Evaluation of the Effect of Biostimulation on the Yielding of Golden Delicious Apple Trees
Abstract
:1. Introduction
2. Materials and Methods
- -
- Yara Mila Complex (Hydrocomplex) 12-11-18–300 kg × ha−1 in sprinkled form at the green bud stage;
- -
- Tropicote saltpeter–200 kg × ha−1 in sprinkled form after flowering;
- -
- Agroleaf 52% P–5 kg × ha−1 in the form of a spray in the green bud phase;
- -
- Agroleaf 52% P–5 kg × ha−1 in the form of a spray in the green bud phase;
- -
- Calcinit–calcium nitrate–5 kg × ha−1 in the form of a spray in the green bud phase–7–10 days later–4 treatments at 7–10 day intervals;
- -
- Calcium chloride–6 kg × ha−1 in the form of a spray in the green bud phase–6 treatments at 7–10 day intervals.
- -
- Eurofertil 34 N Pro 8-8-17–300 kg in sprinkled form at the green bud stage;
- -
- Sulfammo 30 N Pro–100 kg/ha in sprinkled form after flowering;
- -
- Fertileader Leos–5 l × ha−1 in the form of sprays at the green bud stage;
- -
- Fertileader Gold–3 l × ha−1 in the form of sprays at the pink bud stage;
- -
- Fertileader Axis–3 l × ha−1 in the form of sprays after flowering;
- -
- Fertileader Vital–3 l × ha−1 in the form of sprays-2 treatments at 10–14 day intervals;
- -
- Fertileader Elite–3 l × ha−1 in the form of sprays-3 treatments from the walnut stage at 14-day intervals.
3. Results and Discussion
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The State of Food Security and Nutrition in the World 2020: Transforming Food System for Affordable Healthy Diets. 2020. Available online: https://www.fao.org/documents/card/en/c/ca9692en (accessed on 2 April 2023).
- Liang, X.; Zhang, R.; Gleason, M.L.; Sun, G. Sustainable Apple Disease Management in China: Challenges and Future Directions for a Transforming Industry. Plant Dis. 2022, 106, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Pakuła, K.; Kuziemska, B.; Pieniak-Lendzion, K.; Trębicka, J. Produkcja jabłek w Polsce–aspekty środowiskowe, ekonomiczne i logistyczne. Zesz. Nauk. SGGW-Ekon. I Organ. Gospod. Żywnościowej 2018, 122, 81–93. [Google Scholar] [CrossRef]
- Kapłan, M.; Baryła, P.; Krawiec, M.; Kiczorowski, P. Effect of N Pro technology and seactiv complex on growth, yield quantity and quality of ‘Szampion’ apple trees. Acta Sci. Pol. Hortorum Cultus. 2013, 12, 45–56. [Google Scholar]
- Bafoev, A.X.; Rajabboev, A.I.; Niyozov, S.A.; Bakhshilloev, N.K.; Mahmudov, R.A. Significance and Classification of Mineral Fertilizers. Tex. J. Sci. 2022, 5, 1–5. Available online: https://zienjournals.com/index.php/tjet/article/view/777 (accessed on 1 April 2023).
- Robertson, G.P.; Vitousek, P.M. Nitrogen in Agriculture: Balancing the Cost of an Essential Resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Stirk, W.A.; Rengasamy, K.R.R.; Kulkarni, M.G.; van Staden, J. Plant Biostimulants from Seaweed. In The Chemical Biology of Plant Biostimulants; Geelen, D., Xu, L., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2020; Volume 2. [Google Scholar]
- Hasanuzzaman, M.; Parvin, K.; Bardhan, K.; Nahar, K.; Anee, T.I.; Masud, A.A.C.; Fotopoulos, V. Biostimulants for the Regulation of Reactive Oxygen Species Metabolism in Plants under Abiotic Stress. Cells 2021, 10, 2537. [Google Scholar] [CrossRef]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The Application of a Plant Biostimulant Based on Seaweed and Yeast Extract Improved Tomato Fruit Development and Quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef]
- EU. Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2019:170:TOC (accessed on 1 April 2023).
- Campobenedetto, C.; Mannino, G.; Beekwilder, J.; Contartese, V.; Karlova, R.; Bertea, C.M. The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci. Rep. 2021, 11, 354. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Rouphael, Y.; Spíchal, L.; Panzarová, K.; Casa, R.; Colla, G. High-Throughput Plant Phenotyping for Developing Novel Biostimulants: From Lab to Field or From Field to Lab? Front Plant Sci. 2018, 9, 1197. [Google Scholar] [CrossRef]
- Admane, N.; Cavallo, G.; Hadjila, C.; Cavalluzzi, M.M.; Rotondo, N.P.; Salerno, A.; Cannillo, J.; Difonzo, G.; Caponio, F.; Ippolito, A.; et al. Biostimulant Formulations and Moringa oleifera Extracts to Improve Yield, Quality, and Storability of Hydroponic Lettuce. Molecules 2023, 28, 373. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant Properties of Seaweed Extracts in Plants: Implications towards Sustainable Crop Production. Plants 2021, 10, 531. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Craigie, J.S. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Ugarte, R.A.; Sharp, G.; Moore, B. Changes in the Brown Seaweed Ascophyllum Nodosum (L.) Le Jol. Plant Morphology and Biomass Produced by Cutter Rake Harvests in Southern New Brunswick, Canada. J. Appl. Phycol. 2006, 18, 351–359. [Google Scholar] [CrossRef]
- Lee, S.; Yoon, J.Y.; Jung, H.I.; Lee, D.J.; Shin, D.Y.; Hyun, K.H.; Kuk, Y.I. Ameliorative effects of squash (Cucurbita moschata Duchesne ex Poiret) leaf extracts on oxidative stress. Plant Growth Regul. 2012, 67, 9–17. [Google Scholar] [CrossRef]
- Jannin, L.; Arkoun, M.; Ourry, A.; Laîné, P.; Goux, D.; Garnica, M.; Fuentes, M.; san Francisco, S.; Baigorri, R.; Cruz, F.; et al. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil 2012, 359, 297–319. [Google Scholar] [CrossRef]
- Shekhar, S.H.S.G.; Lyons, C.; McRoberts, D.; McCall, E.; Carmichael, F.; Andrews, F.; McCormack, R. Brown seaweed species from Strangford Lough: Compositional analyses of seaweed species and biostimulant formulations by rapid instrumental methods. J. Appl. Phycol. 2012, 24, 1141–1157. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2018, 8, e00162. [Google Scholar] [CrossRef]
- Ma, Y.; Freitas, H.; Dias, M.C. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front. Plant Sci. 2022, 13, 1024243. [Google Scholar] [CrossRef]
- Arthur, G.D.; Stirk, W.A.; Van Staden, J. Efect of a seaweed concentrate on the growth and yield of three varieties of Capsicum annuum. S. Afr. J. Bot. 2003, 69, 207–211. [Google Scholar] [CrossRef]
- El-Miniawy, S.M.; Ragab, M.E.; Youssef, S.; Metwally, A. Influence of Foliar Spraying of Seaweed Extract on Growth, Yield and Quality of Strawberry Plants. Res. J. Appl. Sci. 2014, 10, 88–94. Available online: https://www.researchgate.net/publication/263336797_Influence_of_Foliar_Spraying_of_Seaweed_Extract_on_Growth_Yield_and_Quality_of_Strawberry_Plants (accessed on 2 April 2023).
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- Szczepanek, M.; Wszelaczyńska, E.; Poberezny, J.; Ochmian, I. Response of onion (Allium cepa L.) to the method of seaweed biostimulant application. Acta Sci. Pol. Hortorum Cultus 2017, 16, 113–122. Available online: https://czasopisma.up.lublin.pl/index.php/asphc/article/view/2301 (accessed on 3 April 2023).
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of Biostimulants for Organic Apple Production: Effects on Tree Growth, Yield, and Fruit Quality at Harvest and During Storage. Front. Plant Sci. 2018, 9, 1342. [Google Scholar] [CrossRef]
- Hassan, S.M.; Ashour, M.; Sakai, N.; Zhang, L.; Hassanien, H.A.; Gaber, A.; Ammar, G. Impact of Seaweed Liquid Extract Biostimulant on Growth, Yield, and Chemical Composition of Cucumber (Cucumis sativus). Agriculture 2021, 11, 320. [Google Scholar] [CrossRef]
- Shankaraswamy, J.; Neelavathi, R.; Chovatia, R. Effect of Growth Regulators and Seaweed Extract on Vegetative Phenology in Mango (Mangifera indica). Curr. Hortic. 2015, 3, 30–34. Available online: https://www.indianjournals.com/ijor.aspx?target=ijor:chr&volume=3&issue=1&article=005 (accessed on 1 April 2023).
- Aliko, A.A.; Manga, A.; Haruna, H.; Abubakar, A.W. Effect of different concentrations of aqueous Ascophyllum nodosum extract on flowering and fruiting in some vegetables. BAJOPAS 2017, 10, 63. [Google Scholar] [CrossRef]
- Al-Shatri, A.H.N.; Pakyürek, M.; Yaviç, A. Effect of Seaweed Application on the Vegetative Growth of Strawberry cv. Albion Grown under Iraq Ecological Conditions. 2019. Available online: https://aloki.hu/pdf/1801_12111225.pdf (accessed on 6 April 2023).
- Hussain, H.I.; Kasinadhuni, N.; Arioli, T. The effect of seaweed extract on tomato plant growth, productivity and soil. J. Appl. Phycol. 2021, 33, 1305–1314. [Google Scholar] [CrossRef]
- Marjańska-Cichoń, B.; Sapieha-Waszkiewicz, A. The effect of Goëmar BM 86 on the yield of three apple varieties, and selected qualitative characteristics of Apple. J. Plant Prot. Res. 2012, 52, 1193–1199. [Google Scholar] [CrossRef]
- Colavita, G.; Spera, N.; Blackhall, V.; Sepulveda, G. Effect of seaweed extract on pear fruit quality and yield. Acta Hortic. 2011, 909, 601–607. [Google Scholar] [CrossRef]
- Calzarano, F.; Di Marco, S. Further evidence that calcium, magnesium and seaweed mixtures reduce grapevine leaf stripe symptoms and increase grape yields. Phytopathol. Mediterr. 2018, 57, 459–471. [Google Scholar] [CrossRef]
- Ayub, R.; Sousa, A.; Viencz, T.; Botelho, R. Fruit set and yield of apple trees cv. Gala treated with seaweed extract of Ascophyllum nodosum and thidiazuron. Rev. Bras. Frutic. 2019, 41, e-072. [Google Scholar] [CrossRef]
- Basak, A. The effect of seaweed product goëmar BM 86 and pollinus, on the performance of chemical thinning using NAA and BA. Acta Hortic. 2012, 932, 109–115. [Google Scholar] [CrossRef]
- Roshdy, K.A. Effect of spraying silicon and seaweed extract on growth and fruiting of grandnaine banana. Egypt. J. Agric. Res. 2014, 92, 979–991. [Google Scholar] [CrossRef]
- Ravi, I.; Kamaraju, K.; Kumar, S.; Sri, S.; Nori, S. Foliar Application of Seaweed Bio Formulation Enhances Growth and Yield of Banana cv. Grand Naine (AAA). 2018. Available online: https://www.researchgate.net/publication/324719817_Foliar_Application_of_Seaweed_Bio_Formulation_Enhances_Growth_and_Yield_of_Banana_cv_Grand_Naine_AAA (accessed on 8 April 2023).
- Weber, N.; Schmitzer, V.; Jakopic, J.; Stampar, F. First fruit in season: Seaweed extract and silicon advance organic strawberry (Fragaria × ananassa Duch.) fruit formation and field. Sci. Hortic. 2018, 242, 103–109. [Google Scholar] [CrossRef]
- Ghafouri, M.; Razavi, F.; Arghavani, M.; Gheslaghi, A.E. Improvement of Postharvest Traits of Kiwi Fruit (Actinidia deliciosa L. cv. Hayward) by Seaweed (Ascophyllum nodosum) Application. J. Hortic. Sci. 2023, 36, 885–901. [Google Scholar] [CrossRef]
- Khan, A.S.; Munir, M.; Shaheen, T.; Tassawar, T.; Rafiq, M.A.; Ali, S.; Anwar, R.; Rehman, R.N.U.; Hasan, M.U.; Malik, A.U. Supplemental foliar applied mixture of amino acids and seaweed extract improved vegetative growth, yield and quality of citrus fruit. Sci. Hortic. 2022, 296, 110903. [Google Scholar] [CrossRef]
- Rana, V.S.; Sharma, V.; Sharma, S.; Rana, N.; Kumar, V.; Sharma, U.; Almutairi, K.F.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Gudeta, K. Seaweed Extract as a Biostimulant Agent to Enhance the Fruit Growth, Yield, and Quality of Kiwifruit. Horticulturae 2023, 9, 432. [Google Scholar] [CrossRef]
- Ali, Q.; Shehzad, F.; Waseem, M.; Shahid, S.; Hussain, A.I.; Haider, M.Z.; Perveen, R. Plant-based biostimulants and plant stress responses. In Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives; Springer: Singapore, 2020; Volume 1, pp. 625–661. [Google Scholar] [CrossRef]
- Takuhara, Y.; Kobayashi, M.; Suzuki, S. Low-temperature-induced transcription factors in grapevine enhance cold tolerance in transgenic Arabidopsis plants. J. Plant Physiol. 2011, 168, 967–975. [Google Scholar] [CrossRef]
- Thalhammer, A.; Bryant, G.; Sulpice, R.; Hincha, D.K. Disordered cold regulated15 proteins protect chloroplast membranes during freezing through binding and folding, But do not stabilize chloroplast enzymes in vivo. Plant Physiol. 2014, 166, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Lenart, A.; Wrona, D.; Klimek, K.; Kapłan, M.; Krupa, T. Assessment of the impact of innovative fertilization methods compared to traditional fertilization in the cultivation of highbush blueberry. PLoS ONE 2022, 17, e0271383. [Google Scholar] [CrossRef] [PubMed]
- Yvin, J.C.; Dufils, A. Incidences of Fertileader Elite® foliar spray applications on the improvementof Fruits quality and their conservation. Trials realized on Pink Lady® Cripps Pink Cov. J. Hort. Forest. Biotech. 2010, 14, 1–4. [Google Scholar]
Air Temperature, °C | ||||||||
---|---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | X | Average from April to October, °C | |
2008 | 9.4 | 13.5 | 18.2 | 18.8 | 18.9 | 12.7 | 9.8 | 14.5 |
2009 | 11.1 | 13.7 | 16.6 | 20.2 | 18.5 | 15.1 | 7.2 | 14.6 |
2010 | 9.4 | 14.0 | 17.8 | 21.2 | 19.5 | 12.3 | 5.6 | 14.3 |
2011 | 10.8 | 14.3 | 18.5 | 18.1 | 19.0 | 15.5 | 8.0 | 14.9 |
2012 | 9.9 | 15.2 | 17.9 | 21.2 | 19.1 | 14.9 | 8.2 | 15.2 |
2013 | 9.0 | 15.1 | 18.3 | 19.5 | 19.5 | 12.2 | 10.3 | 14.8 |
2014 | 10.8 | 14.5 | 17.2 | 20.9 | 18.3 | 14.8 | 9.2 | 15.1 |
2015 | 8.5 | 13.2 | 17.3 | 20.1 | 22.5 | 15.4 | 7.3 | 14.9 |
2016 | 9.5 | 14.7 | 19.1 | 19.4 | 17.8 | 15.6 | 7.3 | 14.8 |
2017 | 7.6 | 14.1 | 18.7 | 18.7 | 19.6 | 13.3 | 9.0 | 14.4 |
Average temperature of the month, °C | 10.0 | 14.4 | 18.7 | 19.7 | 19.7 | 14.7 | 8.9 | 14.7 |
Mean (1988–2008) | 8.8 | 14.2 | 16.9 | 19.1 | 18.4 | 13.4 | 8.6 | 14.2 |
Total precipitation, mm | ||||||||
IV | V | VI | VII | VIII | IX | X | ∑ precipitation, mm | |
2008 | 59.0 | 74.3 | 29.4 | 99.4 | 31.0 | 83.3 | 36.8 | 413.2 |
2009 | 7.6 | 72.6 | 89.2 | 71.7 | 57.8 | 44.7 | 101.2 | 444.8 |
2010 | 34.1 | 168.4 | 44.8 | 125.7 | 106.1 | 88.9 | 9.2 | 577.2 |
2011 | 49.9 | 30.7 | 55.5 | 382.9 | 17.8 | 5.9 | 23.8 | 566.5 |
2012 | 29.2 | 41.2 | 76.5 | 53.6 | 38.8 | 39.6 | 124.0 | 402.9 |
2013 | 31.8 | 88.6 | 111.2 | 33.4 | 14.9 | 73.6 | 5.4 | 358.9 |
2014 | 42.6 | 112.2 | 54.2 | 97.0 | 96.8 | 32.4 | 36.6 | 471.8 |
2015 | 20.2 | 75.0 | 34.0 | 84.0 | 5.0 | 90.2 | 34.0 | 342.4 |
2016 | 22.4 | 38.0 | 21.0 | 55.2 | 47.4 | 17.2 | 36.6 | 237.8 |
2017 | 80.6 | 49.6 | 31.4 | 26.6 | 44.2 | 77.0 | 72.4 | 381.8 |
Mean precipitation, mm | 34.5 | 59.5 | 50.3 | 90.0 | 42.6 | 47.8 | 47.9 | 419.7 |
Mean (1988–2008) | 45.7 | 57.0 | 68.7 | 82.4 | 58.7 | 57.0 | 37.9 | 361.7 |
Number of Apples on the Tree | Yield | Yield | Marketable Yield | Fruit with Diameter >7.5 cm | Fruit Weight | ||
---|---|---|---|---|---|---|---|
pcs. | kg·tree−1 | t·ha−1 | % | g | |||
Variety (A) | Control | 143.84 ± 13.69 b | 25.53 ± 3.90 b | 85.00 ± 12.97 b | 70.99 ± 26.38 b | 61.92 ± 25.82 b | 183.90 ± 15.99 b |
Biostimu -lation | 146.99 ± 19.75 a | 27.69 ± 3.78 a | 92.19 ± 12.58 a | 83.10 ± 17.97 a | 77.28 ± 21.18 a | 193.90 ± 15.31 a | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
Year (B) | 2008 | 159.8 ± 14.9 ab | 28.2 ± 1.1 abc | 94.1 ± 3.8 abc | 70.5 ± 1.7 c | 66.3 ± 1.1 c | 177.5 ± 9.3 d |
2009 | 155.0 ± 1.9 bc | 27.1 ± 6.5 bcd | 90.4 ± 21.70 bcd | 91.4 ± 3.9 a | 83.4 ± 23.4 ab | 207.5 ± 9.3 ab | |
2010 | 114.8 ± 9.7 f | 20.1 ± 0.8 ef | 67.1 ± 2.7 ef | 63.0 ± 27.3 d | 41.6 ± 16.6 d | 176.0 ± 7.7 d | |
2011 | 160.7 ± 1.5 ab | 28.9 ± 1.6 abc | 96.4 ± 5.3 abc | 80.5 ± 1.6 b | 77.7 ± 5.8 b | 180.5 ± 8.2 cd | |
2012 | 146.4 ± 1.8 cd | 27.8 ± 1.4 abc | 92.6 ± 4.7 abc | 86.5 ± 3.8 a | 80.2 ± 7.6 b | 190.0 ± 12.0 c | |
2013 | 133.5 ± 1.6 e | 24.2 ± 1.8 de | 80.7 ± 6.1 de | 89.5 ± 2.7 a | 72.4 ± 7.7 b | 181.5 ± 11.5 cd | |
2014 | 144.0 ± 3.3 cd | 26.0 ± 0.7 cde | 86.7 ± 2.2 cde | 89.5 ± 3.8 a | 77.7 ± 5.3 b | 181.0 ± 8.8 cd | |
2015 | 169.5 ± 5.2 a | 30.9 ± 2.8 a | 102.9 ± 9.5 a | 88.5 ± 4.9 a | 90.7 ± 3.3 a | 202.0 ± 1.1 b | |
2016 | 140.5 ± 7.5 de | 29.8 ± 1.03 a | 99.2 ± 3.4 ab | 90.5 ± 3.8 a | 89.9 ± 6.9 a | 218.0 ± 2.2 a | |
2017 | 129.9 ± 3.2 e | 22.8 ± 1.3 e | 75.8 ± 4.3 e | 20.4 ± 15.9 e | 16.1 ± 12.7 e | 175.0 ± 5.5 d | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |
A × B | p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Number of Apples on the Tree, pcs. | Yield, kg·tree−1 | Yield, t·ha−1 | Marketable Yield, t·ha−1 | Fruit with Diameter >7.5 cm, % | Fruit Weight, g | |
---|---|---|---|---|---|---|
Temperature | 0.0571 | 0.0236 | 0.0165 | 0.0238 | 0.0224 | −0.0018 |
Precipitation | −0.2087 | −0.2569 | −0.2561 * | −0.1956 | −0.1267 | −0.2082 |
A year of research | −0.1665 | 0.0473 | −0.0428 | −0.1740 | −0.2271 | 0.1872 |
Number of Apples on the Tree, pcs. | Yield, kg·tree−1 | Yield, t·ha−1 | Fruit with Diameter >7.5 cm, % | Marketable Yield, t·ha−1 | Fruit Weight, g | ||
---|---|---|---|---|---|---|---|
Number of apples on the tree, pcs. | 1 | 0.6004 * | 0.6004 * | 0.6081 * | 0.6851 * | 0.3474 | Biostimulation |
Yield, kg·tree−1 | 0.7663 * | 1 | 0.9999 * | 0.4765 * | 0.7634 * | 0.5548 * | |
Yield, t·ha−1 | 0.7663 * | 0.9987* | 1 | 0.4765 * | 0.7634 * | 0.5548 * | |
Fruit with diameter > 7.5 cm, % | 0.0758 | 0.3071 | 0.3071 | 1 | 0.9309 * | 0.4660 * | |
Marketable yield, t·ha−1 | 0.4314 * | 0.7388 * | 0.7388 * | 0.8655 * | 1 | 0.5789 * | |
Fruit weight, g | 0.0946 | 0.5519 * | 0.5519 * | 0.5921 * | 0.7460 * | 1 | |
Control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapłan, M.; Klimek, K.; Buczyński, K.; Stój, A.; Krupa, T.; Borkowska, A. Evaluation of the Effect of Biostimulation on the Yielding of Golden Delicious Apple Trees. Appl. Sci. 2023, 13, 9389. https://doi.org/10.3390/app13169389
Kapłan M, Klimek K, Buczyński K, Stój A, Krupa T, Borkowska A. Evaluation of the Effect of Biostimulation on the Yielding of Golden Delicious Apple Trees. Applied Sciences. 2023; 13(16):9389. https://doi.org/10.3390/app13169389
Chicago/Turabian StyleKapłan, Magdalena, Kamila Klimek, Kamil Buczyński, Anna Stój, Tomasz Krupa, and Anna Borkowska. 2023. "Evaluation of the Effect of Biostimulation on the Yielding of Golden Delicious Apple Trees" Applied Sciences 13, no. 16: 9389. https://doi.org/10.3390/app13169389
APA StyleKapłan, M., Klimek, K., Buczyński, K., Stój, A., Krupa, T., & Borkowska, A. (2023). Evaluation of the Effect of Biostimulation on the Yielding of Golden Delicious Apple Trees. Applied Sciences, 13(16), 9389. https://doi.org/10.3390/app13169389