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Abstract: Garbage detection and 3D spatial localization play a crucial role in industrial applications,
particularly in the context of garbage trucks. However, existing approaches often suffer from limited
precision and efficiency. To overcome these challenges, this paper presents an algorithmic architec-
ture that leverages advanced techniques in computer vision and machine learning. The proposed
approach integrates cutting-edge computer vision methodologies to improve the precision of waste
classification and spatial localization. By utilizing RGB-D data captured by the RealSenseD415 cam-
era, the algorithm incorporates state-of-the-art computer vision algorithms and machine learning
models, including the Yolactedge model, for real-time instance segmentation of garbage objects
based on RGB images. This enables the accurate prediction of garbage class and the generation of
masks for each instance. Furthermore, the predicted masks are utilized to extract the point cloud
corresponding to the garbage instances. The oriented bounding boxes of the segmented point cloud is
calculated as the spatial location information of the garbage instances using the DBSCAN clustering
algorithm to remove the interfering points. The findings indicate that the proposed approach can
run at a maximum speed of 150 FPS. The usefulness of the proposed method in achieving accurate
garbage recognition and spatial localization in a vision-driving robot grasp system has been tested
experimentally on datasets that were custom-collected. The results demonstrate the algorithmic
architecture’s ability to transform waste management procedures while also enabling intelligent
garbage sorting and enabling robotic grasp applications.

Keywords: garbage detection; 3D spatial localization; machine learning; computer vision; intelligent
image processing; garbage trucks; robotic grasp

1. Introduction

The sorting and location of waste can increase waste disposal efficiency, whether the
garbage is detected in outdoors or at a recycling station. It can be challenging to find trash
in a cluttered environment. Several research studies have addressed this challenge by
employing methodologies such as object detection or instance segmentation based on deep
learning. These studies have also constructed diverse garbage datasets to overcome the
associated difficulties.

For example, Carolis et al. [1] trained an optimized YOLOv3 [2] using their own
custom-made garbage dataset with four categories, resulting in garbage classification and
localization with a mAP@50 value of 59.57%. With a custom-made bottle dataset based on
transfer learning, Jaikumar et al. [3] fine-tuned the pre-trained Mask R-CNN [4] model,
and the final model achieved a mAP of 59.4% on the test dataset.

As collecting garbage images requires substantial effort, the datasets they utilize were
collected from the internet and then manually labeled after pre-processing. For example,
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Carolis [1] utilized “Google Images Download” to download relevant images in bulk
from Google based on keywords, then eliminate duplicate images before labeling the data
with LabelImg. Similarly, Jaikumar [3] uses the Internet to download images of single
and numerous bottles and combines them into a dataset. However, image annotation is
a laborious and time-consuming procedure, meanwhile datasets produced contain only
simple garbage targets. Moreover, the real-time performance of the models was not taken
into account in these studies.

In contrast, Majchrowska et al. [5] explicitly defined seven garbage categories and
used two independently cascaded detector and classifier systems for garbage detection and
classification. The approach achieved an average accuracy of 70% in garbage detection and
approximately 75% in classification on the test dataset.

To obtain the 3D spatial location of garbage, the authors of contribution [6] did the
remarkable work of deploying YOLOv4 [7] with real-time detection performance on the
NVIDIA Xavier NX, combined with a Pixhawk2 autopilot to control an unmanned aerial
vehicle (UAV), and thus to locate garbage from images while flying at low altitude. This
approach relied on the on-board sensors (Here2 GPS/altimeter) and camera imaging model
to accurately translate the coordinates of the garbage into a global map, enabling automated
path planning for subsequent pickups. However, the accuracy and real-time performance
of YOLOv4 is limited in this approach.

In order to improve the accuracy and efficiency of garbage detection and localization,
this research focuses on detecting and calculating the spatial location of garbage instances
under the scene point cloud reconstructed by the depth camera. Garbage detection is per-
formed using the real-time instance segmentation model Yolactedge to obtain the garbage
mask from RGB images. The point cloud of garbage instances is then segmented from
the overall point cloud using the mask. As shown in Figure 1a, the TACO-28 [8] training
Yolactedge families models, Mask R-CNN [4] and SegNet [9] achieved the highest mPA of
37.4% for mask under real-time detection, and also achieved a 10% mPA on the outdoor
road garbage image data custom-collected with RealSenseD415, and then implemented
point cloud segmentation of garbage instances. The assessed Oriented Bounding Boxes
(OBB) is shown in Figure 1b.
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Figure 1. (a) On the TACO-28, there is a trade-off between speed and performance for various in-
stance segmentation approaches. Where bbox mAP and mask mPA are represented by red and green 
shapes, respectively. (b) The RealSenseD415 camera captured and reconstructed the scene point 
cloud at (0, 0, 750, 0, 135, 90) in the world coordinate system, and the OBB of the garbage instances 
calculated after point cloud segmentation and DBSCAN clustering. 

Figure 1. (a) On the TACO-28, there is a trade-off between speed and performance for various
instance segmentation approaches. Where bbox mAP and mask mPA are represented by red and
green shapes, respectively. (b) The RealSenseD415 camera captured and reconstructed the scene point
cloud at (0, 0, 750, 0, 135, 90) in the world coordinate system, and the OBB of the garbage instances
calculated after point cloud segmentation and DBSCAN clustering.
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In summary, the contributions are listed as follows: (1) a garbage dataset consisting
of groups of RGB and depth images is created (2) a novel approach by combining a real-
time instance segmentation model, a point cloud processing algorithm, and a vision-robot
grasp system to straight-forwardly compute the pose of garbage in a clutter environment
is introduced. we made the following works: (1) retraining Yolactedge using TACO-28,
(2) segmenting and clustering garbage instance point cloud, (3) computing OBB, and
(4) obtaining the robot grasp pose after hand-eye calibration. The paper’s structure is as
follows: Section 1 provides an introduction and background information. Section 2 reviews
the relevant literature. Section 3 describes the strategies employed for training instance
segmentation models. Section 4 presents the obtained results. Finally, Section 5 provides
the conclusions of the study.

2. Related Works

Object Detection. Object detection [10] usually employs one of two architectures:
one-stage detection and two-stage detection. One-stage detectors, such as the YOLO [2,7]
and SSD [11] families, are designed for real-time use while they reach a compromise in
precision. They perform object detection by predicting both the classes and locations
of objects in a single step using a regression problem approach [3], whereas two-stage
detectors require two steps, the first of which finds class-agnostic region proposals and
the second of which classifies them into class-specific output bboxes. Fast R-CNN [12] use
the Selective Search algorithm [13] to select region proposals in the first stage, while Faster
R-CNN [14] proposed a Region Proposal Network (RPN) integrated into Fast R-CNN to
replace the Selective Search algorithm, and then have two branches to predict classes and
bbox of object respectively in the second stage.

Sematic Segmentation. The goal of semantic segmentation, as described in FCN [15]
and SegNet [9], is to predict the classes of each pixel in an image and the region of pixels
with the same category is the predicted mask. Due to the dominance of fully connected
layers in terms of model parameters, FCN and SegNet were specifically designed to utilize
only the convolutional layer. which can accept any size image as input and output same
size mask with efficient inference and learning. SegNet is used for scene interpretation
tasks and sematic segmentation because of its high inference efficiency.

Instance Segmentation. Instance segmentation is related to yet distinct from sematic
segmentation. While semantic segmentation aims to predict a segmentation mask for each
pixel in an image, instance segmentation focuses on predicting a segmentation mask for
each individual instance present in the image. On the other hand, object detection focuses
on pre Mask R-CNN [4], two-stage detectors for instance segmentation that are employed
feature pyramid network (FPN) [16] and region proposal network (RPN) [14]. By adding a
mask prediction branch, Mask R-CNN became the leading model for instance segmentation
and were successfully applied in various tasks, including the instance segmentation of
garbage images in studies such as [3,5,8], where it demonstrated outstanding detection
accuracy. However, the two-stage detector model has a complex structure thus requires
more computational resources to achieve real-time detection, this makes it difficult to
deploy the model especially on embedded platforms. The goal is to provide high frame
rate object detection with guaranteed accuracy using single-stage detectors for real-time
object detection, such as YOLO [2,7], SSD [11] serial models, and EfficientDet [17].

In order to build a single-stage structural model to solve the problem of a two-stage
detector that relies heavily on feature localization, the Yolact [18,19] framework was intro-
duced as a single-stage alternative. This framework employs two parallel branches: one
generates a dictionary of non-local prototype masks, while the other predicts a set of linear
combination coefficients for each instance. Finally, it is necessary to linearly combine the
prototypes using the corresponding predicted coefficients and then crop with a predicted
bounding box for each object. Yolact families [18,20] model can achieve 34.1% mAP on MS
COCO [19] at 33.5 FPS, which is fairly close to the state-of-the-art approaches while still
running at real-time. In [21], authors propose the first video-based Yolactedge architecture
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based on Yolact, which perform inference up to 30.8 FPS at a Jetson Xavier and 172.7 FPS on
an RTX 2080Ti respectively. The performance migration of Yolactedge’s real-time instance
segmentation to garbage segmentation is feasible and practical.

Waste dataset. Early CNN image classification algorithms were limited to categorize
images, this leads to the labeling of certain garbage datasets such as TrashNet [22], Waste
images, and Open Litter Map [23] with only the category of the garbage and its presence
on a plain background. Extended TACO [8], Trash-ICRA19 [24], Drinking waste [22] are
examples of datasets used for garbage target detection level, for labeling the class and
bbox of all targets in the image against a complex background. However, the location of
garbage class, without the precise edges of the garbage in the scene, is inconvenient for
network to subsequent operations like grabbing or sucking. These issues may be solved
if the masks of the garbage instances could be acquired. Therefore, the dataset used for
garbage instance segmentation needs to be manually labelled with the class and mask
of the garbage instance in the complex background, with the minimum enclosing box of
the mask as the bbox of the instance. Table 1. lists some of the current publicly available
datasets with instance masks, where Wade-AI [23], UAVVaste [6], MJU-Waste [25] and
Cigarette butt tag all instances of trash in an image as a single object (rubbish or cigarette).
TrashCan [26] dataset contain undersea trash, flora and fauna, with eight trash-related
categories labelled. TACO [8], a consecutive growing free open dataset, contains 1500 high
resolution images in diverse environment annotated with 4783 instances and divide them
into 60 categories of litter which belong to 28 top classes. TACO offers a substantially more
detailed range of garbage image scenes and annotated instances than the previous five
datasets, making it more suitable to model learning and prediction of garbage instances in
complicated contexts.

Table 1. Publicly available garbage dataset for instance segmentation purpose.

Dataset Year Classes Images Annotated
Instances

Back
Ground

Wade-AI [24] 2016 1 (rubbish) 1396 2247 Wild
UAVVaste [6] 2021 1 (rubbish) 772 3718 Wild aerial

MJU-Waste [25] 2020 1 (trash) 2475 2532 Indoor

Cigarette butt 2018 1 (cigarette) 2200 2200 Synthetic
wild

TrashCan [26] 2020 8 (trash_name) 7212 6214 Underwater

ZeroWaste-f [27] 2021 4 1874 9463 Conveyor
belt

TACO [8] 2020 60 (28 top class) 1500 4783 Diverse

There are several public garbage data sets, as shown in Table 1, that can be used for
pre-training deep models, and the aforementioned associated research work [28,29], such as
the instance segmentation model [18,19], provides the theoretical foundation and previous
knowledge for garbage identification and segmentation. These models, data sets, and point
cloud processing techniques can all be used together to quickly and accurately identify
garbage objects in an outdoor environment.

3. Methodology

Using deep-learning-based instance segmentation and point cloud processing, this
study proposed an architecture for garbage segmentation and 3D spatial localization.
As shown in Figure 2, the input data consists of a pair of registered color and depth
images captured by Intel’s RealSenseD415 camera. Firstly, the color image is fed into
Segmentation Model N, which predicts the class and mask of each garbage instance in the
image. This process can be expressed as

{
Ic
mask

∣∣c ∈ [0, C)
}
= N(Icolor), where N, Icolor, and{

Ic
mask

∣∣c ∈ [0, C)
}

respectively represent the DL model, RGB color image, and predicted C
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masks. Simultaneously, combine the camera intrinsic parameters (fx, fy, u0, v0) and depth
image to create the entire scene point cloud {Pi|i ∈ [0, WH)} by referring the Formula (1).

Xi = Idepth(v, u)(u− u0)/ fx

Yi = Idepth(v, u)(v− v0)/ fy

Zi = Idepth(v, u)

, (u ∈ [0, W), v ∈ [0, H), i = u + vW) (1)

where Pi = (Xi, Yi, Zi) is one of the point in the point cloud {Pi|i ∈ [0, WH)}, Idepth is depth
image, fx, fy, u0, v0 is camera intrinsic parameters and W, H is the width and height of RGB
image respectively. In addition, the color of Pi is the RGB value at the (u + v ×W) position
in Icolor.
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Figure 2. The algorithm schematic for garbage object detection and 3D spatial localization in this
research. The segmentation model N predicts garbage’s classes and masks, which are then used to split
the garbage instances point cloud from the entire scene point cloud. Then, using the DBSCAN [30]
clustering algorithm, remove the interference point and calculate the OBB for garbage.

Secondly, once we have achieved the
{

Ic
mask

∣∣c ∈ [0, C)
}

, we can utilize it to extract the
garbage point cloud from the entire scene point cloud using the Formula (2).

Pc
k = Pi, i f (Ic

mask(v, u) = c), (u ∈ [0, W), v ∈ [0, H), c ∈ [0, C), i = u + vW) (2)

where Pc
k is one of the C extracted garbage point cloud

{
Pc

k

∣∣c ∈ [0, C)
}

.
Finally, a point cloud clustering algorithm, based on DBSCAN [30], was adopted to

fine-tune the splited
{

Pc
k

∣∣c ∈ [0, C)
}

. The main reason of this step is to remove outliers and
calculate the best-fitting 3D OBB for

{
Pc

k

∣∣c ∈ [0, C)
}

.

Segmentation Models

Mask R-CNN. It is two-stage detectors that uses FPN [16] and RPN [14] for instance
segmentation and achieves exceptional performance. Mask R-CNN [4] consists of three
parts: (1) a shared convolutional layer as the “backbone” for feature extraction. (2) The RPN
is used to generate a large number of candidate regions to be identified from the feature
map, and (3) the network head, which contains 3 branches for category classification, bbox
regression, and mask prediction. The combination of transfer learning and pre-trained
backbone parameters allows for the efficient application of Mask R-CNN to new garbage
instance segmentation tasks.

Yolact and YolactEdge. Pixels adjacent to each other in an image may belong to
regions of the same instance, leading to spatial coherence in the corresponding masks.
However, the spatial coherence can be lost when using fully connected layers, as they do
not effectively preserve this information. As for one-stage detector, the fully connected
layer is generally used as the output layer for classification and bbox regression. Two-stage
detector, i.e., Mask R-CNN, uses ROI Align to preserve the spatial information of pixels,
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and the mask prediction branch in Network head also needs to use FCN [15]. However,
doing so increases the time consumption significantly. To address this issue, Yolact [18]
introduces two parallel networks called Protonet and Prediction Head. Protonet generates
prototype masks, while Prediction Head predicts mask coefficients. These components
are then combined using a linear combination to produce the final masks. In addition,
in [20], authors introduced a Fast NMS, which significantly improves speed compared
to conventional NMS. All of these new structures make Yolact a high-performance and
state-of-the-art single-stage detector for instance segmentation. Yolactedge [21] applies
two main strategies to further accelerate the speed-accuracy trade-off. Firstly, different
precision levels are assigned to the components of the deep-learning model. Yolact’s
backbone and FPN are converted to INT8 precision, while Protonet and Prediction Head
are converted to FP16 precision, and ran them on Jetson AGX Xavier. The precision was
tested on the MS COCO val2107 dataset [19], and the frame rate was improved by 21.3 with
a slight reduction in mAP. Secondly, FeatFlowNet is introduced to transform previous key
frames into current non-key frames. By applying a partial feature transform design, the
computational costs associated with backbone’s convolutional layers are avoided, leading
to additional speed improvements. Given that the Yolactedge families models achieve
frame rates of up to 172 FPS and mAP values of 34.1% on MS COCO, their application to
garbage instance segmentation in this study is highly practicable.

SegNet. SegNet [9] is a deep convolutional encoder-decoder framework with a high
level of detail for image sematic segmentation. The encoder-decoder structure has a total of
11 blocks. In the encoder part, SegNet can utilize the convolutional layers of VGG16 [31]. It
consists of 5 convolutional blocks, each comprising 2 or 3 convolutional layers followed
by a max pooling layer. The max pooling layer retains the index of the maximum feature
value in a sparse matrix, preserving the position information for subsequent up sampling
operations in the decoder. Accordingly, the decoder has 5 blocks corresponding to the
encoder, each with an up sampling layer and 2 or 3 convolutional layers. After the output
layer of the decoder is the SoftMax layer. The principle is that the features in the image are
first extracted by the encoder to obtain a low resolution highly aggregated feature map,
which is then mapped by the decoder to a feature map of the same resolution size as the
model input layer by using the index of the max pooling in the encoder, called up sampling.
Batch Normalization layers are attached to each convolutional layer in the decoder to speed
up the convergence of the training process and to make the training data more evenly
distributed and fixed in the sample space. After 4 up sampling operations, the size of the
feature map becomes the same as the input image size, and then the SoftMax layer converts
the feature values in the feature map into probabilities, thus achieving multi-classification
of pixel values.

4. Experiments and Results

In this section, we introduce the configuration and training details of Yolact, Yolact-
edge, Mask R-CNN, and SegNet, and then describe the processing steps of the dataset in
order to train each model. The hardware environment of these models uses an Intel i9
CPU, an NVIDIA GeForce GTX 2080Ti GPU, and 32 GB of running memory, a powerful
computing platform to provide strong support for model training and inference. The
optimal configuration of the model parameters was summarized through analysis of the
model’s training and testing results.

4.1. Implementation Details

Dataset processing. The TACO dataset currently contains 1500 high-definition rubbish
images taken with mobile phones, each with instance segmentation information saved as
a json file in COCO format, and randomly divided into training, test, and validation sets
in the proportion of 80%, 15%, and 5%, respectively. Due to limited computing resources
(an RTX 2080Ti GPU with 11 GB video memory), the input images needed to be scaled to
dimensions of either 550 × 550 × 3 or 512 × 512 × 3, and since TACO has 60 categories
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(28 super categories), the code will apply a large amount of memory space when gener-
ating the training data. Therefore, it is necessary to keep the aspect-ratio scaling for the
1500 high-resolution images in TACO. Specifically, the width of all images was scaled to
640, the height was scaled by a ratio, and the instance labels in the image segmentation
points and bounding boxes (x, y, w, h) were also scaled accordingly, with the json file being
updated accordingly. On the other hand, this paper only classifies the garbage according to
the 28 super categories defined by TACO, so we also need to process the defined categories
in the json file as 28 super categories, and change the category id number of each instance
so that it maps to the corresponding category. After doing these processes, this study
named the dataset TACO-28. Finally, a software application was developed using the
Intel RealSense SDK to capture real-time RGB and Depth streams of rubbish in various
environments. The depth stream data was used to reconstruct the scene point cloud and
calculate the OBB of the rubbish instances. The garbage instances in the RGB images were
then manually labelled to test the accuracy of the segmentation model.

Training details. The transfer learning scheme is applied to the fast training and
optimization of the model. For the Yolactedge models, we conducted experiments using
different backbones, including Res50, Res101 [32], and MobileNetV2 [33]. To initialize
the model weights, we utilized the pretrained model parameters from ImageNet. and we
fine-tuned these weights using the TACO [8] dataset based on the open source code of
Haotian Liu [21]. Learning-rate, momentum, decay and iteration are set to 0.003, 0.9, 0.0005,
80,000 respectively. For Mask R-CNN and SegNet, backbone uses VGG16 and its weights
are initialized with ImageNet-pretrained weights.

Model evaluation metrics. The evaluation of the instance segmentation model includes
metrics for object detection precision, mask segmentation precision, as well as real-time
performance and parametric quantities. The positioning precision of the model for each
category is represented by the APi value, while the positioning accuracy for all categories
in the dataset is represented by the mAP = sum(APi)/n value. Comparatively, the mask
segmentation precision of the instance segmentation model is evaluated by mIoU, mAP,
PA, etc. Since the TACO dataset contains 60 categories, some of which have insignificant
feature differences or a small number of instances, it can be challenging for the instance
segmentation model to achieve high precision in category detection, resulting in low
values for the calculated evaluation metrics, and this is why we used TACO-28. In this
study, the main purpose is the inference speed of the model and the accuracy of the mask
segmentation. The higher the accuracy of the mask, the more accurate the segmented point
cloud will be, which will simplify the computation of the point cloud OBB. Therefore, the
main evaluation metrics used in this study are mPA (mean Pixel Accuracy) and frame rate,
as they provide insights into the accuracy and speed of the model’s performance.

4.2. Model Training and Testing Results

Training result. As shown in Figure 3a–c, after 80,000 iterations (533 epochs), the class,
bbox, and mask loss of both Yolact and Yolactedge start off significantly lower until it
plateaus at around 1. Firstly, comparing Yolact and Yolactedge, as Haotian Liu [21] said,
the latter’s mask mAP falls behind the former. In Figure 3a,c, it can be observed that the
individual loss values of Yolact are smaller than those of Yolactedge, but the difference is
small and the trend is basically the same. In particular, in Figure 3b, the loss curves of the
two models are almost identical. By comparing the loss curves for different backbones,
it is noted that the loss curve for Mobilenetv2 is higher than that for Res50, and the loss
curve for Res50 is higher than that for Res101. This suggests that increasing the depth of
the backbone and the number of parameters improves the model’s accuracy in terms of
loss values. Finally, despite the models and backbones, the loss of bbox is lower than that
of class, and the loss of class is lower than that of mask, implying that Yolact families object
detection is better than mask segmentation. Meanwhile, in this study, Mask R-CNN and
SegNet were also trained with TACO-28 and TACO-60 in turn. As shown in Figure 3d,e,
the loss values of Mask R-CNN and SegNet tended to be smooth after 150 epochs of
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training, the loss value of TACO-28 is lower than that of TACO-60, indicating that the more
categories the dataset is divided into, the more difficult it is for the model to distinguish the
garbage categories. It is important to note that the true performance of the models cannot
be solely summarized based on training loss data. Various metrics will be used to evaluate
and characterize the performance of each model.
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Figure 3. Loss curves during training of these models with TACO-28. (a–c) show the loss
curves for each branch of Yolactedge after training 80,000 iterations with Res50, Res101, and Mo-
bilenetv2, respectively. (d,e) are the loss curves of Mask R-CNN and SegNet after training for
150 epochs, respectively.

Testing result. The AP value is used to characterize the precision of the Yolactedge
and Mask R-CNN models’ garbage target localization, while the same precision evaluation
metrics as SegNet are used in this study for their mask output, i.e., mIoU, mPA, and PA.
As shown in Table 2, Mask R-CNN and SegNet have the highest number of parameters
and the lowest FPS due to their complex network structures, which makes fine-tuning
with limited datasets extremely challenging. The TACO dataset contains images with
diverse backgrounds, consisting of 60 categories (28 super categories) and numerous small
target instances. However, SegNet, being a semantic segmentation network, struggles with
distinguishing the pixel categories of multi-category small targets, leading to significantly
low evaluation metrics for mask segmentation on the test set. Mask R-CNN, as a Faster
R-CNN inherited from two-stage, achieved a mAP of 16.43 for the localization of garbage
instances after 150 epochs of training on TACO-28, which is the best performance among
the models applied in this study and is close to the mAP value of 17.6 ± 1.6% obtained in
TACO [8] after training Mask R-CNN with TACO-10. However, the accuracy of the output
mask still lags behind that of the Yolactedge models. Due to the simple scaling method
used in processing the dataset, many features of small objects are lost, resulting in even
lower detected mAP values compared to those in TACO.

The values of mIoU, mPA and PA are shown in Table 2. For Yolactedge families,
comparing Mobilenetv2 and Res101, Res50 gives optimal values of mIoU and mPA of
25.03% and 37.40%, respectively. This indicates that as the backbone becomes lighter,
prediction accuracy decreases while the model’s real-time performance improves, as shown
in columns 3 and 6 of Figure 4.
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Table 2. Comparison each model’s performance in TACO-28. The PA values in Table 2 are above 94%
because the model correctly classifies a large proportion of the background pixels.

Model Backbone
Weights

(MB) FPS
Bbox Mask

mAP mIoU mPA PA

Yolact Res50 123.5 50.23 13.29 25.03 37.40 95.77
Yolact Res101 199.8 35.76 15.16 22.94 34.13 96.17
Yolact Mobilenetv2 34.9 55.72 11.38 18.79 28.93 95.05

Yolactedge Res50 123.5 110.16 13.40 22.00 31.72 95.31
Yolactedge Res101 199.8 106.84 14.26 20.43 29.06 95.80
Yolactedge Mobilenetv2 34.9 148.42 13.10 14.94 23.19 94.39

Mask
R-CNN VGG16 256.4 8.93 16.43 10.55 15.80 94.88

SegNet VGG16 353.5 5.62 -- 4.61 5.67 94.10
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Figure 4. Comparison mask segmentation results for each model. All of these models can detect
garbage instances from images, but there are cases of misclassification and inaccurate mask segmenta-
tion. Firstly, lightweight Mobilenetv2 has the lowest mask segmentation accuracy. When comparing
the prediction results of Yolact and Yolactedge, the mIoU and mPA of the predicted masks decrease
by about 2% and 5%, respectively, after converting the model component to TensorRT, although the
frame rate increases.

Yolactedge achieves a near 2× speedup by converting the modules in Yolact to
TensorRT, as shown in Table 2, with the frame rate increasing from 35.76 to 110.16 for
Res101However, there is a slight 2% decrease in both localization precision and mask
segmentation precision. As shown in Figure 1a, Yolactedge-Res50/Res101 can reach
100 FPS with 30% mPA accuracy, which is suitable for high-speed and high-accuracy
detection tasks.
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4.3. Garbage Point Cloud Extraction

After achieving the fine-tuned weight parameters, we can deploy the garbage instance
segmentation model to extract garbage masks from images or videos in real-time. For each
pair of registered RGB and depth frames, we can start by reconstructing the scene’s point
cloud. Then, by utilizing the masks generated by the model, we can extract the point cloud
corresponding to each garbage instance. Finally, compute OBB for each instance by referring
to DBSCAN [30] and the OBB algorithm. Due to the obvious directional characteristics
of the RealSense’s collected point cloud, only the visible side of the point cloud can be
measured, and many distant and close interfering points are generated at the object’s edge.
To remove interfering points, point cloud filtering, clustering, and segmentation algorithms
can be used. The DBSCAN-based point cloud clustering method is used in this paper,
without the user setting the number of clusters a priori, clusters with complex shapes can
be divided, and points that do not belong to any cluster can be found. Dense data sets of
arbitrary shape can be clustered, and clustering algorithms such as K-Means are generally
only suitable for convex data sets [34].

The DBSCAN algorithm requires two input parameters, ε and µ (representing the
minimum points), which determine the clustering degree of the point cloud. Since there
are no standard point clouds for garbage instances, it is challenging to determine the
similarity between the segmented point clouds and the true value clouds. Therefore, in
this study, we aimed to determine the optimal values for these two parameters. To achieve
this, we followed a two-step process. First, we selected images and point clouds from
three different scenes and segmented the point clouds using the predicted masks from
Yolactedge. Secondly, the point clouds of garbage instances in each of the three scenarios
were then clustered using the parameters ε = (2, 2.5, 3, 3.5, 4, 4.5, 5) and µ = (10, 20, 30, 40,
50). The clusters were sorted in descending order by the number of points and then the
first cluster was taken as the point cloud of the garbage instance with the interfering points
removed. The percentage of interfering points removed was also calculated.

The removal rates of interfering points were compared and visualized in a bar chart,
as shown in Figure 5. After sorting the 35 rates, the parameter pairs of ε and µ correspond-
ing to the middle 4 values were selected as pre-selection parameters. Figure 6 shows a
visualization of the results of point cloud removal for three scenes with various parameter
pairs, where the points in blue are the removed points.

The number of points and point spacing of the captured garbage instance point cloud
vary due to differences in camera position, viewing direction, and scene and garbage in-
stance size when capturing RGB and point cloud. Consequently, a set of ε and µ parameters
may completely remove the garbage instance point cloud in some scenes, as depicted in
column 4 of Figure 6. Conversely, in other scenes, such as column 1 of Figure 6c, the param-
eter combination may hardly remove any interfering points, so that the calculated OBB will
not fit perfectly in all scenes. As shown in column 1 of Figure 6c, causing the calculated
OBB will deviate significantly from the actual size and location of the garbage instances, so
that a set of parameter combinations cannot be perfectly adapted to all scenarios.

In this study, by referring to the interfering point removal rate and visualization results
in these three scenes. It was observed that when ε and µwere set to 3.5 and 30, respectively,
the interfering point removal rate was in the middle. From Figure 6, it can be observed that
at current setting, the interfering point removal rate was less than 10%, and the calculated
OBB precisely encapsulated the garbage instances in terms of size and location. Therefore,
this paper selects ε and µ as 3.5 and 30, respectively, as the final combination of point cloud
clustering parameters.
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Figure 5. The removal rate (number of points removed/total number of points) of the rubbish
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Figure 6. A visual comparison of the interfering point removal rates and results for the corresponding
3 scenes in Figure 5. The last column shows the 3 scene point clouds with the interfering points (blue
points) removed and the calculated OBB for ε and µ of 3.5 and 30, respectively. The numbers at the
bottom of each subplot indicate µ, ε and point removal rate in that order.
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Up to this point, we have trained the Yolactedge model, determined key parame-
ters for point cloud clustering, and performed post-processing and visualization of the
Yolactedge prediction results and point cloud data using OpenCV and Open3D, as shown
in Figure 7. To verify the generalization performance of the Yolactedge model and the
representativeness of the TACO dataset, we fed custom-collected outdoor garbage images
to the Yolactedge model for mask prediction, and the results are shown in the left image
of each subplot of Figure 7. Thanks to the wide range of scenes included in the TACO-28
dataset, the Yolactedge model trained on it can be used directly to predict the categories and
masks of garbage in the custom-collected dataset, thus reducing the need for a lot of tedious
data annotation and enabling the identification of garbage on our own collected dataset.
However, due to the overlapping characteristics of different garbage categories in the
TACO dataset, the prediction accuracy of the Yolactedge model for garbage classification is
affected, leading to specific category errors in the identified garbage shown in the images of
Figure 7. Since the calculation of the evaluation metrics for localization and segmentation
accuracy relies first and foremost on the class correctness, low class accuracy leads to a
failure to improve their accuracy values, and it is known from [8] that the authors also
designed three different class_score methods with the intention of improving localization
accuracy, but the highest AP accuracy obtained by the fine-tuned Mask R-CNN model on
TACO-10 is still only 20%.
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Figure 7. The results of the garbage detection and 3D spatial localization algorithms proposed in this
study are shown. Each subplot in (a–j) depicts the classes and masks of garbage instances predicted
by the Yolactedge-res101 model on custom-collected outdoor rubbish data (left image), as well as the
reconstructed entire scene point cloud, segmented rubbish instance point cloud, and computed OBB
(right image).
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In addition, the accuracy of mask segmentation is the subject of this research. The
segmented instance point cloud with a high quality mask has the fewest interfering points,
which helps to improve the accuracy of the calculated OBB. Since the TACO dataset solely
consists of garbage images without associated point clouds, the only viable option for
obtaining garbage instance point clouds is by utilizing the paired images and point clouds
from the custom-collected dataset. The scene point cloud acquired by the camera is shown
on the right image of each subplot of Figure 7, and also shows the splited point cloud of
garbage instances by using its associated predicted mask. The accuracy of the predicted
garbage’s 3D spatial position relies on two factors: firstly, the accuracy of the point cloud
reconstruction by the RealSense D415 camera (with a Z-directional accuracy of less than
2%), and secondly, the subsequent calculations performed with the assistance of third-party
equipment, such as robot arms for gripping, indirectly affecting the accuracy.

Vision-driven robotic grasp requires obtaining the garbage location and posture from
a noisy, complex background scene image. In this work, deep learning networks like the
Yolactedge model are then used for object recognition and segmentation. As we know,
Robotic grasp is a challenging question that includes perception, planning, and control
theory. Thus, research on the 3D reconstruction and measurement of objects helps with
feature extraction or obtaining valuable information from RGB or point cloud data, which
will then be used to grasp pose prediction. A typical vision-guided industrial robot system
is shown as Figure 8.
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Figure 8. Our vision-guided robotic grasp equipment for garbage picking up application.

The robot grasp system consists of mobile vehicle, UR robot, stereo camera and clamp-
ing tool. As can be seen from Figure 8, a RealSense D415 (product of Intel company) camera
is mounted on the tool of UR5 robot, a two driving-links of gripping jaw is employed to
pick up garbage through object detection and localization algorithm. Hand-eye coordina-
tion calibration technology is performed to establish the mathematic relationship between
camera coordinate and robot base coordinate. The internal and external parameters of the
robot grasp system is calibrated as:

Intrinsic matrix :

616.7279 0 319.8949
0 616.4918 248.8294
0 0 1





Appl. Sci. 2023, 13, 10018 14 of 16

Extrinsic matrix :


−0.6038 −0.3062 0.7358 642.4042
−0.7802 0.4156 −0.4673 928.8404
−0.1627 −0.8564 −0.4899 798.8497

0 0 0 1


Thus, the garbage grasp pose in Figure 7 is converted through intrinsic and extrinsic

matrix from camera coordinate to robot base coordinate, some examples are shown in
Figure 9.
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5. Conclusions

This research proposes an algorithmic architecture for improving the precision of
garbage classification and localization by integrating computer vision and machine learning
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techniques. The proposed approach leverages RGB-D data captured by the RealSenseD415
camera and employs the Yolactedge model to predict the garbage class and mask from
RGB images. By utilizing the predicted mask, the algorithm effectively separates the
garbage instances’ point cloud from the overall scene point cloud. The spatial position
and orientation of the garbage instances are determined by computing the OBB of the
segmented point cloud using the DBSCAN clustering method, which eliminates interfer-
ing points and provides valuable information for robotic grasp applications. To facilitate
the training process, the TACO dataset is pre-processed, and a custom-collected garbage
dataset is generated. While the TACO dataset only consists of garbage image data, the
fine-tuned Yolactedge model proves to be useful for garbage mask segmentation in the
custom dataset, enabling the segmentation of point clouds and the calculation of garbage
instance OBBs. This approach significantly reduces the laborious task of data annota-
tion. The results indicate that the proposed approach can run at a maximum speed of
150 FPS and maximum mPA of 37%. Experimental evaluations on custom-collected datasets
demonstrate the effectiveness of the proposed approach in achieving accurate garbage
detection and spatial localization. The results highlight the potential of the algorithmic
architecture in revolutionizing waste management processes, enabling intelligent garbage
sorting, and facilitating robotic grasp applications.

Future work involves redefining garbage categories based on recycling standards to
optimize detection performance and exploring the integration of 3D spatial localization
with mobile robot garbage pickup or conveyor belt sorting systems. In summary, this
research highlights the application of computer vision, machine learning, and intelligent
image processing in garbage detection and localization, with implications for improving
waste management and recycling processes.
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