 −63.63% −0.26% 158.83 −78.29%

dighe1_[0.997] 0.23% −33.86 71.73% −0.26% −22.38 46.40%
dighe1_[0.998] 0.19% −34.16 72.37% −0.28% −22.80 47.27%
dighe1_[0.999] 0.03% −34.63 73.36% −0.46% −23.56 48.85%
dighe2_[0.997] −0.91% −10.77 45.52% −0.10% −20.31 52.89%
dighe2_[0.998] −0.92% −11.08 46.87% −0.20% −20.77 54.09%
dighe2_[0.999] −1.12% −11.56 48.87% −0.25% −21.37 55.64%

fu_[0.997] −2.79% −39.70 74.60% −1.96% −34.01 80.34%
fu_[0.998] −2.79% −39.56 74.34% −2.07% −34.26 80.94%
fu_[0.999] −2.76% −39.67 74.55% −2.00% −34.20 80.79%

inst_10pol_[0.997] 1.26% −22.98 54.69% 0.09% −1.58 4.18%
inst_10pol_[0.998] 1.28% −23.01 54.76% 0.19% −0.27 0.71%
inst_10pol_[0.999] 1.30% −23.83 56.71% 0.25% −0.07 0.20%
inst_16pol_[0.997] 0.52% −43.89 72.43% −0.87% −67.10 34.16%
inst_16pol_[0.998] 0.34% −44.14 72.84% −1.00% −64.85 33.02%
inst_16pol_[0.999] 0.42% −44.72 73.82% −0.99% −65.33 33.26%
inst_2pol_[0.997] −1.13% −2.00 25.39% 0.00% −3.74 55.66%
inst_2pol_[0.998] −1.13% −2.27 28.88% 0.00% −3.88 57.84%
inst_2pol_[0.999] −1.13% −2.86 36.28% 0.00% −4.05 60.40%
inst_3pol_[0.997] 0.00% −3.42 41.78% 0.00% −5.14 51.10%
inst_3pol_[0.998] 0.00% −3.61 44.15% 0.00% −5.24 52.17%
inst_3pol_[0.999] 0.00% −3.66 44.79% 0.00% −5.34 53.10%
inst_4pol_[0.997] 0.37% −10.26 63.12% 0.05% −5.05 36.42%

Appl. Sci. 2023, 13, 10133 40 of 42

Table A6. Cont.

Instances
GAP GAP

Connected (C) Separated (S)
Fitness (%) Time (s) Time (%) Fitness (%) Time (s) Time (%)

inst_4pol_[0.998] 0.43% −10.38 63.91% 0.04% −5.27 38.07%
inst_4pol_[0.999] 0.43% −10.49 64.57% 0.00% −5.24 37.85%
inst_5pol_[0.997] −0.15% −1.34 10.62% 0.03% −6.63 36.49%
inst_5pol_[0.998] −0.46% −1.24 9.84% 0.04% −6.34 34.89%
inst_5pol_[0.999] −0.41% −1.21 9.58% −0.06% −5.99 32.96%
inst_6pol_[0.997] 0.26% −12.17 48.27% 0.11% −5.62 27.07%
inst_6pol_[0.998] 0.44% −12.04 47.76% 0.06% −5.20 25.05%
inst_6pol_[0.999] 0.23% −12.42 49.24% 0.18% −4.86 23.41%
inst_7pol_[0.997] 0.00% −6.39 36.55% 0.14% −4.41 17.97%
inst_7pol_[0.998] 0.00% −6.47 37.01% 0.12% −4.44 18.12%
inst_7pol_[0.999] 0.04% −6.60 37.71% 0.01% −4.85 19.78%
inst_8pol_[0.997] 0.02% −5.69 30.34% 0.21% −1.97 7.30%
inst_8pol_[0.998] 0.10% −5.86 31.26% 0.20% −1.72 6.37%
inst_8pol_[0.999] 0.10% −6.29 33.56% 0.06% −2.22 8.23%
inst_9pol_[0.997] −0.30% −5.64 16.55% 0.07% −0.57 1.71%
inst_9pol_[0.998] −0.28% −6.34 18.62% 0.23% 0.73 −2.22%
inst_9pol_[0.999] −0.25% −8.20 24.07% −0.05% 0.58 −1.77%

inst__[0.997] −0.01% −12.10 3.83% −1.55% 260.88 −86.03%
inst__[0.998] −0.16% −28.04 8.87% −1.18% 191.35 −63.10%
inst__[0.999] −0.59% −51.89 16.42% −1.28% 124.00 −40.89%
rco1_[0.997] 0.18% 8.25 −22.83% 0.21% −1.91 5.77%
rco1_[0.998] 0.19% 10.30 −28.49% 0.45% 1.26 −3.81%
rco1_[0.999] 0.25% 13.56 −37.51% 0.36% 4.37 −13.19%
rco2_[0.997] 0.29% 46.84 −50.36% 0.17% 69.40 −86.37%
rco2_[0.998] 0.00% 19.22 −20.66% 0.13% 34.39 −42.79%
rco2_[0.999] 0.13% 26.90 −28.92% 0.15% 42.60 −53.01%
rco3_[0.997] −2.41% 1432.03 −876.18% 0.61% 464.11 −309.07%
rco3_[0.998] −2.81% 752.57 −460.46% 0.43% 256.32 −170.69%
rco3_[0.999] −2.93% 385.99 −236.16% 0.01% 117.68 −78.37%

shapes2_[0.997] 1.29% 23.85 −24.11% −0.21% −4.83 6.13%
shapes2_[0.998] 1.35% 29.53 −29.86% −0.18% 0.95 −1.20%
shapes2_[0.999] 1.46% 32.13 −32.49% −0.17% 4.24 −5.38%
shapes4_[0.997] −1.37% 524.54 −170.60% 0.24% 512.09 −203.02%
shapes4_[0.998] −1.51% 352.92 −114.78% −0.33% 227.59 −90.23%
shapes4_[0.999] −1.98% 80.75 −26.26% −0.53% 118.57 −47.01%

spfc_[0.997] 0.84% 8.92 −15.09% −0.23% 2.76 −5.34%
spfc_[0.998] 0.71% 7.94 −13.44% −0.12% −0.95 1.84%
spfc_[0.999] 0.81% 7.48 −12.65% −0.16% −2.89 5.58%

trousers_[0.997] 4.52% 3774.72 −1110.23% 5.15% 1570.11 −512.91%
trousers_[0.998] 3.83% 2727.15 −802.11% 4.05% 882.80 −288.39%
trousers_[0.999] 4.65% 2882.43 −847.78% 4.05% 1057.25 −345.37%

References
1. Júnior, B.A.; Pinheiro, P.R. Approaches to tackle the nesting problems. In Artificial Intelligence Perspectives in Intelligent Systems;

Springer: Berlin/Heidelberg, Germany, 2016; pp. 285–295.
2. Araújo, L.J.; Panesar, A.; Özcan, E.; Atkin, J.; Baumers, M.; Ashcroft, I. An experimental analysis of deepest bottom-left-fill

packing methods for additive manufacturing. Int. J. Prod. Res. 2020, 58, 6917–6933. [CrossRef]
3. Araújo, L.J.; Özcan, E.; Atkin, J.A.; Baumers, M. Analysis of irregular three-dimensional packing problems in additive manufac-

turing: A new taxonomy and dataset. Int. J. Prod. Res. 2019, 57, 5920–5934. [CrossRef]
4. Zhao, X.; Bennell, J.A.; Bektaş, T.; Dowsland, K. A comparative review of 3D container loading algorithms. Int. Trans. Oper. Res.

2016, 23, 287–320 . [CrossRef]
5. Leao, A.A.; Toledo, F.M.; Oliveira, J.F.; Carravilla, M.A.; Alvarez-Valdés, R. Irregular packing problems: A review of mathematical

models. Eur. J. Oper. Res. 2020, 282, 803–822. [CrossRef]
6. Silva, E.F.; Oliveira, L.T.; Oliveira, J.F.; Toledo, F.M.B. Exact approaches for the cutting path determination problem. Comput. Oper.

Res. 2019, 112, 104772. [CrossRef]

http://doi.org/10.1080/00207543.2019.1686187
http://dx.doi.org/10.1080/00207543.2018.1534016
http://dx.doi.org/10.1111/itor.12094
http://dx.doi.org/10.1016/j.ejor.2019.04.045
http://dx.doi.org/10.1016/j.cor.2019.104772

Appl. Sci. 2023, 13, 10133 41 of 42

7. Dewil, R.; Vansteenwegen, P.; Cattrysse, D. A review of cutting path algorithms for laser cutters. Int. J. Adv. Manuf. Technol. 2016,
87, 1865–1884. [CrossRef]

8. Chaves, A.A.; Gonçalves, J.F.; Lorena, L.A.N. Adaptive biased random-key genetic algorithm with local search for the capacitated
centered clustering problem. Comput. Ind. Eng. 2018, 124, 331–346. [CrossRef]

9. Amaro Junior, B.; Santos, M.C.; de Carvalho, G.N.; de Araújo, L.J.P.; Pinheiro, P.R. Metaheuristics for the Minimum Time Cut
Path Problem with Different Cutting and Sliding Speeds. Algorithms 2021, 14, 305. [CrossRef]

10. Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Construction heuristics for generating tool paths for laser cutters. Int. J. Prod. Res.
2014, 52, 5965–5984. [CrossRef]

11. Qu, P.; Du, F. Improved Particle Swarm Optimization for Laser Cutting Path Planning. IEEE Access 2023, 11, 4574–4588. [CrossRef]
12. Rico-Garcia, H.; Sanchez-Romero, J.L.; Migallon Gomis, H.; Rao, R.V. Parallel implementation of metaheuristics for optimizing

tool path computation on CNC machining. Comput. Ind. 2020, 123, 103322. . [CrossRef]
13. Qudeiri, J.A.; Yamamoto, H.; Ramli, R. Optimization of Operation Sequence in CNC Machine Tools Using Genetic Algorithm.

J. Adv. Mech. Des. Syst. Manuf. 2007, 1, 272–282. [CrossRef]
14. Ghaiebi, H.; Solimanpur, M. An ant algorithm for optimization of hole-making operations. Comput. Ind. Eng. 2007, 52, 308–319.

[CrossRef]
15. Medina, N.; Montiel Ross, O.; Sepúlveda, R.; Castillo, O. Tool Path Optimization for Computer Numerical Control Machines

based on Parallel ACO. Eng. Lett. 2012, 20 , 101–108.
16. Chvátal, V.; Cook, W.; Dantzig, G.B.; Fulkerson, D.R.; Johnson, S.M. Solution of a large-scale traveling-salesman problem. In

50 Years of Integer Programming 1958–2008; Springer: Berlin/Heidelberg, Germany, 2010; pp. 7–28.
17. Ahadi, A.; Mozafari, A.; Zarei, A. Touring a sequence of disjoint polygons: Complexity and extension. Theor. Comput. Sci. 2014,

556, 45–54. [CrossRef]
18. Khan, W.; Hayhurst, D. Two and Three-Dimensional Path Optimization for Production Machinery. J. Manuf. Sci. Eng.-Trans.

Asme-J. Manuf. Sci. Eng. 2000, 122, 244–252. [CrossRef]
19. Erdos, G.; Kemény, Z.; Kovacs, A.; Váncza, J. Planning of Remote Laser Welding Processes. Procedia CIRP 2013, 7, 222–227.

[CrossRef]
20. Xie, S.; Tu, Y.; Liu, J.; Zhou, Z. Integrated and concurrent approach for compound sheet metal cutting and punching. Int. J. Prod.

Res. 2010, 39, 1095–1112. [CrossRef]
21. Yu, W.; Lu, L. A route planning strategy for the automatic garment cutter based on genetic algorithm. In Proceedings of the 2014

IEEE Congress on Evolutionary Computation, CEC 2014, Beijing, China, 6–11 July 2014; pp. 379–386. [CrossRef]
22. Arkin, E.M.; Hassin, R. Approximation algorithms for the geometric covering salesman problem. Discret. Appl. Math. 1994,

55, 197–218. [CrossRef]
23. Veeramani, D.; Kumar, S. Optimization of the nibbling operation on an NC turret punch press. Int. J. Prod. Res. 1998, 36, 1901–1916.
24. Manber, U.; Israni, S. Pierce point minimization and optimal torch path determination in flame cutting. J. Manuf. Syst. 1984,

3, 81–89. [CrossRef]
25. Moreira, L.M.; Oliveira, J.F.; Gomes, A.M.; Ferreira, J.S. Heuristics for a dynamic rural postman problem. Comput. Oper. Res. 2007,

34, 3281–3294. [CrossRef]
26. Garfinkel, R.S.; Webb, I.R. On crossings, the Crossing Postman Problem, and the Rural Postman Problem. Networks 1999,

34, 173–180. [CrossRef]
27. Rodrigues, A.; Soeiro Ferreira, J. Cutting path as a Rural Postman Problem: Solutions by Memetic Algorithms. IJCOPI 2012,

3, 31–46.
28. Chan Han, G.; Joo Na, S. A study on torch path planning in laser cutting processes part 2: Cutting path optimization using

simulated annealing. J. Manuf. Syst. 1999, 18, 62–70. [CrossRef]
29. Lee, M.K.; Kwon, K.B. Cutting path optimization in CNC cutting processes using a two-step genetic algorithm. Int. J. Prod. Res.

2006, 44, 5307–5326.
30. Dewil, R.; Vansteenwegen, P.; Cattrysse, D. Cutting path optimization using tabu search. Key Eng. Mater. 2011, 473, 739–748.

[CrossRef]
31. Golden, B.L.; Wong, R.T. Capacitated arc routing problems. Networks 1981, 11, 305–315. [CrossRef]
32. Usberti, F.L.; França, P.M.; França, A.L.M. The open capacitated arc routing problem. Comput. Oper. Res. 2011, 38, 1543–1555.

[CrossRef]
33. Hajad, M.; Saetang, V.; Dumkum, C.; Jaturanonda, C. Solving the Laser Cutting Path Problem Using Population-Based Simulated

Annealing with Adaptive Large Neighborhood Search. Key Eng. Mater. 2020, 833, 29–34. [CrossRef]
34. Skinderowicz, R. Improving Ant Colony Optimization efficiency for solving large TSP instances. Appl. Soft Comput. 2022,

120, 108653. [CrossRef]
35. Gonçalves, J.F.; Resende, M.G.C. Biased random-key genetic algorithms for combinatorial optimization. J. Heuristics 2011, 17,

487–525. [CrossRef]
36. Eiben, A.E.; Michalewicz, Z.; Schoenauer, M.; Smith, J.E., Parameter Control in Evolutionary Algorithms. In Parameter Setting in

Evolutionary Algorithms; Lobo, F.G., Lima, C.F., Michalewicz, Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 19–46.
[CrossRef]

37. Resende, M. Biased random-key genetic algorithms with applications in telecommunications. TOP 2010, 20, 130–153. [CrossRef]

http://dx.doi.org/10.1007/s00170-016-8609-1
http://dx.doi.org/10.1016/j.cie.2018.07.031
http://dx.doi.org/10.3390/a14110305
http://dx.doi.org/10.1080/00207543.2014.895064
http://dx.doi.org/10.1109/ACCESS.2023.3236006
http://dx.doi.org/10.1016/j.compind.2020.103322
http://dx.doi.org/10.1299/jamdsm.1.272
http://dx.doi.org/10.1016/j.cie.2007.01.001
http://dx.doi.org/10.1016/j.tcs.2014.06.019
http://dx.doi.org/10.1115/1.538901
http://dx.doi.org/10.1016/j.procir.2013.05.038
http://dx.doi.org/10.1080/00207540010022359
http://dx.doi.org/10.1109/CEC.2014.6900425
http://dx.doi.org/10.1016/0166-218X(94)90008-6
http://dx.doi.org/10.1016/0278-6125(84)90024-4
http://dx.doi.org/10.1016/j.cor.2005.12.008
http://dx.doi.org/10.1002/(SICI)1097-0037(199910)34:3<173::AID-NET1>3.0.CO;2-W
http://dx.doi.org/10.1016/S0278-6125(99)80027-2
http://dx.doi.org/10.4028/www.scientific.net/KEM.473.739
http://dx.doi.org/10.1002/net.3230110308
http://dx.doi.org/10.1016/j.cor.2011.01.012
http://dx.doi.org/10.4028/www.scientific.net/KEM.833.29
http://dx.doi.org/10.1016/j.asoc.2022.108653
http://dx.doi.org/10.1007/s10732-010-9143-1
http://dx.doi.org/10.1007/978-3-540-69432-8_2
http://dx.doi.org/10.1007/s11750-011-0176-x

Appl. Sci. 2023, 13, 10133 42 of 42

38. Edmonds, J.; Johnson, E. Matching, Euler Tours and the Chinese Postman. Math. Program. 1973, 5, 88–124. [CrossRef]
39. Prasetyo, H.; Fauza, G.; Amer, Y.; Lee, S.H. Survey on applications of biased-random key genetic algorithms for solving

optimization problems. In Proceedings of the 2015 IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM), Singapore, 6–9 December 2015; pp. 863–870. [CrossRef]

40. Spears, V.M.; Jong, K.A.D. On the virtues of parameterized uniform crossover. In Proceedings of the Fourth International
Conference on Genetic Algorithms, San Diego, CA, USA, 13–16 July 1991; pp. 230–236.

41. Amaro Júnior, B.; Pinheiro, P.R.; Coelho, P.V. A parallel biased random-key genetic algorithm with multiple populations applied
to irregular strip packing problems. Math. Probl. Eng. 2017, 2017, 1670709. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF01580113
http://dx.doi.org/10.1109/IEEM.2015.7385771
http://dx.doi.org/10.1155/2017/1670709

	Introduction
	The Laser Cutting Path Problem (LCPP)
	Formal Definition
	An Integer Programming Formulation

	Literature Review
	Overview of Application of ABRKGA to LCPP
	Introduction
	Initialization and Basic Concepts
	An Eulerian Heuristic to Generate Improved Individuals for LCPP
	New Generation Process

	Computational Results
	Instances
	Results for the MIP Flow Model
	Comparison of Results for BRKGA vs. e-BRKGA
	Comparison of Results for ABRKGA vs. e-ABRKGA
	Comparison of Results for e-BRKGA vs. e-ABRKGA

	Conclusions
	Images of Input Layouts
	Connected Instances
	Separated Instances

	Results Tables
	References

