Determination of the Dependences of the Nutritional Value of Corn Silage and Photoluminescent Properties
Abstract
:1. Introduction
2. Materials and Methods
Study of Spectral Characteristics of Feed Mix Components
3. Results
4. Discussion
5. Conclusions
- To measure the nutritional value of corn silage, it is advisable to use excitation via radiation with a wavelength of about 362 nm. At the same time, the luminescent radiation flux must be measured in the range of 440–620 nm.
- Based on the preliminary measurements, a component base was selected for the original photoluminescence device, where the photodiodes and light-emitting diodes were tuned to the indicative photoluminescence range of corn silage.
- Through the development and fabrication of an experimental photoluminescence device, measurements of corn silage were performed to determine its dry matter content, total protein content, ash, ADF, and NDF using the physical method of photoluminescence. Dependencies were identified that allowed for the assertion that photoluminescence can be used to determine the dry matter content/moisture, total protein content, and ADF content in corn silage. These results are supported by statistically significant indicators (R2 < 0.8) that can be approximated.
- In order to conduct further research and improve the results, we plan to modernize the laboratory sample of the device, which will allow for measuring nutritional values with greater reliability in narrow ranges of visible radiation.
6. Patents
- Patent No. RU 2775170 C1, IPC G06T 7/60, G06T 7/90, A01K 5/02. A system for assessing the quality of animal feed/Pavkin D.Y. Nikitin E.A. Kiryushin I.A./Patent holder: Federal Scientific Agroengineering Center VIM. Application: 2021129058, dated 5 October 2021.
- Patent No. RU 2781751 C1, IPC G01N 21/25. Portable spectral meter of feed quality indicators/Pavkin D.Y. Lednev V.N. Nikitin E.A. Pershin S.M. Grishin M.Y. Sdvighenskiy P.A./Patent holder: Federal Scientific Agroengineering Center VIM. Application: 2021129056, dated 5 October 2021.
- Patent No. RU 2021663154, Program for automated recognition of feed mixture components for farm animals/Pavkin D.Y. Kiryushin I.A. Nikitin E.A. Vladimirov F.E. Yurochka S.S./Patent holder: Federal Scientific Agroengineering Center VIM. Application: 2021662352, dated 9 August 2021.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pavkin, D.Y.; Nikitin, E.A.; Shilin, D.V.; Belyakov, M.V.; Golyshkov, I.A.; Mikhailichenko, S.; Chepurina, E. Development Results of a Cross-Platform Positioning System for a Robotics Feed System at a Dairy Cattle Complex. Agriculture 2023, 13, 1422. [Google Scholar] [CrossRef]
- Belyakov, M.V. Photoluminescent Sensor of Scarification Efficiency of Fodder Plants’ Seeds. Sensors 2023, 23, 106. [Google Scholar] [CrossRef]
- Nikitin, E.A.; Pavkin, D.Y.; Izmailov, A.Y.; Aksenov, A.G. Assessing the homogeneity of forage mixtures using an RGB camera as exemplified by cattle rations. Appl. Sci. 2022, 12, 3230. [Google Scholar] [CrossRef]
- Belyakov, M.V.; Pavkin, D.Y.; Nikitin, E.A.; Efremenkov, I.Y. Substantiation of the choice of spectral ranges of photoluminescent control of the composition and nutritional value of feed. Mach. Equip. Rural. Area 2023, 2, 31–36. [Google Scholar] [CrossRef]
- Belyakov, M.V.; Nikitin, E.A.; Efremenkov, I.Y. Efficiency of the Photoluminescent Method for Monitoring the Homogeneity of Feed Mixtures in Animal Husbandry. Agric. Mach. Technol. 2022, 16, 55–61. [Google Scholar] [CrossRef]
- Buelvas, R.M.; Adamchuk, V.I.; Leksono, E.; Tikasz, P.; Lefsrud, M.; Holoszkiewicz, J. Biomass estimation from canopy measurements for leafy vegetables based on ultrasonic and laser sensors. Comput. Electron. Agric. 2019, 164, 104896. [Google Scholar] [CrossRef]
- Giménez-Gallego, J.; González-Teruel, J.D.; Soto-Valles, F.; Jiménez-Buendía, M.; Navarro-Hellín, H.; Torres-Sánchez, R. Intelligent thermal image-based sensor for affordable measurement of crop canopy temperature. Comput. Electron. Agric. 2021, 188, 106319. [Google Scholar] [CrossRef]
- Michelucci, U.; Venturini, F. Multi-Task Learning for Multi-Dimensional Regression: Application to Luminescence Sensing. Appl. Sci. 2019, 9, 4748. [Google Scholar] [CrossRef]
- Qin, Y.; Li, J.; Kuang, J.; Shen, S.; Zhou, X.; Zhao, X.; Huang, B.; Han, B. Okadaic Acid Detection through a Rapid and Sensitive Amplified Luminescent Proximity Homogeneous Assay. Toxins 2023, 15, 501. [Google Scholar] [CrossRef]
- Chaikov, L.L.; Kirichenko, M.N.; Krivokhizha, S.V.; Kupov, M.R.; Lobanov, A.N.; Sverbil, P.P.; Nagaev, E.I.; Shkirin, A.V. Two Convenient Methods for Detection of Non-Dairy Fats in Butter by Dynamic Light Scattering and Luminescence Spectroscopy. Appl. Sci. 2023, 13, 8563. [Google Scholar] [CrossRef]
- Yuan, H.; Li, Y.; Lv, J.; An, Y.; Guan, D.; Liu, J.; Tu, C.; Wang, X.; Zhou, H. Recent Advances in Fluorescent Nanoprobes for Food Safety Detection. Molecules 2023, 28, 5604. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.N.; Behary, N.; Nierstrasz, V. Study of photoluminescence property on cellulosic fabric using multifunctional biomaterials riboflavin and its derivative Flavin mononucleotide. Sci. Rep. 2019, 9, 8696. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, C.; Ren, Y.; Kuang, S.; Zhou, C.; Cai, H.; Yao, Z. Fluorescence spectra of nutrients in chicken and skin under baking conditions. Optik 2020, 218, 164795. [Google Scholar] [CrossRef]
- Katsumata, T.; Aizawa, H.; Komuro, S.; Ito, S.; Matsumoto, T. Evaluation of photoluminescence from milk with various vitamin B2 concentrations. Int. Dairy J. 2020, 109, 104744. [Google Scholar] [CrossRef]
- Kim, S.-B.; Kamiya, G.; Furuta, T.; Kitada, N.; Maki, S.A. Coelenterazine Indicators for the Specific Imaging of Human and Bovine Serum Albumins. Sensors 2023, 23, 6020. [Google Scholar] [CrossRef] [PubMed]
- Moskovsky, M.N.; Shogenov, Y.H.; Lavrov, A.V.; Gulyaev, A.A.; Efremenkov, I.Y.; Pyatchenkov, D.S.; Belyakov, M.V. Spectral Photoluminescent Parameters of Barley Seeds (Hordéum vulgáre) Infected with Fusarium ssp. Photochem. Photobiol. 2023, 99, 29–34. [Google Scholar] [CrossRef]
- Xu, H.Y.; Jiang, G.Y.; Yu, M.; Luo, T. A Color Image Watermarking Based on Tensor Analysis. IEEE Access 2018, 6, 51500–51514. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, L. RGB Pixel Brightness Characteristics of Linked Color Imaging in Early Gastric Cancer: A Pilot Study. Gastroenterol. Res. Pract. 2020, 2020, 2105874. [Google Scholar] [CrossRef]
- Lukac, R.; Plataniotis, K.N. Color filter arrays: Design and performance analysis. IEEE Trans. Consum. Electron. 2005, 51, 1260–1267. [Google Scholar] [CrossRef]
- Burmistrov, D.E.; Ignatenko, D.N.; Lednev, V.N.; Gudkov, S.V.; Pavkin, D.Y.; Khakimov, A.R.; Nikitin, E.A.; Lobachevsky, Y.P.; Zvyagin, A.V. Application of optical quality control technologies in the dairy industry: An overview. Photonics 2021, 8, 551. [Google Scholar] [CrossRef]
- Halachmi, I.; Ben Meir, Y.; Miron, J.; Maltz, E. Feeding behavior improves prediction of dairy cow voluntary feed intake but cannot serve as the sole indicator. Animal 2016, 10, 1501–1506. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Xiao, L.; Weng, G. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Process. 2017, 134, 224–233. [Google Scholar] [CrossRef]
- Jin, R.; Weng, G. Active contours driven by adaptive functions and fuzzy c-means energy for fast image segmentation. Signal Process. 2019, 163, 1–10. [Google Scholar] [CrossRef]
- Sun, H.; Xing, Z.Z.; Zhang, Z.Y.; Ma, X.Y.; Long, Y.W.; Liu, N.; Li, M.Z. Visualization Analysis of Crop Spectral Index Based on RGB-NIR Image Matching. Spectrosc. Spectr. Anal. 2019, 39, 3493–3500. [Google Scholar] [CrossRef]
- Manokhina, A.A.; Dorokhov, A.S.; Kobozeva, T.P.; Fomina, T.N.; Starovoitov, V.I. Jerusalem Artichoke as a Strategic Crop for Solving Food Problems. Agronomy 2022, 12, 465. [Google Scholar] [CrossRef]
- Alshehawy, A.M.; Mansour, D.-E.A.; Ghali, M.; Lehtonen, M.; Darwish, M.M.F. Photoluminescence Spectroscopy Measurements for Effective Condition Assessment of Transformer Insulating Oil. Processes 2021, 9, 732. [Google Scholar] [CrossRef]
- Karadağ, K.; Tenekeci, M.E.; Taşaltın, R.; Bilgili, A. Detection of pepper fusarium disease using machine learning algorithms based on spectral reflectance. Sustain. Comput. Inform. Syst. 2020, 28, 100299. [Google Scholar] [CrossRef]
- Sanjay, M.; Kalpana, B. Early Mass Diagnosis of Fusarium Wilt in Banana Cultivations using an E-Nose Integrated Autonomous Rover System. Int. J. Appl. Sci. Biotechnol. 2017, 5, 261–266. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, D.; Du, S.; Huang, L.; Zhao, H.; Liang, D.; Gu, C.; Yang, X. A Rapidly Diagnosis and Application System of Fusarium Head Blight Based on Smartphone. In Proceedings of the 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Z.; Jin, N.; Gu, C.; Chen, Y.; Huang, Y. Evaluation of Efficacy of Fungicides for Control of Wheat Fusarium Head Blight Based on Digital Imaging. IEEE Access 2020, 8, 109876–109890. [Google Scholar] [CrossRef]
U, mV | 20.27 | 15.88 | 24.93 | 22.61 | 23.83 | 32.38 | 34.21 | 40.08 |
Humidity w, % | 74.22 | 71.59 | 66.02 | 60.01 | 59.08 | 54.07 | 47.27 | 44.98 |
Starch C, % | 27.41 | 27.21 | 28.78 | 34.5 | 33.66 | 33.81 | 34.7 | 35.1 |
Protein Pt, % | 7.35 | 7.61 | 7.23 | 7.04 | 7.24 | 6.78 | 6.80 | 6.67 |
ADF CADF, % | 28.05 | 28.99 | 24.62 | 22.82 | 22.24 | 21.53 | 21.00 | 20.50 |
NDF CNDF, % | 47.06 | 47.50 | 45.32 | 40.52 | 38.96 | 40.01 | 38.66 | 38.02 |
Ash A, % | 5.69 | 5.20 | 4.71 | 3.98 | 3.99 | 3.76 | 3.55 | 3.31 |
Raw fat Ft, % | 3.60 | 3.16 | 3.16 | 3.26 | 3.00 | 3.04 | 2.99 | 2.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavkin, D.Y.; Belyakov, M.V.; Nikitin, E.A.; Efremenkov, I.Y.; Golyshkov, I.A. Determination of the Dependences of the Nutritional Value of Corn Silage and Photoluminescent Properties. Appl. Sci. 2023, 13, 10444. https://doi.org/10.3390/app131810444
Pavkin DY, Belyakov MV, Nikitin EA, Efremenkov IY, Golyshkov IA. Determination of the Dependences of the Nutritional Value of Corn Silage and Photoluminescent Properties. Applied Sciences. 2023; 13(18):10444. https://doi.org/10.3390/app131810444
Chicago/Turabian StylePavkin, Dmitriy Y., Mikhail V. Belyakov, Evgeniy A. Nikitin, Igor Y. Efremenkov, and Ilya A. Golyshkov. 2023. "Determination of the Dependences of the Nutritional Value of Corn Silage and Photoluminescent Properties" Applied Sciences 13, no. 18: 10444. https://doi.org/10.3390/app131810444