Surface Corrosion from Implant–Abutment Couplings with Different Connection Designs Influences Osteoblasts’ Function: A Novel Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Test Specimens
2.2. Assembly of Test Specimens
2.3. Cells and Cell Cultures
2.4. Cell Viability
2.5. Apoptosis
2.6. Gene Expression
2.7. Post-Immersion Observation of Implants and Abutments Interfaces
2.8. Statistical Analysis
3. Results
3.1. Cell Viability
3.2. Apoptosis
3.3. Gene Expression
3.4. Post-Immersion SEM Examination
4. Discussion
5. Conclusions
- Osteoblastic cell viability, apoptosis, and regulation of bone-resorbing mediators were significantly altered in the presence of implant–abutment couplings.
- Titanium implants alone did not influence the apoptosis and secretion of the tested cytokines and chemokines, but adversely influenced cell viability up to one week of exposure.
- The adverse biologic responses were more prominent in the platform-matched implant–abutment couplings. Therefore, platform-switching should be considered when restoring dental implants.
- The observed cytotoxic responses in osteoblastic cells could be due to metal ion release from the immersed samples into the surrounding medium as a result of corrosion, suggesting that corrosion products could play a pivotal role in the mediation of crestal bone loss around dental implants.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Derks, J.; Tomasi, C. Peri-implant health and disease. A systematic review of current epidemiology. J. Clin. Periodontol. 2015, 42, S158–S171. [Google Scholar] [CrossRef] [PubMed]
- Thanissorn, C.; Guo, J.; Jing Ying Chan, D.; Koyi, B.; Kujan, O.; Khzam, N.; Miranda, L.A. Success rates and complications associated with single immediate implants: A systematic review. Dent. J. 2022, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Bragger, U.; Heitz-Mayfield, L. Biological and hardware complications in implant dentistry. In ITI Treatment Guide; Quintessence Publishing Co., Ltd.: Berlin, Germany, 2015; p. 200. [Google Scholar]
- Renvert, S.; Persson, G.R.; Pirih, F.Q.; Camargo, P.M. Peri-implant health, peri-implant mucositis, and peri-implantitis: Case definitions and diagnostic considerations. J. Clin. Periodontol. 2018, 45, S278–S285. [Google Scholar] [CrossRef] [Green Version]
- Albrektsson, T.; Zarb, G.; Worthington, P.; Eriksson, A.R. The long-term efficacy of currently used dental implants: A review and proposed criteria of success. Int. J. Oral Maxillofac. Implants 1986, 1, 11–25. [Google Scholar]
- Hermann, J.S.; Schoolfield, J.D.; Schenk, R.K.; Buser, D.; Cochran, D.L. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J. Periodontol. 2001, 72, 1372–1383. [Google Scholar] [CrossRef] [Green Version]
- Lazzara, R.J.; Porter, S.S. Platform switching: A new concept in implant dentistry for controlling postrestorative crestal bone levels. Int. J. Periodontics Restor. Dent. 2006, 26, 9–17. [Google Scholar]
- Alrabeah, G.O.; Knowles, J.C.; Petridis, H. The effect of platform switching on the levels of metal ion release from different implant–abutment couples. Int. J. Oral Sci. 2016, 8, 117–125. [Google Scholar] [CrossRef]
- Alrabeah, G.O.; Knowles, J.C.; Petridis, H. Reduction of tribocorrosion products when using the platform-switching concept. J. Dent. Res. 2018, 97, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Hallab, N.J.; Jacobs, J.J. Biologic effects of implant debris. Bull. NYU Hosp. Jt. Dis. 2009, 67, 182–188. [Google Scholar]
- Vermes, C.; Glant, T.T.; Hallab, N.J.; Fritz, E.A.; Roebuck, K.A.; Jacobs, J.J. The potential role of the osteoblast in the development of periprosthetic osteolysis: Review of in vitro osteoblast responses to wear debris, corrosion products, and cytokines and growth factors. J. Arthroplast. 2001, 16, 95–100. [Google Scholar] [CrossRef]
- O’neill, S.C.; Queally, J.M.; Devitt, B.M.; Doran, P.P.; O’Byrne, J.M. The role of osteoblasts in peri-prosthetic osteolysis. Bone Jt. J. 2013, 95, 1022–1026. [Google Scholar] [CrossRef]
- Albrektsson, T.; Dahlin, C.; Jemt, T.; Sennerby, L.; Turri, A.; Wennerberg, A. Is marginal bone loss around oral implants the result of a provoked foreign body reaction? Clin. Implant. Dent. Relat. Res. 2014, 16, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Albrektsson, T.; Chrcanovic, B.; Mölne, J.; Wennerberg, A. Foreign body reactions, marginal bone loss and allergies in relation to titanium implants. Eur. J. Oral Implantol. 2018, 11 (Suppl. 1), 537–546. [Google Scholar]
- Mombelli, A.; Hashim, D.; Cionca, N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin. Oral Implants Res. 2018, 29, 37–53. [Google Scholar] [CrossRef] [PubMed]
- Fretwurst, T.; Nelson, K.; Tarnow, D.P.; Wang, H.L.; Giannobile, W.V. Is metal particle release associated with peri-implant bone destruction? An emerging concept. J. Dent. Res. 2018, 97, 259–265. [Google Scholar] [CrossRef]
- Noronha Oliveira, M.; Schunemann, W.V.; Mathew, M.T.; Henriques, B.; Magini, R.S.; Teughels, W.; Souza, J.C. Can degradation products released from dental implants affect peri-implant tissues? J. Periodont. Res. 2018, 53, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.G., Jr. Bone loss around implants—Is it metallosis? J. Periodontol. 2021, 92, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Alhamad, M.; Ampadi Ramachandran, R.; Shukla, A.; Barão, V.A.; Sukotjo, C.; Mathew, M.T. Peri-Implantitis in Relation to Titanium Corrosion: Current Status and Future Perspectives. J. Bio- Tribo-Corros. 2022, 8, 46. [Google Scholar] [CrossRef]
- Alrabeah, G.O.; Brett, P.; Knowles, J.C.; Petridis, H. The effect of metal ions released from different dental implant-abutment couples on osteoblast function and secretion of bone resorbing mediators. J. Dent. 2017, 66, 91–101. [Google Scholar] [CrossRef]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E.; et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S313–S318. [Google Scholar] [CrossRef]
- Gittens, R.A.; Olivares-Navarrete, R.; Tannenbaum, R.; Boyan, B.D.; Schwartz, Z. Electrical implications of corrosion for osseointegration of titanium implants. J. Dent. Res. 2011, 90, 1389–1397. [Google Scholar] [CrossRef] [Green Version]
- Clark, G.C.; Williams, D.F. The effects of proteins on metallic corrosion. J. Biomed. Mater. Res. 1982, 16, 125–134. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5: 2009; Biological Evaluation of Medical Devices-Part 5: Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wataha, J.C. Predicting clinical biological responses to dental materials. Dent. Mater. 2012, 28, 23–40. [Google Scholar] [CrossRef]
- Wennberg, A.; Mjör, I.A.; Hensten-Pettersen, A. Biological evaluation of dental restorative materials—A comparison of different test methods. J. Biomed. Mater. Res. 1983, 17, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Batool, F.; Özçelik, H.; Stutz, C.; Gegout, P.Y.; Benkirane-Jessel, N.; Petit, C.; Huck, O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J. Tissue Eng. 2021, 12, 20417314211041428. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.C.; Anderson, G.I.; Sutow, E.J.; Driscoll, C.F.; Mackey, D.C. The effects of the coupling of titanium implants and dissimilar metal abutments on osteoblast differentiation in vitro. Int. J. Oral Maxillofac. Implant. 1999, 14, 785–797. [Google Scholar]
- Hallab, N.J.; Jacobs, J.J.; Skipor, A.; Black, J.; Mikecz, K.; Galante, J.O. Systemic metal–protein binding associated with total joint replacement arthroplasty. J. Biomed. Mater. Res. 2000, 49, 353–361. [Google Scholar] [CrossRef]
- Hjalmarsson, L.; Smedberg, J.I.; Aronsson, G.; Wennerberg, A. Cellular responses to cobalt-chrome and CP titanium--an in vitro comparison of frameworks for implant-retained oral prostheses. Swed. Dent. J. 2011, 35, 177–186. [Google Scholar]
- Hallab, N.J.; Vermes, C.; Messina, C.; Roebuck, K.A.; Glant, T.T.; Jacobs, J.J. Concentration-and composition-dependent effects of metal ions on human MG-63 osteoblasts. J. Biomed. Mater. Res. 2002, 60, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Lochner, K.; Fritsche, A.; Jonitz, A.; Hansmann, D.; Mueller, P.; Mueller-Hilke, B.; Bader, R. The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles. Int. J. Mol. Med. 2011, 28, 1055–1063. [Google Scholar] [CrossRef]
- Dalal, A.; Pawar, V.; McAllister, K.; Weaver, C.; Hallab, N.J. Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro, in human osteoblasts, fibroblasts, and macrophages. J. Biomed. Mater. Res. Part A 2012, 100, 2147–2158. [Google Scholar] [CrossRef] [PubMed]
- Jilka, R.L.; Weinstein, R.S.; Bellido, T.; Parfitt, A.M.; Manolagas, S.C. Osteoblast programmed cell death (apoptosis): Modulation by growth factors and cytokines. J. Bone Miner. Res. 1998, 13, 793–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pioletti, D.P.; Leoni, L.; Genini, D.; Takei, H.; Du, P.; Corbeil, J. Gene expression analysis of osteoblastic cells contacted by orthopedic implant particles. J. Biomed. Mater. Res. 2002, 61, 408–420. [Google Scholar] [CrossRef]
- Shida, J.; Trindade, M.C.; Goodman, S.B.; Schurman, D.J.; Smith, R.L. Induction of interleukin-6 release in human osteoblast-like cells exposed to titanium particles in vitro. Calcif. Tissue Int. 2000, 67, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Haddouti, E.M.; Welle, K.; Burger, C.; Wirtz, D.C.; Schildberg, F.A.; Kabir, K. The effects of biomaterial implant wear debris on osteoblasts. Front. Cell Dev. Biol. 2020, 8, 352. [Google Scholar] [CrossRef] [PubMed]
- Kubies, D.; Himmlová, L.; Riedel, T.; Chánová, E.; Balík, K.; Douderova, M.; Bártová, J.; Pesakova, V.J. The interaction of osteoblasts with bone-implant materials: 1. The effect of physicochemical surface properties of implant materials. Physiol. Res. 2011, 60, 95. [Google Scholar] [CrossRef]
- Quabius, E.S.; Ossenkop, L.; Harder, S.; Kern, M. Dental implants stimulate expression of Interleukin-8 and its receptor in human blood—An in vitro approach. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1283–1288. [Google Scholar] [CrossRef]
- Fritz, E.A.; Glant, T.T.; Vermes, C.; Jacobs, J.J.; Roebuck, K.A. Chemokine gene activation in human bone marrow-derived osteoblasts following exposure to particulate wear debris. J. Biomed. Mater. Res. Part A 2006, 77, 192–201. [Google Scholar] [CrossRef]
- Queally, J.M.; Devitt, B.M.; Butler, J.S.; Malizia, A.P.; Murray, D.; Doran, P.P.; O’byrne, J.M. Cobalt ions induce chemokine secretion in primary human osteoblasts. J. Orthop. Res. 2009, 27, 855–864. [Google Scholar] [CrossRef]
- Crofford, L.J. COX-1 and COX-2 tissue expression: Implications and predictions. J. Rheumatol. Suppl. 1997, 49, 15–19. [Google Scholar] [PubMed]
- Wataha, J.C.; Craig, R.G.; Hanks, C.T. The release of elements of dental casting alloys into cell-culture medium. J. Dent. Res. 1991, 70, 1014–1018. [Google Scholar] [CrossRef] [PubMed]
- Wataha, J.C.; Malcolm, C.T.; Hanks, C.T. Correlation between cytotoxicity and the elements released by dental casting alloys. Int. J. Prosthodont. 1995, 8, 9–14. [Google Scholar] [PubMed]
- Hermann, J.S.; Cochran, D.L.; Hermann, J.S.; Buser, D.; Schenk, R.K.; Schoolfield, J.D. Biologic Width around one-and two-piece titanium implants: A histometric evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. Clin. Oral Implant. Res. 2001, 12, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Canullo, L.; Quaranta, A.; Teles, R.P. The microbiota associated with implants restored with platform switching: A preliminary report. J. Periodontol. 2010, 81, 403–411. [Google Scholar] [CrossRef]
- Maeda, Y.; Miura, J.; Taki, I.; Sogo, M. Biomechanical analysis on platform switching: Is there any biomechanical rationale? Clin. Oral Implant. Res. 2007, 18, 581–584. [Google Scholar] [CrossRef]
Material | Manufacturer | Composition in % by Mass |
---|---|---|
Titanium cylinders (Medical grade, Grade II, ASTM F67-13) | Fort Wayne Metals, County Mayo, Ireland | Ti > 99.5%, Fe:0.2%, N:0.03%, C:0.1%, O:0.18%, H:0.015% |
Ti alloy abutments (Ti-6Al-4V) | Zimmer Dental Inc., Swindon, UK | Ti:91%, V:4%, Al:6% |
Cobalt–chrome abutments | LaserAbutments, Renishaw, UK | Co:63.1%, Cr:24.7%, Mo:5.4%, Mn < 1%, Si < 1%, Fe < 1% |
Osteoblast basal medium | OBM™, Clonetics™ OGM™ BulletKit™, Lonza, USA | fetal bovine 10%, Gentamicin Sulfate/Amphotercin-B 0.1%, Ascorbic acid 0.1% |
Sample Name | Code | Number of Samples |
---|---|---|
Sample-free culture medium | REF | 3 |
Unconnected implan | UI | 3 |
Implant connected to implant to platform-switched titanium abutment (6 mm) | TM | 3 |
Implant connected to platform-switched wide titanium abutment (5 mm) | TSW | 3 |
Implant connected to platform-switched titanium abutment (4 mm) | TS | 3 |
Implant connected to platform-matched cobalt–chrome abutment (6 mm) | CM | 3 |
Implant connected to platform-switched wide cobalt–chrome abutment (5 mm) | CSW | 3 |
Implant connected to platform-matched cobalt–chrome abutment (4 mm) | CS | 3 |
Total | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrabeah, G.; Knowles, J.C.; Petridis, H. Surface Corrosion from Implant–Abutment Couplings with Different Connection Designs Influences Osteoblasts’ Function: A Novel Technique. Appl. Sci. 2023, 13, 8957. https://doi.org/10.3390/app13158957
Alrabeah G, Knowles JC, Petridis H. Surface Corrosion from Implant–Abutment Couplings with Different Connection Designs Influences Osteoblasts’ Function: A Novel Technique. Applied Sciences. 2023; 13(15):8957. https://doi.org/10.3390/app13158957
Chicago/Turabian StyleAlrabeah, Ghada, Jonathan C. Knowles, and Haralampos Petridis. 2023. "Surface Corrosion from Implant–Abutment Couplings with Different Connection Designs Influences Osteoblasts’ Function: A Novel Technique" Applied Sciences 13, no. 15: 8957. https://doi.org/10.3390/app13158957
APA StyleAlrabeah, G., Knowles, J. C., & Petridis, H. (2023). Surface Corrosion from Implant–Abutment Couplings with Different Connection Designs Influences Osteoblasts’ Function: A Novel Technique. Applied Sciences, 13(15), 8957. https://doi.org/10.3390/app13158957