Machine Learning-Based Garbage Detection and 3D Spatial Localization for Intelligent Robotic Grasp
Abstract
:1. Introduction
2. Related Works
3. Methodology
Segmentation Models
4. Experiments and Results
4.1. Implementation Details
4.2. Model Training and Testing Results
4.3. Garbage Point Cloud Extraction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carolis, B.D.; Ladogana, F.; Macchiarulo, N. YOLO TrashNet: Garbage Detection in Video Streams; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Jaikumar, P.; Vandaele, R.; Ojha, V. Transfer Learning for Instance Segmentation of Waste Bottles Using Mask R-CNN Algorithm; Piuri, V., Gandhi, N., Siarry, P., Kaklauskas, A., Madureira, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 140–149. [Google Scholar]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Majchrowska, S. Waste detection in pomerania: Non-profit project for detecting waste in environment. arXiv 2021, arXiv:2105.06808. [Google Scholar]
- Kraft, M.; Piechocki, M.; Ptak, B.; Walas, K. Autonomous, Onboard Vision-Based Trash and Litter Detection in Low Altitude Aerial Images Collected by an Unmanned Aerial Vehicle. Remote Sens. 2021, 13, 965. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. In Proceedings of the 2020 IEEE Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Proença, P.F.; Simões, P. TACO: Trash Annotations in Context for Litter Detection. arXiv 2020, arXiv:2003.06975. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv 2019, arXiv:1905.05055. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A. SSD: Single Shot MultiBox Detector. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 21–37. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Uijlings, J.R.R.; van de Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective Search for Object Recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–10. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 3431–3440. [Google Scholar]
- Lin, T.-Y.; Dollar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Yong, J.L. YOLACT++: Better Real-time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 44, 1108–1121. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context; Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Long Beach, CA, USA, 15–20 June 2019; pp. 9157–9166. [Google Scholar]
- Liu, H.; Soto, R.A.R.; Xiao, F.; Lee, Y.J. Yolactedge: Real-time instance segmentation on the edge. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 9579–9585. [Google Scholar]
- Serezhkin, A. Drinking Waste Classification. Available online: https://www.kaggle.com/arkadiyhacks/drinking-waste-classification (accessed on 4 September 2023).
- Foundation, L.S.D.I. Wade-ai. Available online: https://github.com/letsdoitworld/wade-ai (accessed on 4 September 2023).
- Fulton, M.; Hong, J.; Jahidul Islam, M.; Sattar, J. Robotic Detection of Marine Litter Using Deep Visual Detection Models. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Guangzhou China, 26–28 June 2019; pp. 5752–5758. [Google Scholar]
- Wang, T.; Cai, Y.; Liang, L.; Ye, D. A Multi-Level Approach to Waste Object Segmentation. Sensors 2020, 20, 3816. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Fulton, M.; Sattar, J. TrashCan: A Semantically-Segmented Dataset towards Visual Detection of Marine Debris. arXiv 2020, arXiv:2007.08097. [Google Scholar]
- Bashkirova, D.; Abdelfattah, M.; Zhu, Z.; Akl, J.; Alladkani, F.; Hu, P.; Ablavsky, V.; Calli, B.; Bargal, S.A.; Saenko, K. ZeroWaste Dataset: Towards Deformable Object Segmentation in Extreme Clutter. arXiv 2021, arXiv:2106.02740. [Google Scholar]
- Liao, J.; Luo, X.; Cao, L.; Li, W.; Feng, X.; Li, J.; Yuan, F. Road garbage segmentation and cleanliness assessment based on semantic segmentation network for cleaning vehicles. IEEE Trans. Veh. Technol. 2021, 70, 8578–8589. [Google Scholar] [CrossRef]
- Vivekanandan, M.; Jesuda, T. Deep Learning Implemented Visualizing City Cleanliness Level by Garbage Detection. Intell. Autom. Soft Comput. 2023, 36, 1639–1652. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.R.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition, Computer Vision and Pattern Recognition. arXiv 2014, arXiv:1409.1556v6. [Google Scholar]
- Khan, A.; Wahab, N. Deep Residual Learning for Image Recognition. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE Computer Society: Los Alamitos, CA, UUSA, 2015. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. 2018; pp. 4510-4520. [Google Scholar]
- Guo, Z.; Liu, H.; Pang, L.; Fang, L.; Dou, W. DBSCAN-based point cloud extraction for Tomographic synthetic aperture radar (TomoSAR) three-dimensional (3D) building reconstruction. Int. J. Remote Sens. 2021, 42, 2327–2349. [Google Scholar] [CrossRef]
Dataset | Year | Classes | Images | Annotated Instances | Back Ground |
---|---|---|---|---|---|
Wade-AI [24] | 2016 | 1 (rubbish) | 1396 | 2247 | Wild |
UAVVaste [6] | 2021 | 1 (rubbish) | 772 | 3718 | Wild aerial |
MJU-Waste [25] | 2020 | 1 (trash) | 2475 | 2532 | Indoor |
Cigarette butt | 2018 | 1 (cigarette) | 2200 | 2200 | Synthetic wild |
TrashCan [26] | 2020 | 8 (trash_name) | 7212 | 6214 | Underwater |
ZeroWaste-f [27] | 2021 | 4 | 1874 | 9463 | Conveyor belt |
TACO [8] | 2020 | 60 (28 top class) | 1500 | 4783 | Diverse |
Model | Backbone | Weights (MB) | FPS | Bbox | Mask | ||
---|---|---|---|---|---|---|---|
mAP | mIoU | mPA | PA | ||||
Yolact | Res50 | 123.5 | 50.23 | 13.29 | 25.03 | 37.40 | 95.77 |
Yolact | Res101 | 199.8 | 35.76 | 15.16 | 22.94 | 34.13 | 96.17 |
Yolact | Mobilenetv2 | 34.9 | 55.72 | 11.38 | 18.79 | 28.93 | 95.05 |
Yolactedge | Res50 | 123.5 | 110.16 | 13.40 | 22.00 | 31.72 | 95.31 |
Yolactedge | Res101 | 199.8 | 106.84 | 14.26 | 20.43 | 29.06 | 95.80 |
Yolactedge | Mobilenetv2 | 34.9 | 148.42 | 13.10 | 14.94 | 23.19 | 94.39 |
Mask R-CNN | VGG16 | 256.4 | 8.93 | 16.43 | 10.55 | 15.80 | 94.88 |
SegNet | VGG16 | 353.5 | 5.62 | -- | 4.61 | 5.67 | 94.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Chen, T.; Cai, Z.; Chen, Z. Machine Learning-Based Garbage Detection and 3D Spatial Localization for Intelligent Robotic Grasp. Appl. Sci. 2023, 13, 10018. https://doi.org/10.3390/app131810018
Lv Z, Chen T, Cai Z, Chen Z. Machine Learning-Based Garbage Detection and 3D Spatial Localization for Intelligent Robotic Grasp. Applied Sciences. 2023; 13(18):10018. https://doi.org/10.3390/app131810018
Chicago/Turabian StyleLv, Zhenwei, Tingyang Chen, Zhenhua Cai, and Ziyang Chen. 2023. "Machine Learning-Based Garbage Detection and 3D Spatial Localization for Intelligent Robotic Grasp" Applied Sciences 13, no. 18: 10018. https://doi.org/10.3390/app131810018
APA StyleLv, Z., Chen, T., Cai, Z., & Chen, Z. (2023). Machine Learning-Based Garbage Detection and 3D Spatial Localization for Intelligent Robotic Grasp. Applied Sciences, 13(18), 10018. https://doi.org/10.3390/app131810018