Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia
Abstract
:Featured Application
Abstract
1. Introduction
- To explore the potential of remote sensing in detecting and classifying forests, with a particular focus on binary classification;
- To define optimal parameters of the SVM algorithm, specifically the C and gamma parameters, for effective forest classification;
- To evaluate the advantages of binary classification in forest detection and discuss its implications for environmental management and conservation;
- To contribute to the existing body of knowledge by introducing an original approach to forest detection using remote sensing technologies.
2. Materials and Methods
2.1. Study Area
2.2. Satellite Imagery ProcessingSentinel-2 Data (Test Data 1)
Band | Label | GSD Resolution (m) | Wavelength (nm) |
---|---|---|---|
B02 | Blue | 10 | 457–522 |
B03 | Green | 10 | 542–577 |
B04 | Red | 10 | 647–682 |
B05 | Red-edge 1 | 20 | 697–712 |
B06 | Red-edge 2 | 20 | 732–747 |
B07 | Red-edge | 20 | 773–793 |
B08 | Near-infrared (NIR) | 10 | 784–899 |
B8A | Near-infrared narrow (NIRn) | 20 | 855–875 |
B10 | Shortwave infrared/Cirrus | 60 | 1360–1390 |
B11 | Shortwave infrared 1 (SWIR1) | 20 | 1565–1655 |
2.3. Vegetation Indices (Test Data 2 and Test Data 3)
- (a)
- (b)
- Distance-based vegetation indices (DBVI) attempt to neutralise the effect of soil brightness in sparse vegetation areas (Table 2), and they are derived from the Perpendicular Vegetation Index (PVI), which includes the perpendicular distance between each pixel and the soil line [37] (Figure 4). Original PVI is enhanced with three different indices: PVI1 [38], PVI2 [39], and PVI3 [40] to improve its performance;
- (c)
Equation No. | Vegetation Index | Equation Adjusted for Sentinel-2 Bands | Group | Author | |
---|---|---|---|---|---|
(1) | AVI- | Ashburn Vegetation Index | DBVI | [41] | |
(2) | DVI- 1 | Difference Vegetation Index | DBVI | [37] | |
(3) | EVI- 2 | Enhanced Vegetation Index | SBVI | [42] | |
(4) | GEMI- 3 | Global Environment Monitoring Index | where and | SBVI | [43] |
(5) | GNDVI- | Green Normalized Difference Vegetation Index | SBVI | [44] | |
(6) | IRECI- | Inverted Red-Edge Chlorophyll Index | SBVI | [45,46] | |
(7) | MCARI- | Modified Chlorophyll Absorption Ratio Index | SBVI | [47] | |
(8) | MTCI- | Meris Terrestrial Chlorophyll Index | SBVI | [48] | |
(9) | NDI45- | Normalised Difference Index | SBVI | [49] | |
(10) | NDII- | Normalised Difference Infrared Index | SBVI | [50] | |
(11) | NDMI- | Normalised Difference Moisture Index | SBVI | [50,51] | |
(12) | NDVI- | Normalised Difference Vegetation Index | SBVI | [52] | |
(13) | PSSRA- | Pigment-Specific Simple Ratio | SBVI | [53] | |
(14) | PVI- 4 | Perpendicular Vegetation Index | DBVI | [38,54,55] | |
(15) | RENDVI- | Red Edge Normalized Difference Vegetation Index | SBVI | [55,56] | |
(16) | RVI- | Ratio Vegetation Index | SBVI | [57] | |
(17) | S2REP- | Sentinel-2 Red-Edge Position Index | SBVI | [46,48] | |
(18) | SAVI- 5 | Soil Adjusted Vegetation Index | SBVI | [58,59] | |
(19) | TCB- | Tasselled Cap— Brightness | OTVI | [60] | |
(20) | TCG- | Tasselled Cap— Green Vegetation Index | OTVI | [60] | |
(21) | TCW- | Tasselled Cap—wetness | OTVI | [60] | |
(22) | TVI- | Transformed Vegetation Index | SBVI | [61] | |
(23) | WVG- | Water Vapour Grid | SBVI | [62] |
2.4. Samples Collection
2.5. Training and Test Data Definition
2.6. Support Vector Machines (SVM) Algorithm
2.6.1. Radial Basis Function (RBF)
2.6.2. Utilising SVM with SVC in Python Programming
2.7. Accuracy Assessment
3. Results
Data Set | Detected Forest Area (km2) | Detected Forest Area (%) |
---|---|---|
Test Data 1 | 700.81 | 57.54 |
Test Data 2 | 705.06 | 57.89 |
Test Data 3 | 706.30 | 57.99 |
Index Reference to Table 2 Equation No. | S. No. | Data Combinations (Test Data 1 + Test Data 2) | Accuracy (%) (Test Data 1 + Test Data 2) |
---|---|---|---|
(7) | 1 | Test Data 1 + MCARI | 98.56 |
(15) | Test Data 1 + RENDVI | 98.56 | |
(9) | 2 | Test Data 1 + NDI45 | 98.40 |
(5) | 3 | Test Data 1 + GNDVI | 98.29 |
(10) | 4 | Test Data 1 + NDII | 98.23 |
(1) | 5 | Test Data 1 + AVI | 98.18 |
(6) | Test Data 1 + IRECI | 98.18 | |
(11) | Test Data 1 + NDMI | 98.18 | |
(12) | Test Data 1 + NDVI | 98.18 | |
(18) | Test Data 1 + SAVI | 98.18 | |
(19) | Test Data 1 + TCB | 98.18 | |
(22) | Test Data 1 + TVI | 98.18 | |
(20) | 6 | Test Data 1 + TCG | 98.12 |
(21) | Test Data 1 + TCW | 98.12 | |
(23) | Test Data 1 + WVG | 98.12 | |
(2) | 7 | Test Data 1 + DVI | 98.07 |
(3) | Test Data 1 + EVI | 98.07 | |
(8) | Test Data 1 + MTCI | 98.07 | |
(13) | Test Data 1 + PSSRA | 98.07 | |
(14) | Test Data 1 + PVI | 98.07 | |
(17) | 8 | Test Data 1 + S2REP | 98.01 |
(4) | 9 | Test Data 1 + GEMI | 97.96 |
(16) | 10 | Test Data 1 + RVI | 97.90 |
Data Combinations | Accuracy (%) |
---|---|
Test Data 1 | 98.18 |
Test Data 1 + mcari | 98.56 |
Test Data 1 + mcari, rendvi | 98.67 |
Test Data 1 + mcari, rendvi, ndi45 | 98.73 |
Test Data 1 + mcari, rendvi, ndi45, gndvi | 98.79 |
Test Data 1 + mcari, rendvi, ndi45, gndvi, ndii | 99.01 |
Data Combinations | Accuracy (%) |
---|---|
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) | 99.01 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + ndmi | 98.79 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + ndvi | 98.84 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + savi | 98.84 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + avi | 98.90 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + ireci | 98.95 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + tcb | 98.95 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + tvi | 98.95 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + ireci + tcb | 98.90 |
Test Data 1 + Test Data 3 (mcari, rendvi, ndi45, gndvi, ndii) + ireci + tcb + tvi | 98.90 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Listing A1: Utilised Python code for SVM classification. |
from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import rasterio import numpy as np # raster training zones reclassified_raster_path = '…training.tif' # Sentinel 2 MS bands and indices channel_paths = [ '…_B2.tif', '…_B3.tif', '…_B4.tif', '…_B8.tif' # '…xxxx.tif' other bands and indices ] # Loading Sentinel 2 MS bands channel_data = [] for channel_path in channel_paths: with rasterio.open(channel_path) as src: channel_data.append(src.read(1)) # Loading the target variable with rasterio.open(reclassified_raster_path) as src: y = src.read(1) # Reshaping the data into a format suitable for SVM X = np.stack(channel_data, axis=-1) X = X.reshape(-1, X.shape[-1]) y = y.ravel() # Ignoring NODATA pixels nodata_mask = y != -9999 X = X[nodata_mask] y = y[nodata_mask] # Splitting the data into training and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, ran-dom_state=42) # Creating an SVM classifier classifier = svm.SVC(kernel='rbf', C=500, gamma=3) # Training the classifier on the training set classifier.fit(X_train, y_train) # Predicting on the test set y_pred = classifier.predict(X_test) # Calculating accuracy accuracy = accuracy_score(y_test, y_pred) # Saving the accuracy into a text file with open('…classified_accuracy.txt', 'w') as f: f.write('Accuracy of the model: ' + str(accuracy)) # Classifying the entire image X_full = np.stack(channel_data, axis=-1) classified_data = classifier.predict(X_full.reshape(-1, X.shape[-1])) # Returning classified_data to its original shape classified_data = classified_data.reshape(X_full.shape[:-1]) # Saving the classified image classified_raster_path = '…classified.tif' with rasterio.open(channel_paths[0]) as src: profile = src.profile profile.update(count=1, dtype=rasterio.uint8, compress='lzw', nodata=0) with rasterio.open(classified_raster_path, 'w', **profile) as dst: dst.write(classified_data.astype(rasterio.uint8), 1) |
References
- Zhu, M.; Zhang, J.; Zhu, L. Variations in Growing Season NDVI and Its Sensitivity to Climate Change Responses to Green Development in Mountainous Areas. Front. Environ. Sci. 2021, 9, 678450. [Google Scholar] [CrossRef]
- Blackman, A. Evaluating Forest Conservation Policies in Developing Countries Using Remote Sensing Data: An Introduction and Practical Guide. For. Policy Econ. 2013, 34, 1–16. [Google Scholar] [CrossRef]
- Potić, I.; Mihajlović, L.M.; Šimunić, V.; Ćurčić, N.B.; Milinčić, M. Deforestation as a Cause of Increased Surface Runoff in the Catchment: Remote Sensing and SWAT Approach—A Case Study of Southern Serbia. Front. Environ. Sci. 2022, 10, 682. [Google Scholar] [CrossRef]
- Potic, I.; Curcic, N.; Radovanovic, M.; Stanojevic, G.; Malinovic-Milicevic, S.; Yamashkin, S.; Yamashkin, A. Estimation of Soil Erosion Dynamics Using Remote Sensing and Swat in Kopaonik National Park, Serbia. J. Geogr. Inst. Jovan Cvijic SASA 2021, 71, 231–247. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free Access to Landsat Imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Lausch, A.; Erasmi, S.; King, D.; Magdon, P.; Heurich, M. Understanding Forest Health with Remote Sensing -Part I—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sens. 2016, 8, 1029. [Google Scholar] [CrossRef] [Green Version]
- Montzka, C.; Bayat, B.; Tewes, A.; Mengen, D.; Vereecken, H. Sentinel-2 Analysis of Spruce Crown Transparency Levels and Their Environmental Drivers After Summer Drought in the Northern Eifel (Germany). Front. For. Glob. Chang. 2021, 4, 667151. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Algorithm for snow monitoring using remote sensing data. ANADOLU Univ. J. Sci. Technol. A-Appl. Sci. Eng. 2017, 18, 238. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef] [PubMed]
- Housman, I.W.; Chastain, R.A.; Finco, M.V. An Evaluation of Forest Health Insect and Disease Survey Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies in the United States. Remote Sens. 2018, 10, 1184. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Hu, X.; Chen, W.; Hong, Y.; Yang, M. Airborne LiDAR Remote Sensing for Individual Tree Forest Inventory Using Trunk Detection-Aided Mean Shift Clustering Techniques. Remote Sens. 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine Learning: A Review of Classification and Combining Techniques. Artif. Intell. Rev. 2006, 26, 159–190. [Google Scholar] [CrossRef]
- Smith, S. Metrics for Decision Making. Pract. Tour. Res. 2017, 2017, 154–184. [Google Scholar] [CrossRef]
- Joshi, A.V. Essential Concepts in Artificial Intelligence and Machine Learning. In Machine Learning and Artificial Intelligence; Springer: Cham, Switzerland, 2023; pp. 7–20. [Google Scholar] [CrossRef]
- Samuel, A.L. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R. Machine Learning. In Efficient Learning Machines; Awad, M., Khanna, R., Eds.; Apress: Berkeley, CA, USA, 2015; pp. 1–18. [Google Scholar]
- Drobnjak, S.; Stojanović, M.; Djordjević, D.; Bakrač, S.; Jovanović, J.; Djordjević, A. Testing a New Ensemble Vegetation Classification Method Based on Deep Learning and Machine Learning Methods Using Aerial Photogrammetric Images. Front. Environ. Sci. 2022, 10, 702. [Google Scholar] [CrossRef]
- Fletcher, R.S. Using Vegetation Indices as Input into Random Forest for Soybean and Weed Classification. Am. J. Plant Sci. 2016, 7, 2186–2198. [Google Scholar] [CrossRef] [Green Version]
- Turhal, U.C. Vegetation Detection Using Vegetation Indices Algorithm Supported by Statistical Machine Learning. Environ. Monit. Assess. 2022, 194, 826. [Google Scholar] [CrossRef]
- Li, X.; Yuan, W.; Dong, W. A Machine Learning Method for Predicting Vegetation Indices in China. Remote Sens. 2021, 13, 1147. [Google Scholar] [CrossRef]
- Sener, M.; Arslanoglu, M.C. Selection of the Most Suitable Sentinel-2 Bands and Vegetation Index for Crop Classification By Using Artificial Neural Network (Ann) and Google Earth Engine (Gee). Fresenius Environ. Bull. 2019, 28, 9348–9358. [Google Scholar]
- Marković, J.; Pavlović, M. Geografske Regije Jugoslavije: (Srbija i Crna Gora); Savremena Administracija: Belgrade, Serbia, 1995. [Google Scholar]
- OpenStreetMap Contributors Planet OSM. 2017. Available online: https//planet.osm.org (accessed on 12 May 2023).
- European Environment Agency European Digital Elevation Model (EU-DEM)—Version 1.1; Copernicus Program. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1?tab=metadata (accessed on 30 December 2022).
- ESA Copernicus Open Access Hub Paris France, Hub. Available online: https://scihub.copernicus.eu/ (accessed on 1 May 2023).
- ESA User Guides—Sentinel-2 MSI—Sentinel Online—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/resolutions/spectral (accessed on 14 November 2022).
- Dui, Z.; Huang, Y.; Jin, J.; Gu, Q. Automatic Detection of Photovoltaic Facilities from Sentinel-2 Observations by the Enhanced U-Net Method. J. Appl. Remote Sens. 2023, 17, 014516. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Wang, L.; He, J.; Luo, H. An Automated Snow Mapper Powered by Machine Learning. Remote Sens. 2021, 13, 4826. [Google Scholar] [CrossRef]
- Stankevich, S.; Piestova, I.; Zaitseva, E.; Rusnak, P.; Rabcan, J. Satellite Imagery Spectral Bands Subpixel Equalization Based on Ground Classes’ Topology. In Proceedings of the International Conference on Information and Digital Technologies 2019, Zilina, Slovakia, 25–27 June 2019. [Google Scholar]
- Brodu, N. Super-Resolving Multiresolution Images with Band-Independent Geometry of Multispectral Pixels. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4610–4617. [Google Scholar] [CrossRef] [Green Version]
- McGarragh, G.; Poulsen, C.; Povey, A.; Thomas, G.; Christensen, M.; Sus, O.; Schlundt, C.; Stapelberg, S.; Stengel, M.; Grainger, D.; et al. SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox. ESASP 2015, 734, 21. [Google Scholar]
- QGIS.org QGIS Geographic Information System. QGIS Association. Open Source Geospatial Foundation Project. 2022. Available online: https://www.qgis.org/en/site/index.html (accessed on 1 April 2023).
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation Indices: Advances Made in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote Sensing of Weather Impacts on Vegetation in Non-Homogeneous Areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Liu, W.T.; Kogan, F.N. Monitoring Regional Drought Using the Vegetation Condition Index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Jackson, R.D.; Huete, A.R. Interpreting Vegetation Indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Richardson, J.F.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information (by Gray Mapping of Landsat MSS Data). Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Perry, C.R.; Lautenschlager, L.F. Functional Equivalence of Spectral Vegetation Indices. Remote Sens. Environ. 1984, 14, 169–182. [Google Scholar] [CrossRef]
- Bannari, A.; Huete, A.R.; Morin, D.; Zagolski, F. Effets de La Couleur et de La Brillance Du Sol Sur Les Indices de Végétation. Int. J. Remote Sens. 1996, 17, 1885–1906. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A Modified Soil Adjusted Vegetation Index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Ashburn, P.M. The Vegetative Index Number and Crop Identification. In The LACIE Symposium Proceedings of the Technical Session; NASA Johnson Space Center: Houston, TX, USA, 1979; Volume 1, pp. 843–850. [Google Scholar]
- Huete, A.R.; Didan, K.; van Leeuwen, W.J.D.; Jacobson, A.; Solanos, R.; Laing, T.D. Modis vegetation index (mod 13) algorithm theoretical basis document Version 3.1, Principal Investigators; The University of Arizona: Tucson, AZ USA, 1999. [Google Scholar]
- Pinty, B.; Verstraete, M.M. GEMI: A Non-Linear Index to Monitor Global Vegetation from Satellites. Vegetatio 1992, 101, 15–20. [Google Scholar] [CrossRef]
- Gitelson, A.; Kaufman, J.; Merzlyak, N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; De Jong, S.M.; Epema, G.F.; van der Meer, F.; Bakker, W.H.; Skidmore, A.K.; Addink, E.A. Meris and the Red-Edge Index. In Proceedings of the 2nd EARSeL Workshop on Imaging Spectroscopy, Enschede, The Netherlands, 11–13 July 2000. [Google Scholar]
- Guyot, G.; Baret, F. Utilisation de La Haute Resolution Spectrale Pour Suivre l’etat Des Couverts Vegetaux. In Proceedings of the 4th International Colloquium on “Spectral Signatures of Objects in Remote Sensing”, Aussois, France, 18–22 January 1988; ESA SP-287. pp. 279–286. [Google Scholar]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS Terrestrial Chlorophyll Index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of Sentinel-2 Red-Edge Bands for Empirical Estimation of Green LAI and Chlorophyll Content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hardisky, M.A.; Klemas, V.; Smart, R.M. The Influence of Soil Salinity, Growth Form, and Leaf Moisture on the Spectral Radiance of Spartina Alterniflora Canopies. Photogramm. Eng. Remote Sens. 1983, 49, 77–83. [Google Scholar]
- Cibula, W.G.; Zetka, E.F.; Rickman, D.L. Response of Thematic Mapper Bands to Plant Water Stress. Int. J. Remote Sens. 1992, 13, 1869–1880. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Final Report, RSC 1978-4; Texas A&M University: College Station, TX, USA, 1974. [Google Scholar]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Remote Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI Assessment of Wheat and Potato Crops by VENµS and Sentinel-2 Bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Henrich, V.; Krauss, G.; Götze, C.; Sandow, C. Entwicklung Einer Datenbank für Fernerkundungsindizes; AK Fernerkundung: Bochum, Germany, 4–5 October 2012. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Quantitative Estimation of Chlorophyll-a Using Reflectance Spectra: Experiments with Autumn Chestnut and Maple Leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer. Agron. J. 1968, 60, 640–643. [Google Scholar] [CrossRef]
- Ahamed, T.; Tian, L.; Zhang, Y.; Ting, K.C. A Review of Remote Sensing Methods for Biomass Feedstock Production. Biomass Bioenergy 2011, 35, 2455–2469. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Kauth, R.J. Tasselled cap—A graphic description of the spectral-temporal development of agricultural crops as seen by landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, IN, USA, 29 June–1 July 1976. [Google Scholar]
- Deering, D.W.; Rouse, J.W.; Haas, R.H.; Schell, J.A. Measuring “forage production” of grazing units from landsat mss data. In Proceedings of the 10th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 6–10 October 1975; Volume 2, pp. 1169–1178. [Google Scholar]
- Gao, B.-C.; Yoram, J.K. The MODIS Near-IR Water Vapor Algorithm: Product ID: MOD05—Total Precipitable Water; Algorithm Technical Background Document; NASA: Washington, DC, USA, 1992. [Google Scholar]
- Abdlaty, R.; Mokhtar, M. Toward Practical Analysis of Wastewater Contaminants Employing Dual Spectroscopic Techniques. Water Conserv. Sci. Eng. 2022, 7, 515–523. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Y.; Gao, Y.; Niu, X.; Li, J.; Tang, M.; Fu, C.; Qi, R.; Song, B.; Chen, H.; et al. Machine-Learning Based Prediction of Prognostic Risk Factors in Patients with Invasive Candidiasis Infection and Bacterial Bloodstream Infection: A Singled Centered Retrospective Study. BMC Infect. Dis. 2022, 22, 150. [Google Scholar] [CrossRef]
- Shanbehzadeh, M.; Afrash, M.R.; Mirani, N.; Kazemi-Arpanahi, H. Comparing Machine Learning Algorithms to Predict 5-Year Survival in Patients with Chronic Myeloid Leukemia. BMC Med. Inform. Decis. Mak. 2022, 22, 236. [Google Scholar] [CrossRef]
- Ramezan, C.A.; Warner, T.A.; Maxwell, A.E.; Price, B.S. Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data. Remote Sens. 2021, 13, 368. [Google Scholar] [CrossRef]
- Rustam, F.; Reshi, A.A.; Mehmood, A.; Ullah, S.; On, B.W.; Aslam, W.; Choi, G.S. COVID-19 Future Forecasting Using Supervised Machine Learning Models. IEEE Access 2020, 8, 101489–101499. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Asteris, P.G.; Askarian, B.; Hasanipanah, M.; Tarinejad, R.; Huynh, V. Van Examining Hybrid and Single SVM Models with Different Kernels to Predict Rock Brittleness. Sustainability 2020, 12, 2229. [Google Scholar] [CrossRef] [Green Version]
- Sanz, H.; Valim, C.; Vegas, E.; Oller, J.M.; Reverter, F. SVM-RFE: Selection and Visualisation of the Most Relevant Features through Non-Linear Kernels. BMC Bioinform. 2018, 19, 432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hsu, C.-W.; Chang, C.-C.; Lin, C.-J. A Practical Guide to Support Vector Classification. BJU Int. 2008, 101, 1–16. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006; ISBN 9780387310732. [Google Scholar]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Snoek, J.; Larochelle, H.; Adams, R.P. Practical Bayesian Optimization of Machine Learning Algorithms. In Advances in Neural Information Processing Systems; Curran Associates: Red Hook, NY, USA, 2011; pp. 2951–2959. [Google Scholar]
- WANG, D. Utilising Particle Swarm Optimisation to Optimise Hyper-Parameters of SVM Classifier. J. Comput. Appl. 2008, 28, 134–135. [Google Scholar] [CrossRef]
- Wang, T.; Ye, X.; Wang, L.; Li, H. Grid Search Optimised SVM Method for Dish-like Underwater Robot Attitude Prediction. In Proceedings of the 2012 5th International Joint Conference on Computational Sciences and Optimization, Harbin, China, 23–26 June 2012. [Google Scholar]
- Eskandari, A.; Milimonfared, J.; Aghaei, M. Optimization of SVM Classifier Using Grid Search Method for Line-Line Fault Detection of Photovoltaic Systems. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Calgary, AB, Canada, 15 June–21 August 2020; Volume 2020. [Google Scholar] [CrossRef]
- Bartz-Beielstein, T.; Zaefferer, M. Hyperparameter Tuning Approaches. In Hyperparameter Tuning for Machine and Deep Learning with R.; Springer: Singapore, 2023; pp. 71–119. [Google Scholar]
- Zhang, Q.; Fang, L.; Ma, L.; Zhao, Y. Research on Parameters Optimization of SVM Based on Improved Fruit Fly Optimisation Algorithm. Int. J. Comput. Theory Eng. 2016, 8, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Van Rossum, G.; Drake, F.L.; Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; et al. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009; Volume 585. [Google Scholar]
- Hao, J.; Ho, T.K. Machine Learning Made Easy: A Review of Scikit-Learn Package in Python Programming Language. J. Educ. Behav. Stat. 2019, 44, 348–361. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Gdal GDAL—Geospatial Data Abstraction Library. 2012. Available online: https://gdal.org/ (accessed on 15 May 2023).
- Gillies, S. Rasterio Documentation. Available online: https://rasterio.readthedocs.io/en/stable/#n (accessed on 15 May 2023).
- Pyodbc. Available online: https://pypi.org/project/pyodbc/ (accessed on 8 June 2023).
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array Programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef]
- Esri Inc. ArcGIS Pro, Version 3.0.3; Esri Inc.: Redlands, CA, USA, 2023. [Google Scholar]
- Microsoft Download Microsoft® SQL Server® 2017 Express from Official Microsoft Download Center. Available online: https://www.microsoft.com/en-us/download/details.aspx?id=55994 (accessed on 17 November 2022).
- Stehman, S.V.; Fonte, C.C.; Foody, G.M.; See, L. Using Volunteered Geographic Information (VGI) in Design-Based Statistical Inference for Area Estimation and Accuracy Assessment of Land Cover. Remote Sens. Environ. 2018, 212, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Stehman, S.V.; Foody, G.M. Key Issues in Rigorous Accuracy Assessment of Land Cover Products. Remote Sens. Environ. 2019, 231, 111199. [Google Scholar] [CrossRef]
- Fleuren, L.M.; Klausch, T.L.T.; Zwager, C.L.; Schoonmade, L.J.; Guo, T.; Roggeveen, L.F.; Swart, E.L.; Girbes, A.R.J.; Thoral, P.; Ercole, A.; et al. Machine Learning for the Prediction of Sepsis: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. Intensive Care Med. 2020, 46, 383–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and PH Using Vis-NIR Spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.C.; Dewi, C.; Huang, S.W.; Caraka, R.E. Selecting Critical Features for Data Classification Based on Machine Learning Methods. J. Big Data 2020, 7, 52. [Google Scholar] [CrossRef]
- Coleman, C.; Kang, D.; Narayanan, D.; Nardi, L.; Zhao, T.; Zhang, J.; Bailis, P.; Olukotun, K.; Ré, C.; Zaharia, M. Analysis of Dawnbench, a Time-to-Accuracy Machine Learning Performance Benchmark. Oper. Syst. Rev. 2019, 53, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Madooei, A.; Abdlaty, R.M.; Doerwald-Munoz, L.; Hayward, J.; Drew, M.S.; Fang, Q.; Zerubia, J. Hyperspectral Image Processing for Detection and Grading of Skin Erythema. In Proceedings of the Medical Imaging 2017: Image Processing, Orlando, FL, USA, 11–16 February 2017; Volume 10133. [Google Scholar]
- Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep Learning-Based Change Detection in Remote Sensing Images: A Review. Remote Sens. 2022, 14, 871. [Google Scholar] [CrossRef]
- Ming, Q.; Miao, L.; Zhou, Z.; Dong, Y. CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5605814. [Google Scholar] [CrossRef]
- Li, W.; Dong, R.; Fu, H.; Yu, L. Large-Scale Oil Palm Tree Detection from High-Resolution Satellite Images Using Two-Stage Convolutional Neural Networks. Remote Sens. 2019, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Baldeck, C.A.; Asner, G.P.; Martin, R.E.; Anderson, C.B.; Knapp, D.E.; Kellner, J.R.; Wright, S.J. Operational Tree Species Mapping in a Diverse Tropical Forest with Airborne Imaging Spectroscopy. PLoS ONE 2015, 10, e0118403. [Google Scholar] [CrossRef]
- Nasiri, V.; Sadeghi, S.M.M.; Moradi, F.; Afshari, S.; Deljouei, A.; Griess, V.C.; Maftei, C.; Borz, S.A. The Influence of Data Density and Integration on Forest Canopy Cover Mapping Using Sentinel-1 and Sentinel-2 Time Series in Mediterranean Oak Forests. ISPRS Int. J. Geo-Inf. 2022, 11, 423. [Google Scholar] [CrossRef]
- Nasiri, V.; Deljouei, A.; Moradi, F.; Sadeghi, S.M.M.; Borz, S.A. Land Use and Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Comparison of Two Composition Methods. Remote Sens. 2022, 14, 1977. [Google Scholar] [CrossRef]
Iteration | C | Gamma | Accuracy |
---|---|---|---|
1 | 0.1 | 0.1 | 0.6 |
2 | 10.1 | 0.2 | 0.62 |
3 | 20.1 | 0.3 | 0.64 |
… | … | … | … |
50 | 490.1 | 2.9 | 0.93 |
51 | 500.1 | 3 | 0.95 |
… | … | … | … |
100 | 990.1 | 9.9 | 0.9 |
101 | 1000.1 | 10 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potić, I.; Srdić, Z.; Vakanjac, B.; Bakrač, S.; Đorđević, D.; Banković, R.; Jovanović, J.M. Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia. Appl. Sci. 2023, 13, 8289. https://doi.org/10.3390/app13148289
Potić I, Srdić Z, Vakanjac B, Bakrač S, Đorđević D, Banković R, Jovanović JM. Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia. Applied Sciences. 2023; 13(14):8289. https://doi.org/10.3390/app13148289
Chicago/Turabian StylePotić, Ivan, Zoran Srdić, Boris Vakanjac, Saša Bakrač, Dejan Đorđević, Radoje Banković, and Jasmina M. Jovanović. 2023. "Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia" Applied Sciences 13, no. 14: 8289. https://doi.org/10.3390/app13148289
APA StylePotić, I., Srdić, Z., Vakanjac, B., Bakrač, S., Đorđević, D., Banković, R., & Jovanović, J. M. (2023). Improving Forest Detection Using Machine Learning and Remote Sensing: A Case Study in Southeastern Serbia. Applied Sciences, 13(14), 8289. https://doi.org/10.3390/app13148289