A Miniaturized and Low-Cost Near-Infrared Spectroscopy Measurement System for Alfalfa Quality Control
Abstract
:1. Introduction
- to confirming the efficiency of the proposed NIRS measurement system;
- to identifying the qualities of the equipment; and
- to looking for aspects to improve and implement in the future.
2. Materials and Methods
2.1. NIRscan Nano Evaluation Module
2.2. NIRS Measurement System
2.3. Forage Samples
2.4. Spectral Acquisition
- = log 1/R to λ for the average spectrum resulting from averaging a number of scans, and R is reflectance.
- = log 1/R to λ for the average spectrum resulting from averaging b number of scans
- = number of spectral data
2.5. Spectral Data Processing
3. Results and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Alfalfa Sample Code | Mineral Content | Crude Protein | Neutral Detergent Fiber |
1 | 11.41 | 13.69 | 48.42 |
2 | 13.71 | 12.12 | 52.30 |
3 | 10.80 | 14.68 | 40.53 |
4 | 10.46 | 15.06 | 39.69 |
5 | 12.04 | 14.05 | 42.10 |
6 | 9.96 | 13.59 | 43.37 |
7 | 10.83 | 7.19 | 61.01 |
8 | 9.55 | 13.18 | 43.82 |
9 | 10.65 | 14.20 | 40.02 |
10 | 11.09 | 15.17 | 38.52 |
11 | 9.92 | 16.53 | 32.17 |
12 | 12.16 | 17.01 | 38.92 |
13 | 9.44 | 13.35 | 46.84 |
14 | 11.26 | 15.98 | 34.66 |
15 | 9.98 | 16.27 | 36.25 |
16 | 9.58 | 13.88 | 43.68 |
17 | 10.61 | 13.78 | 43.17 |
18 | 11.52 | 15.90 | 37.41 |
19 | 10.24 | 14.49 | 42.38 |
20 | 10.54 | 14.22 | 41.76 |
21 | 10.86 | 13.28 | 43.66 |
22 | 11.42 | 16.28 | 37.79 |
23 | 10.78 | 16.83 | 39.99 |
24 | 10.88 | 14.01 | 42.53 |
25 | 10.61 | 14.56 | 40.62 |
26 | 10.27 | 14.35 | 42.58 |
27 | 10.42 | 12.74 | 47.38 |
28 | 11.41 | 15.89 | 37.76 |
29 | 9.41 | 10.53 | 51.14 |
30 | 10.47 | 14.23 | 42.64 |
31 | 10.77 | 16.86 | 35.55 |
32 | 11.32 | 14.17 | 42.64 |
33 | 10.04 | 14.64 | 29.24 |
34 | 11.14 | 13.76 | 43.73 |
35 | 10.49 | 15.50 | 37.09 |
36 | 10.87 | 14.23 | 40.99 |
37 | 10.51 | 14.96 | 40.71 |
38 | 9.39 | 13.69 | 39.99 |
39 | 11.57 | 14.67 | 44.27 |
40 | 11.47 | 13.28 | 36.94 |
41 | 10.08 | 13.95 | 45.79 |
42 | 11.33 | 14.28 | 39.69 |
43 | 11.45 | 16.35 | 35.44 |
44 | 11.48 | 14.91 | 39.50 |
45 | 8.49 | 16.43 | 44.22 |
46 | 9.89 | 16.69 | 40.03 |
47 | 9.22 | 13.60 | 45.70 |
48 | 8.47 | 14.17 | 31.49 |
49 | 10.95 | 16.65 | 31.44 |
50 | 9.40 | 13.87 | 35.89 |
51 | 11.15 | 15.85 | 36.56 |
52 | 11.86 | 16.42 | 33.51 |
53 | 10.56 | 14.50 | 39.19 |
54 | 10.79 | 14.69 | 36.60 |
55 | 10.46 | 14.40 | 36.64 |
56 | 10.35 | 10.82 | 47.84 |
57 | 10.67 | 15.13 | 36.26 |
Average | 10.64 | 14.48 | 40.70 |
Maximum | 13.71 | 17.01 | 61.01 |
Minimum | 8.47 | 7.19 | 29.24 |
Standard Deviation | 0.91 | 1.70 | 5.50 |
References
- Food and Agricultural Organization of the United Nations. Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwiuhcH6iNuAAxW34DgGHanIAWMQFnoECB0QAQ&url=https%3A%2F%2Fwww.fao.org%2Fabout%2Fen%2F&usg=AOvVaw2ikccPM_zDoInRJYBZakYo&opi=89978449 (accessed on 4 August 2023).
- FAO. The Feed Analysis Laboratory: Establishment and Quality Control; FAO: Rome, Italy, 2013; Available online: https://www.fao.org/3/i3535e/i3535e.pdf (accessed on 4 August 2023).
- Prache, S.; Adamiec, C.T.; Astruc, E.; Baéza-Campone, P.E.; Bouillot, A.; Clinquart, C.; Feidt, E.; Fourat, J.; Gautron, A.; Girard, L.; et al. Review: Quality of animal-source foods. Animal 2022, 16, 100376. [Google Scholar] [CrossRef] [PubMed]
- Katoch, R. Forage Quality Indices. In Techniques in Forage Quality Analysis; Springer: Singapore, 2023. [Google Scholar]
- Ozaki, Y.; Huck, C.W.; Tsuchikawa, S.; Engelsen, S.B. (Eds.) Near-Infrared Spectroscopy; Springer: Singapore, 2021. [Google Scholar]
- Huck, C.W.; Beć, K.B.; Grabska, J. Near infrared spectroscopy in natural product research. In Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation; Meyers, R.A., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–29. [Google Scholar]
- Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR spectroscopy to agricultural products. In Handbook of Near Infrared Analysis; Burns, D.A., Ciurczak, E.W., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 347–387. [Google Scholar]
- Cherney, J.H.; Digman, M.F.; Cherney, D.J. Handheld NIRS for forage evaluation. Comput. Electron. Agric. 2021, 190, 106469. [Google Scholar] [CrossRef]
- Crocombe, R.A. Portable spectroscopy. App. Spectr. 2018, 72, 1701–1751. [Google Scholar] [CrossRef] [PubMed]
- Beć, K.B.; Grabska, J.; Huck, C.W. Miniaturized NIR Spectroscopy in Food Analysis and Quality Control: Promises, Challenges, and Perspectives. Foods 2022, 11, 1465. [Google Scholar] [CrossRef] [PubMed]
- Mizik, T. How can precision farming work on a small scale? A systematic literature review. Precis. Agric. 2023, 24, 384–406. [Google Scholar] [CrossRef]
- Melendreras, C.; Soldado, A.; Costa-Fernández, J.M.; López, A.; Valledor, M.; Campo, J.C.; Ferrero, F.J. An affordable NIR spectroscopic system for fraud detection in olive oil. Sensors 2023, 23, 1728. [Google Scholar] [CrossRef] [PubMed]
- Texas Instruments. DLP NIRscan™ Nano EVM User´s Guide. 2017. Available online: https://www.ti.com/lit/pdf/dlpu030 (accessed on 2 January 2023).
- Van-Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.; Wood, R. Using uncertainty functions to predict and specify the performance of analytical methods. Accred. Qual. Assur. 2006, 10, 471–478. [Google Scholar] [CrossRef]
- Xu, J.; Liu, H.; Lin, C.; Sun, Q. SNR analysis and Hadamard mask modification of DMD Hadamard transform near-infrared spectrometer. Opt. Commun. 2017, 383, 250–254. [Google Scholar] [CrossRef]
- Lacefield, G.D. Alfalfa Hay Quality Makes the Difference. In Agriculture and Natural Resources; University of Kentucky UKnowledge, Agriculture and Natural Resources Publications: Lexington, KY, USA, 1988; p. 32. [Google Scholar]
- Rego, G.; Ferrero, F.; Valledor, M.; Campo, J.C.; Forcada, S.; Royo, L.J.; Soldado, A. A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage. Comput. Electron. Agric. 2020, 175, 105578. [Google Scholar] [CrossRef]
- Coelho, M.H.; Hembry, F.G. Laboratory methods of forage evaluation. Near infrared reflectance analysis. Livest. Prod. Day Rep. La. Agric. Exp. Stn. Anim. Sci. Dep. 1982, 3, 195–199. [Google Scholar]
- Andrés, S.; Murray, I.; Calleja, A.; Giráldez, F.J. Nutritive Evaluation of Forages by near Infrared Reflectance Spectroscopy. J. Near Infrared Spectrosc. 2005, 13, 301–311. [Google Scholar] [CrossRef]
- Martínez, M.L.; Garrido-Varo, A.; Pedro, E.D.; Sánchez, L. Effect of sample heterogeneity on near infrared meat analysis: The use of the RMS statistic. J. Near Infrared Spectrosc. 1998, 6, A313–A320. [Google Scholar] [CrossRef]
- Berzaghi, P.; Cherney, J.H.; Casler, M.D. Prediction performance of portable near infrared reflectance instruments using preprocessed dried, ground forage samples. Comput. Electron. Agric. 2021, 182, 106013. [Google Scholar] [CrossRef]
- Gorla, G.; Taiana, A.; Boqué, R.; Bani, P.; Gachiuta, O.; Giussani, B. Unravelling error sources in miniaturized NIR spectroscopic measurements: The case study of forages. Anal. Chim. Acta 2022, 1211, 339900. [Google Scholar] [PubMed]
Manufacturer | Model | Technology | Spectral Resolution (nm) | Spectral Range (nm) | Size (mm) | Prize (USD) |
---|---|---|---|---|---|---|
Texas Instruments | NIRscan Nano EVM | Grating–MEMS DMD | 10 | 900–1700 | 58×62 × 36 | 1000 |
VIAVI Solutions | MicroNIR 1700 | LVF–Linear | 12–20 | 950–1650 | 50 × 45 | 14,500 |
Si-Ware Systems | NeoSpectra | MEMS–FT | 8–16 | 1250–1700 | 178 × 91 × 62 | 6950 |
Consumer Physics | SCiO | X | X | 740–1070 | 67.7 × 40.02 × 18.8 | 3395 |
Ocean Optics | Flame NIR | Grating | ~10.0 | 970–1700 | 89.1 × 63.3 × 34.4 | 9926 |
SouthNest Technology | nanoFTIR NIR | MEMS Michelson | 6 | 1000–2600 | 143 × 49 × 28 | X |
Spectral Engines | NIRONE S1.7 | Fabry–Pérot | 13–17 | 1350–1550 | 25 × 25 × 17.5 | 8940 |
Parameter (%) | Mean | Min. | Max. | SD |
---|---|---|---|---|
NDF | 40.70 | 29.24 | 61.01 | 5.50 |
MC | 10.64 | 8.47 | 13.71 | 0.91 |
CP | 14.48 | 7.19 | 17.01 | 1.70 |
901–1700 nm | 901–1600 nm | |||
---|---|---|---|---|
Sample | Raw | Ground | Raw | Ground |
1 | 60,529 | 27,209 | 43,283 | 14,560 |
2 | 58,378 | 23,853 | 33,386 | 10,886 |
3 | 54,190 | 20,057 | 34,085 | 7029 |
4 | 54,854 | 30,655 | 36,262 | 17,678 |
5 | 48,472 | 33,325 | 34,239 | 21,939 |
Raw alfalfa | ||||
---|---|---|---|---|
Wavelength range: | 901–1600 nm | 901–1700 nm | ||
Mathematical pretreatment | R2 | SEC | R2 | SEC |
1 4 4 SG | 0.898 | 1.554 | 0.883 | 1.670 |
2 4 4 SG | 0.784 | 2.184 | 0.786 | 2.289 |
SNV 1 4 4SG | 0.911 | 1.392 | 0.791 | 2.187 |
1 4 4 SG SNV | 0.840 | 1.910 | 0.145 | 1.398 |
SNV 2 4 4SG | 0.955 | 1.066 | 0.514 | 3.155 |
2 4 4 SG SNV | 0.726 | 2.558 | 0.540 | 3.238 |
Ground alfalfa | ||||
Wavelength range: | 901–1600 nm | 901–1700 nm | ||
Mathematical pretreatment | R2 | SEC | R2 | SEC |
1 4 4 SG | 0.756 | 2.749 | 0.598 | 2.830 |
2 4 4 SG | 0.842 | 2.258 | 0.623 | 3.371 |
SNV 1 4 4SG | 0.761 | 2.694 | 0.043 | 5.383 |
1 4 4 SG SNV | 0.796 | 2.421 | 0.510 | 3.946 |
SNV 2 4 4SG | 0.892 | 1.861 | 0.540 | 3.803 |
2 4 4 SG SNV | 0.730 | 2.860 | 0.524 | 3.321 |
Raw alfalfa | ||||
---|---|---|---|---|
Wavelength range: | 901–1600 nm | 901–1700 nm | ||
Mathematical pretreatment | R2 | SEC | R2 | SEC |
1 4 4 SG | 0.742 | 0.510 | 0.884 | 0.428 |
2 4 4 SG | 0.262 | 0.911 | 0.608 | 1.262 |
SNV 1 4 4SG | 0.307 | 1.314 | 0.156 | 1.524 |
1 4 4 SG SNV | 0.678 | 0.842 | 0.257 | 1.378 |
SNV 2 4 4SG | 0.885 | 0.377 | 0.345 | 0.855 |
2 4 4 SG SNV | 0.328 | 0.812 | 0.318 | 1.368 |
Ground alfalfa | ||||
Wavelength range: | 901–1600 nm | 901–1700 nm | ||
Mathematical pretreatment | R2 | SEC | R2 | SEC |
1 4 4 SG | 0.671 | 0.986 | 0.706 | 0.927 |
2 4 4 SG | 0.906 | 0.530 | 0.290 | 1.014 |
SNV 1 4 4SG | 0.773 | 0.816 | 0.790 | 0.650 |
1 4 4 SG SNV | 0.734 | 0.882 | 0.723 | 0.651 |
SNV 2 4 4SG | 0.862 | 0.660 | 0.216 | 1.145 |
2 4 4 SG SNV | 0.820 | 0.746 | 0.179 | 1.433 |
Raw alfalfa | ||||
---|---|---|---|---|
Wavelength range: | 901–1600 nm | 901–1700 nm | ||
Mathematical pretreatment | R2 | SEC | R2 | SEC |
1 4 4 SG | 0.524 | 0.503 | 0.211 | 0.572 |
2 4 4 SG | 0.619 | 0.492 | 0.129 | 0.861 |
SNV 1 4 4SG | 0.783 | 0.374 | 0.734 | 0.464 |
1 4 4 SG SNV | 0.502 | 0.579 | 0.312 | 0.491 |
SNV 2 4 4SG | 0.675 | 0.409 | 0.679 | 0.434 |
2 4 4 SG SNV | 0.861 | 0.219 | 0.687 | 0.444 |
Ground alfalfa | ||||
Wavelength range: | 901–1600 nm | 901–1700 nm | ||
Mathematical pretreatment | R2 | SEC | R2 | SEC |
1 4 4 SG | 0.650 | 0.530 | 0.652 | 0.506 |
2 4 4 SG | 0.770 | 0.435 | 0.243 | 0.819 |
SNV 1 4 4SG | 0.570 | 0.586 | 0.670 | 0.519 |
1 4 4 SG SNV | 0.867 | 0.318 | 0.347 | 0.723 |
SNV 2 4 4SG | 0.604 | 0.566 | 0.591 | 0.579 |
2 4 4 SG SNV | 0.781 | 0.424 | 0.301 | 0.625 |
Parameter | Sampling | Mathematical Pretreatment | Range (nm) | R2 | SEC |
---|---|---|---|---|---|
NDF | Raw | SNV 2 4 4 SG | 900–1600 | 0.955 | 1.066 |
Ground | SNV 2 4 4 SG | 900–1600 | 0.892 | 1.861 | |
CP | Raw | SNV 2 4 4 SG | 900–1600 | 0.885 | 0.377 |
Ground | 2 4 4 SG | 900–1600 | 0.906 | 0.530 | |
MC | Raw | 2 4 4 SG SNV | 900–1600 | 0.861 | 0.219 |
Ground | 1 4 4 SG SNV | 900–1600 | 0.867 | 0.318 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melendreras, C.; Soldado, A.; Costa-Fernández, J.M.; López, A.; Ferrero, F. A Miniaturized and Low-Cost Near-Infrared Spectroscopy Measurement System for Alfalfa Quality Control. Appl. Sci. 2023, 13, 9290. https://doi.org/10.3390/app13169290
Melendreras C, Soldado A, Costa-Fernández JM, López A, Ferrero F. A Miniaturized and Low-Cost Near-Infrared Spectroscopy Measurement System for Alfalfa Quality Control. Applied Sciences. 2023; 13(16):9290. https://doi.org/10.3390/app13169290
Chicago/Turabian StyleMelendreras, Candela, Ana Soldado, José M. Costa-Fernández, Alberto López, and Francisco Ferrero. 2023. "A Miniaturized and Low-Cost Near-Infrared Spectroscopy Measurement System for Alfalfa Quality Control" Applied Sciences 13, no. 16: 9290. https://doi.org/10.3390/app13169290
APA StyleMelendreras, C., Soldado, A., Costa-Fernández, J. M., López, A., & Ferrero, F. (2023). A Miniaturized and Low-Cost Near-Infrared Spectroscopy Measurement System for Alfalfa Quality Control. Applied Sciences, 13(16), 9290. https://doi.org/10.3390/app13169290