Influence of Al Doping on the Physical Properties of CuO Thin Films
Abstract
1. Introduction
2. Materials and Methods
2.1. Thin Film Deposition
2.2. Structural, Morphological, Optical and Electrical Analysis
3. Results and Discussion
3.1. Structural Analysis
3.1.1. X-ray Diffraction
3.1.2. Raman Spectroscopy
3.2. Electrical Properties
3.3. Optical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balamurugan, B. Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Film. 2001, 396, 90–96. [Google Scholar] [CrossRef]
- Lange, R. Photoelements and Their Applications; Reinhold Publishing Co.: New York, NY, USA, 1939. [Google Scholar]
- Seung-Deok, S.; Yun-Ho, J.; Seung-Hun, L.; Hyun-Woo, S.; Dong Wan, K. Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes. Nano Scale Res. Lett. 2011, 6, 2. [Google Scholar]
- Jiang, Y.; Decker, S.; Mohs, C.; Klabunde, K.J. Catalytic solid state reactions on the surface of nanoscale metal oxide particles. J. Catal. 1998, 180, 24. [Google Scholar] [CrossRef]
- Chowdhuri, A.; Gupta, V.; Sreenivas, K.; Kumar, R.; Mozumdar, S.; Patanjali, P.K. Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl. Phys. Lett. 2004, 84, 1180–1182. [Google Scholar] [CrossRef]
- Hoa, N.D.; An, S.Y.; Dung, N.D.; Quy, N.V.; Kim, D. Synthesis of p-type Semiconducting Cupric Oxide Thin Films and Their Application to hydrogen detection. Sens. Actuators B Chem. 2010, 146, 239–244. [Google Scholar] [CrossRef]
- Kari, E.R.; Brown, K.S. Electrochemical synthesis and characterization of transparent nanocrystalline Cu2O films and their conversion to CuO films. Chem. Commun. 2006, 31, 3311–3313. [Google Scholar]
- Maruyama, T. Copper oxide thin films prepared from copper dipivaloylmethanate and oxygen by chemical vapor deposition. Jpn. J. Appl. Phys. 2011, 37, 4099–4102. [Google Scholar] [CrossRef]
- Oral, A.Y.; Mensur, E.; Aslan, M.H.; Basaran, E. The preparation of copper (II) oxide thin films and the study of their microstructures and optical properties. Mater. Chem. Phys. 2004, 83, 140. [Google Scholar] [CrossRef]
- Benjamin, J.H.; Nikolai, K.; Ganhua, L.; Khan, L.I.; Junhong, C.; Xin, Z. Transport analyte detection and optoelectronic response of p-type CuO nanowires. J. Phys. Chem. C 2010, 114, 2440–2447. [Google Scholar]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208. [Google Scholar] [CrossRef]
- Chen, A.; Long, H.; Yang, G.; Lu, P. Controlled growth and characteristics of single-phase Cu2O and CuO films by pulsed laser deposition. Vacuum 2009, 83, 927. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, J.; Wang, G.; Zhang, B.; Miao, X.; Fan, J. CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 2008, 454, 268. [Google Scholar] [CrossRef]
- Boudjema, B.; Daira, R.; Kabir, A.; Djebien, R. Physico-Chemical Properties of CuO Thin Films Deposited by Spray Pyrolysis. Mater. Sci. Forum 2017, 895, 33–36. [Google Scholar] [CrossRef]
- Daira, R.; Kabir, A.; Boudjema, B.; Sedreati, C. Structural and optical transmittance analysis of CuO thin film deposited by the spray pyrolysis method. Solid State Sci. 2020, 104, 106254. [Google Scholar] [CrossRef]
- Tan, T.Y. Handbook of Solid State Diffusion; Elsevier Inc.: Amsterdam, The Netherlands, 2017; Volume 1, ISBN 978-0-12-804287-8. [Google Scholar]
- Leng, J.; Wang, Z.; Wang, J.; Wu, H.H.; Yan, G.; Li, X.; Guo, H.; Liu, Y.; Zhang, Q.; Guo, Z. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem. Soc. Rev. 2019, 48, 3015–3072. [Google Scholar] [CrossRef]
- Falcony, C.; Aguilar-Frutis, M.A.; García-Hipólito, M. Spray Pyrolysis Technique; High-K Dielectric Films and Luminescent Materials: A Review. Micromachines 2018, 9, 414. [Google Scholar] [CrossRef]
- Moumen, A.; Hartiti, B.; Thevenin, P.; Siadat, M. Synthesis and characterization of CuO thin films grown by chemical spray pyrolysis. Opt. Quant. Electron. 2017, 49, 70. [Google Scholar] [CrossRef]
- Aroussi, S.; Dahamni, M.A.; Ghamnia, M.; Tonneau, D.; Fauquet, C. Characterization of Some Physical and Photocatalytic Properties of CuO Nanofilms Synthesized by a Gentle Chemical Technique. Condens. Matter 2022, 7, 37. [Google Scholar] [CrossRef]
- Tripathi, A.; Dixit, T.; Agrawal, J.; Singh, V. Bandgap engineering in CuO nanostructures: Dual-band, broadband, and UV-C photodetectors. Appl. Phys. Lett. 2020, 116, 111102. [Google Scholar] [CrossRef]
- Baturay, S.; Tombak, A.; Batibay, D.; Ocak, Y.S. n-Type conductivity of CuO thin films by metal doping. Appl. Surf. Sci. 2019, 477, 91. [Google Scholar] [CrossRef]
- Mashhad-toroghi, A.H.; Shahtahmasebia, N.; Azhira, E.; Madahia, P.; Mashreghi, M. Deposition of Copper Oxide Nanostructured Thin films and Study of the Influence of Fe3+ Doped on the Structural, Optical and Antibacterial Properties of CuO Thin Films. In Proceedings of the 4th International Conference on Nanostructures ICNS4, Kish Island, Iran, 12–14 March 2012; pp. 852–854. [Google Scholar]
- Volanti, D.P.; Keyson, D.; Cavalcante, L.S.; Simões, A.Z.; Joya, M.R.; Longo, E.; Varela, J.A.; Pizani, P.S.; Souza, A.G. Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave. J. Alloys Compd. 2008, 459, 537–542. [Google Scholar] [CrossRef]
- Yu, T.; Sow, C.H.; Gantimahapatruni, A.; Cheong, F.C.; Zhu, Y.; Chin, K.C.; Xu, X.; Lim, C.T.; Shen, Z.; Thong, J.T.L.; et al. Patterning and fusion of CuO nanorods with a focused laser beam. Nanotechnology 2005, 16, 1238. [Google Scholar] [CrossRef]
- Dennis, B. Elements of X-ray Diffraction, 3rd ed.; Prentice-Hall International: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Khodair, T.Z.; Shallal, N. Effect of Aluminum Doping on Structural Properties of CuO Thin Films Prepared by Chemical Spray Pyrolysis (CSP) Technique. Diyala J. Pure Sci. 2017, 13, v198–v208. [Google Scholar] [CrossRef]
- Pankove, J.I. Optical Processing in Semiconductors; Dover: New York, NY, USA, 1971. [Google Scholar]
- Moumen, A.; Hartiti, B.; Comini, E.; El Khalidi, Z.; Arachchige, H.M.M.; Fadili, S.; Thevenin, P. Preparation and characterization of nanostructured CuO thin films using spray pyrolysis technique. Superlattice Microst. 2019, 127, 2–10. [Google Scholar] [CrossRef]
- Ravichandran, A.T.; Dhanabalan, K.; Valanarasu, S.; Vasuhi, A.; Kathalingam, A.J. Role of immersion time on the properties of SILAR deposited CuO thin films. Mater. Sci. Mater. Electron. 2015, 26, 921. [Google Scholar] [CrossRef]
- Jundale, D.M.; Joshi, P.B.; Sen, S.; Patil, V.B. Nanocrystalline CuO thin films: Synthesis, microstructural and optoelectronic properties. J. Mater. Sci. Mater. Electron. 2012, 23, 1492. [Google Scholar] [CrossRef]
- Daira, R.; Boudjema, B. Application of laser technique for the calculating the speckle size and object incidence angle. J. Intense Pulsed Lasers Appl. Adv. Phys. 2015, 5, 1–4. [Google Scholar]
- Daira, R.; Boudjema, B.; Mordjaoui, M.; Mezéri, M. Electrical properties of metallophthalocyanine thin films. J. Optoelectron. Adv. Mater. Rapid Commun. 2011, 5, 167–171. [Google Scholar]
- Konar, S.; Kalita, H.; Puvvada, N.; Tantubay, S.; Mahto, M.K.; Biswas, S.; Pathak, A. Shape-dependent catalytic activity of CuO nanostructures. J. Catal. 2016, 336, 11. [Google Scholar] [CrossRef]
- Dubal, D.P.; Gund, G.S.; Lokhande, C.D.; Holze, R. CuO cauliflowers for supercapacitor application: Novel potentiodynamic deposition. Mater. Res. Bull. 2013, 48, 923–928. [Google Scholar] [CrossRef]
- Li, J.; Su, Q.; Du, G. Facile synthesis of flowerlike CuO by double-hydroxides treatment and their electrochemical properties. Mater. Lett. 2012, 84, 97. [Google Scholar] [CrossRef]
- Patake, V.D.; Joshi, S.S.; Lokhande, C.D.; Joo, O.-S. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor. Mater. Chem. Phys. 2009, 114, 6. [Google Scholar] [CrossRef]
- Wang, X.; Hu, C.; Liu, H.; Du, G.; He, X.; Xi, Y. Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing. Sens. Actuators B Chem. 2010, 144, 220. [Google Scholar] [CrossRef]
- Arfan, M.; Siddiqui, D.N.; Shahid, T.; Iqbal, Z.; Majeed, Y.; Akram, I.; Bagheri, R.; Song, Z.; Zeb, A. Tailoring of nanostructures: Al doped CuO synthesized by composite-hydroxide-mediated approach. Results Phys. 2019, 13, 102187. [Google Scholar] [CrossRef]
- Al-Kattan, A.; Grojo, D.; Drouet, C.; Mouskeftaras, A.; Delaporte, P.; Casanova, A.; Robin, J.D.; Magdinier, F.; Alloncle, P.; Constantinescu, C.; et al. Short-Pulse Lasers: A Versatile Tool in Creating Novel Nano-/Micro-Structures and Compositional Analysis for Healthcare and Wellbeing Challenges. Nanomaterials 2021, 11, 712. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daira, R.; Boudjema, B.; Bououdina, M.; Aida, M.S.; Constantinescu, C.-D. Influence of Al Doping on the Physical Properties of CuO Thin Films. Appl. Sci. 2023, 13, 8193. https://doi.org/10.3390/app13148193
Daira R, Boudjema B, Bououdina M, Aida MS, Constantinescu C-D. Influence of Al Doping on the Physical Properties of CuO Thin Films. Applied Sciences. 2023; 13(14):8193. https://doi.org/10.3390/app13148193
Chicago/Turabian StyleDaira, Radouane, Bouzid Boudjema, Mohamed Bououdina, Mohamed Salah Aida, and Catalin-Daniel Constantinescu. 2023. "Influence of Al Doping on the Physical Properties of CuO Thin Films" Applied Sciences 13, no. 14: 8193. https://doi.org/10.3390/app13148193
APA StyleDaira, R., Boudjema, B., Bououdina, M., Aida, M. S., & Constantinescu, C.-D. (2023). Influence of Al Doping on the Physical Properties of CuO Thin Films. Applied Sciences, 13(14), 8193. https://doi.org/10.3390/app13148193