Experimental Study on the Fracture Characteristics of Hole-Crack in Rock-like Material under Biaxial Compression
Abstract
:1. Introduction
2. Test Program
Preparation of the Rock-like Material Mortar Model
3. Procedure for Making Samples
3.1. Mechanical Performance Testing of the Rock-like Material Mortar Model
3.2. Specimen Preparation
3.3. Test Loading
4. Strength Characteristics and Crack Evolution of Hole-Crack Specimens under Biaxial Compression
4.1. Characterization of Strength Properties with Lateral Pressure in Through-Type Hole-Cracked Rock-like Specimens
4.2. Strength Characteristics of Hole-Crack Specimens with Hole Depth Changes
4.3. Crack Extension Evolutionary Characteristics of Hole-Crack Specimens under Biaxial Loading
- (1)
- H = 100 mm, σ2 = 2 MPa
- (2)
- H = 100 mm, σ2 = 4 MPa
- (3)
- H = 100 mm, σ2 = 6 MPa
- (4)
- H = 0 mm, σ2 = 4 MPa
- (5)
- H = 20 mm, σ2 = 4 MPa
- (6)
- H = 40 mm, σ2 = 4 MPa
- (7)
- H = 60 mm, σ2 = 4 MPa
- (8)
- H = 80 mm, σ2 = 4 MPa
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wong, T.F. Micromechanics of faulting in Westerly granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1982, 19, 49–64. [Google Scholar] [CrossRef]
- Wong, T.; Wong, R.; Jiao, M.R.; Chau, K.; Tang, C.A. Micromechanics and rock failure process analysis. Key Eng. Mater. 2004, 261–263, 39–44. [Google Scholar] [CrossRef]
- Cook, N.G.W. The failure of rock. Int. J. Rock Mech. Min. Sci. 1965, 21, 389–403. [Google Scholar] [CrossRef]
- Fairhurst, C.; Cook, N. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface. In Proceedings of the 1st Congress of the International Society of Rock Mechanics, Lisbon, Portugal, 25 September–1 October 1966; pp. 687–692. [Google Scholar]
- Hoek, E.; Bieniawski, Z.T. Brittle fracture propagation in rock under compression. Int. J. Fract. 1965, 1, 137–155. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. Underground Excavations in Rock; Elserier Press: London, UK, 1980; pp. 105–106. [Google Scholar]
- Kemeny, J.; Cook, N. Effective moduli, non-linear deformation and strength of a cracked elastic solid. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1986, 23, 107–118. [Google Scholar] [CrossRef]
- Kemeny, J.M.; Cook, N.G. Micromechanics of deformation in rocks. In Toughening Mechanisms in Quasi-Brittle Materials; Springer: Berlin/Heidelberg, Germany, 1991; pp. 155–188. [Google Scholar]
- Salamon, M. Elastic moduli of a stratified rock mass. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1968, 5, 519–527. [Google Scholar] [CrossRef]
- Yang, S. Study of strength failure and crack coalescence behavior of sandstone containing three pre-existing fissures. Rock Soil Mech. 2013, 34, 31–39. [Google Scholar]
- Yang, S.; Dai, Y.; Han, L.; He, Y.; Li, Y. Uniaxial compression experimental research on deformation and failure properties of brittle marble specimen with pre-existing fissures. Chin. J. Rock Mech. Eng. 2009, 28, 2391–2404. [Google Scholar]
- Yang, S.; Huang, Y.; Liu, X. Particle flow analysis on tensile strength and crack coalescence behavior of brittle rock containing two pre-existing fissures. J. China Univ. Min. Technol. 2014, 43, 220–226. [Google Scholar]
- Du, M.; Jing, H.; Su, H. Effects of holes’ geometrical shape on strength and failure characteristics of a sandstone sample containing a single hole. Eng. Mech. 2016, 33, 190–196. [Google Scholar]
- Zhu, T.; Jing, H.; Su, H.; Yin, Q.; Du, M. Experimental investigation on mechanical behavior of sandstone with coupling effects under uniaxial compression. J. China Coal Soc. 2015, 40, 1518–1525. [Google Scholar]
- Zhu, T.; Jing, H.; Su, H.; Yin, Q.; Du, M. Mechanical behavior of sandstone containing double circular cavities under uniaxial compression. Chin. J. Geotech. Eng. 2015, 6, 1047–1056. [Google Scholar]
- Du, M.; Jing, H.; Su, H.; Zhu, T. Experimental study of strength and failure characteristics of sandstone containing prefabricated elliptical hole. J. China Univ. Min. Technol. 2016, 45, 1164–1171. [Google Scholar]
- Xiong, F.; Jing, H.; Zhu, T.; Su, H. Numerical Simulation of Shape Effect on Rock Containing a Single Pre-existing Hole. Coal Technol. 2016, 35, 112–115. [Google Scholar]
- Yang, S.Q.; Huang, Y.H.; Tian, W.L.; Zhu, J.B. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression. Eng. Geol. 2017, 217, 35–48. [Google Scholar] [CrossRef]
- Gratchev, I.; Kim, D.H.; Yeung, C.K. Strength of Rock-Like Specimens with Pre-existing Cracks of Different Length and Width. Rock Mech. Rock Eng. 2016, 49, 4491–4496. [Google Scholar] [CrossRef]
- Fakhimi, A.; Carvalho, F.; Ishida, T.; Labuz, J.F. Simulation of failure around a circular opening in rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 507–515. [Google Scholar] [CrossRef]
- Jaeger, J.C.; Cook, N.G.W. Fundamentals of Rock Mechanics; Science Press: Beijing, China, 1981. [Google Scholar]
- Li, X. Experimental Simulation Technology of Rock Mechanics; Science Press: Beijing, China, 2007. [Google Scholar]
- Kou, Z. Study on the Influence of Prefabricated Cracks on the Mechanical Properties of Red Sandstone. Ph.D. Thesis, Shijiazhuang Tiedao University, Shijiazhuang, China, 2021. [Google Scholar]
Parameter | Density (g/cm3) | Elastic Modulus (GPa) | Compressive Strength (MPa) | Tensile Strength (MPa) | Poisson’s Ratio | Brittleness | |
---|---|---|---|---|---|---|---|
Sample | |||||||
mortar specimen | 2.24 | 5.8 | 56.5 | 9.2 | 0.29 | 5.4 | |
sandstone | 2.51 | 9.2 | 82.7 | 14 | 0.26 | 5.9 |
Lateral Stress (MPa) | Peak Stress (MPa) | Crack Initiation Stress (MPa) | Strain Value at Peak Strength (10−3) |
---|---|---|---|
0 | 21.22 | 13.54 | 10.85 |
2 | 48.55 | 12.14 | 4.06 |
4 | 51.21 | 24.25 | 4.71 |
6 | 61.44 | 29.54 | 3.06 |
Hole Depth (mm) | Peak Stress (MPa) | Crack Initiation Stress (MPa) | Strain Value at Peak Strength (10−3) |
---|---|---|---|
0 | 65.61 | 35.23 | 4.39 |
20 | 62.74 | 34.20 | 3.65 |
40 | 60.87 | 33.35 | 4.05 |
60 | 54.66 | 27.28 | 4.99 |
80 | 52 | 25.36 | 3.86 |
100 | 51.21 | 24.25 | 4.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Han, B.; Liu, X.; Shen, K.; Li, J. Experimental Study on the Fracture Characteristics of Hole-Crack in Rock-like Material under Biaxial Compression. Appl. Sci. 2023, 13, 9963. https://doi.org/10.3390/app13179963
Tian Y, Han B, Liu X, Shen K, Li J. Experimental Study on the Fracture Characteristics of Hole-Crack in Rock-like Material under Biaxial Compression. Applied Sciences. 2023; 13(17):9963. https://doi.org/10.3390/app13179963
Chicago/Turabian StyleTian, Yuan, Bangcheng Han, Xinyu Liu, Kai Shen, and Jiangbo Li. 2023. "Experimental Study on the Fracture Characteristics of Hole-Crack in Rock-like Material under Biaxial Compression" Applied Sciences 13, no. 17: 9963. https://doi.org/10.3390/app13179963
APA StyleTian, Y., Han, B., Liu, X., Shen, K., & Li, J. (2023). Experimental Study on the Fracture Characteristics of Hole-Crack in Rock-like Material under Biaxial Compression. Applied Sciences, 13(17), 9963. https://doi.org/10.3390/app13179963