Rise in Mid-Tropospheric Temperature Trend (MSU/AMSU 1978–2022) over the Tibet and Eastern Himalayas
Abstract
:1. Introduction
1.1. Atmospheric Temperature Trend (MSU/AMSU)
1.2. Climate Change Indicators: Glaciers
1.3. Importance of MSU/AMSU Datasets
2. Data Sources
RSS: MSU Temperature Data
3. Results
3.1. TMT Trend
- The TMT trend in higher altitude snow and glacial-covered regions (average is 0.306 ± 0.028 °K/decade) is nearly double compared to the western and eastern IG plains (average is 0.176 ± 0.023 °K/decade) (Table 3).
- A previous study on the Tibetan region, western Himalayas, and eastern Himalayas from 1979–2008 revealed a warming trend of 0.008 ± 0.006 °K/year, 0.016 ± 0.005 °K/year, and ~0.016 °K/year, respectively. Thus, over the past 14 years, the percent change in the warming trends has been approximately 310%, 170%, and 80% in the Tibetan region, eastern Himalayas, and western Himalayas, respectively (Table 4).
- The IG west and IG east reportedly had a TMT warming trend of 0.018 ± 0.005 °K/year and 0.013 ± 0.004 °K/year, respectively, until 2008. The percent change calculation shows not much difference in IG west (0.018 ± 0.002 °K/year), but around a 40% increase in the warming trend of IG east over the past decade (last 14 years), with a TMT trend value now similar to IG west (0.018 ± 0.002 °K/year) (Table 4).
- The mean annual warming trend (1978–2022) over the dust source regions (ranging from 0.020 ± 0.002 °K/year to 0.025 °K/year) shows approximately 130% change in warming trends over the past decade compared to MSU temperature trend studies for the same dust source regions up to 2008 (ranging from 0.015 ± 0.006 °K/year to 0.022 ± 0.003 °K/year).
Area Code | Area Name | Anom. (avg.) in °K | Anom. (st dev.) in °K | Trend (°K/year) | Trend SE (°K/year) | Trend (°K/decade) | Trend SE (°K/decade) | Total Change °K (1978–2022; 45 years) | Trend Is Significant |
---|---|---|---|---|---|---|---|---|---|
A | Tibet | 0.296 | 0.200 | 0.033 | 0.003 | 0.330 | 0.029 | 1.49 | Yes |
B | Himalaya W. | 0.145 | 0.205 | 0.029 | 0.003 | 0.288 | 0.028 | 1.30 | Yes |
C | Himalaya E. | 0.393 | 0.091 | 0.030 | 0.003 | 0.301 | 0.027 | 1.35 | Yes |
D | IG West | 0.147 | 0.139 | 0.018 | 0.002 | 0.178 | 0.025 | 0.80 | Yes |
E | IG East | 0.232 | 0.031 | 0.018 | 0.002 | 0.175 | 0.021 | 0.79 | Yes |
Area Name | TMT Trend (°K/year) 1979–2008 (30 years) | TMT Trend (°K/year) 1978–2022 (45 years) | TMT Trend | |
---|---|---|---|---|
[13] | Current Study | Change | Percent Change | |
Tibet | 0.008 | 0.033 | 3.125 | ~310% |
Western Himalayas | 0.016 | 0.029 | 0.813 | ~80% |
Eastern Himalayas | ~0.011 | 0.030 | 1.727 | ~170% |
IG West | 0.018 | 0.018 | 0 | No increase |
IG East | 0.013 | 0.018 | 0.385 | ~40% |
- The western Himalayan region exhibits a strong seasonal TMT warming trend in the pre-monsoon months of March, April, and May (MAM), with a peak warming trend observed in March (0.015 ± 0.004 °K/year) and May (0.019 ± 0.005 °K/year) compared to the eastern Himalayas and the Tibetan region (Figure 2, Table 5).
- The peak temperature trend during November–March is observed in February for both the Tibetan region (0.034 ± 0.010 °K/year) and the eastern Himalayas (0.045 ± 0.013 °K/year). In contrast, the peak in the TMT trend for the western Himalayas is only 0.019 ± 0.005 °K/year, which corroborates the significant difference observed in the melting trends of glaciers and snow cover over the western Himalayas as compared to the Tibetan and eastern Himalayas.
- The IG west shows an increase in monthly warming trend from December to May, with peak trends in December (0.013 ± 0.006 °K/year), March (0.017 ± 0.006 °K/year), and May (0.014 ± 0.007 °K/year) (Figure 3).Figure 3. Monthly mid-tropospheric temperature (TMT) trend (°K/year) using the Microwave Sounding Unit/Advanced Microwave Sounding Unit (MSU/AMSU) data (1978–2022) over the high-altitude Tibet-Himalayan and adjacent plain regions.Figure 3. Monthly mid-tropospheric temperature (TMT) trend (°K/year) using the Microwave Sounding Unit/Advanced Microwave Sounding Unit (MSU/AMSU) data (1978–2022) over the high-altitude Tibet-Himalayan and adjacent plain regions.
- The IG east also shows a monthly warming trend from December to March, with a peak trend in February (0.025 ± 0.009 °K/year) (Figure 3).
- The dust source regions show an increased warming trend in December, January, February, and March, with a peak trend in March (ranging from 0.027 ± 0.007 °K/year to 0.051 ± 0.013 °K/year), which coincides with the occurrence of peak warming in the IG west and western Himalayas (Figure 2).
- The highest anomaly over the eastern Himalayas, with a peak in February (0.705 °K) and December (0.606 °K).
- Relatively, the anomaly in the western Himalayas is much lower in February (0.152 °K) and December (0.107 °K).
- Similarly, the TMT monthly anomaly is higher from November to March for Tibet, the Eastern Himalayas, and the IG plains (east and west) except for the western Himalayas, where the peak is in May (0.273 °K).
3.2. TLT Trend
- The monthly breakup of the TLT trend of IG east (Table 8) shows an increase in warming trends during pre-monsoon months (MAM) ranging from 0.020 ± 0.011 °K/year to 0.031 ± 0.008 °K/year.
- The monthly TLT trends of IG west show an increase in warming trends from April to June, ranging from 0.014 ± 0.006 °K/year to 0.016 ± 0.005 °K/year. This can be attributed to the early arrival of the SW monsoon in the eastern Gangetic plains (first week of June) compared to the western Gangetic plains (last week of June), where the SW monsoon progresses rapidly from east to west during the month of June.
- The TLT anomaly (Table 9) in IG east shows a peak anomaly during February, March, and April (0.367 °K, 0.352 °K, and 0.428 °K, respectively), which is much higher compared to IG west, with a peak anomaly in the same months ranging from 0.152 °K to 0.165 °K.
4. Discussion
5. Summary and Conclusions
- The MSU/AMSU-derived temperature trend shows a conspicuous rise in the warming trend over high-altitude regions (Tibet, western Himalayas, and eastern Himalayas) compared to adjacent plains (IG west, IG east).
- A comparison of the TMT trends for a period from 1979–2008 (previous reports) and 1978–2022 (present study, 45 years) shows a tremendous rise in the warming of the mid-troposphere over the last 14 years, as mentioned below:
- Tibet: ~3.1 times; the eastern Himalayas: ~1.7 times; and the western Himalayas: ~0.8 times.
- In contrast, the rise in TMT trend is nearly zero and ~0.4 times for the IG west and IG east, respectively. Similarly, for the dust source regions, it is ~1.3 times.
- The monthly breakup of TMT and TLT anomalies also reveals the influence of the east-to-west progression of the southwest monsoon over the IG plains.
- The current study highlights the acceleration in warming trends in the mid-troposphere over the high-altitude HKH region compared to adjacent IG plains.
- The current study highlights that the peak in the monthly decadal TMT trend is 0.33 to 0.34 °K/decade and 0.41 to 0.45 °K/decade for Tibet and the eastern Himalayas, respectively. In contrast, the same for the western Himalayas is only 0.19, 0.15, and 0.06 °K/decade for May, March, and December, respectively.
- According to multiple reports, the rate at which snow or glaciers are melting varies significantly between the western Himalayas and Tibet, as well as the eastern Himalayas. The findings indicate that this divergence can mainly be attributed to the distinct variations in regional tropospheric warming patterns.
- The western Himalayan glaciers are therefore expected to decline at a slower rate compared to the eastern Himalayas.
- A significant increase in tropospheric warming trends (1978–2022) was observed in all the study areas, including the Himalayan region, dust sink areas of the IG plains, and the western arid dust source regions, indicating an overall regional increase in mid-troposphere temperature trends over the past 45 years.
- The mid-tropospheric temperature warming trend is higher than the lower-tropospheric warming trend over the snow-glacier-covered regions, including the Tibetan region and Himalayas, and the dust sink regions of the IG plains.
- The higher-altitude snow-glacier-covered regions show higher annual TMT warming trends than the low-lying IG plains.
- A strong seasonal increase in the TMT warming trend over the western Himalayas and western IG plains is observed during pre-monsoon months (MAM) compared to other months and can be attributed to the influence of increased dust storm activity.
- In general, the TMT warming anomaly and trend are found to be relatively higher in November–April (NDJFMA months) as compared to May–October (MJJASO months) in the Indian sub-continent, leading to increased melting of glaciers and snow cover during the primary phase of the snow accumulation season in November–February (NDJF months).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dyhrenfurth, G.O. To the Third Pole: The History of the High Himalaya; Laurie, W., Ed.; Werner Laurie: London, UK, 1955. [Google Scholar]
- Xu, J.; Grumbine, R.E.; Shrestha, A.; Eriksson, M.; Yang, X.; Wang, Y.; Wilkes, A. The Melting Himalayas: Cascading Effects of Climate Change on Water, Biodiversity, and Livelihoods. Conserv. Biol. 2009, 23, 520–530. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F.; Guo, W.; Liu, S.; Immerzeel, W.; Shrestha, B. The Glaciers of the Hindu Kush Himalayas: Current Status and Observed Changes from the 1980s to 2010. Int. J. Water Resour. Dev. 2015, 31, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Chudley, T.R.; Miles, E.S.; Willis, I.C. Glacier Characteristics and Retreat between 1991 and 2014 in the Ladakh Range, Jammu and Kashmir. Remote Sens. Lett. 2017, 8, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Singh, A.K.; Taloor, A.K.; Singh, D.S. Recessional Pattern of Thelu and Swetvarn Glaciers between 1968 and 2019, Bhagirathi Basin, Garhwal Himalaya, India. Quat. Int. 2021, 575, 227–235. [Google Scholar] [CrossRef]
- Abdullah, T.; Romshoo, S.A.; Rashid, I. The Satellite Observed Glacier Mass Changes over the Upper Indus Basin during 2000–2012. Sci. Rep. 2020, 10, 14285. [Google Scholar] [CrossRef] [PubMed]
- Romshoo, S.A.; Murtaza, K.O.; Shah, W.; Ramzan, T.; Ameen, U.; Bhat, M.H. Anthropogenic Climate Change Drives Melting of Glaciers in the Himalaya. Environ. Sci. Pollut. Res. 2022, 29, 52732–52751. [Google Scholar] [CrossRef]
- Romshoo, S.A.; Abdullah, T.; Rashid, I.; Bahuguna, I.M. Explaining the Differential Response of Glaciers across Different Mountain Ranges in the North-Western Himalaya, India. Cold Reg. Sci. Technol. 2022, 196, 103515. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B.; Shrestha, F. The Status and Decadal Change of Glaciers in Bhutan from the 1980s to 2010 Based on Satellite Data. Ann. Glaciol. 2014, 55, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Sahu, R.; Gupta, R. Glacier Mapping and Change Analysis in Chandra Basin, Western Himalaya, India during 1971–2016. Int. J. Remote Sens. 2020, 41, 6914–6945. [Google Scholar] [CrossRef]
- Pandey, P.; Venkataraman, G. Changes in the Glaciers of Chandra–Bhaga Basin, Himachal Himalaya, India, between 1980 and 2010 Measured Using Remote Sensing. Int. J. Remote Sens. 2013, 34, 5584–5597. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Marquis, M.; Averyt, K.; Melinda, M.B.; Tignor; Miller, H.L., Jr.; Chen, Z. Climate Change 2007—The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007; pp. 235–336. [Google Scholar]
- Prasad, A.K.; Yang, K.-H.S.; El-Askary, H.M.; Kafatos, M. Melting of Major Glaciers in the Western Himalayas: Evidence of Climatic Changes from Long Term MSU Derived Tropospheric Temperature Trend (1979–2008). Ann. Geophys. 2009, 27, 4505–4519. [Google Scholar] [CrossRef] [Green Version]
- He, Y. Changing Features of the Climate and Glaciers in China’s Monsoonal Temperate Glacier Region. J. Geophys. Res. 2003, 108, 4530. [Google Scholar] [CrossRef]
- Lau, K.M.; Kim, M.K.; Kim, K.M. Asian Summer Monsoon Anomalies Induced by Aerosol Direct Forcing: The Role of the Tibetan Plateau. Clim. Dyn. 2006, 26, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.-M.; Kim, K.-M. Observational Relationships between Aerosol and Asian Monsoon Rainfall, and Circulation. Geophys. Res. Lett. 2006, 33, L21810. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J.; Thorne, P.W. Assessing the Value of Microwave Sounding Unit-Radiosonde Comparisons in Ascertaining Errors in Climate Data Records of Tropospheric Temperatures: Satellite-Radiosonde Comparisons. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Diao, M.; Jumbam, L.; Sheffield, J.; Wood, E.F.; Zondlo, M.A. Validation of AIRS/AMSU-A Water Vapor and Temperature Data with in Situ Aircraft Observations from the Surface to UT/LS from 87°N-67°S: GLOBAL AIRS/AMSU-A H 2 O AND T VALATIONS. J. Geophys. Res. Atmos. 2013, 118, 6816–6836. [Google Scholar] [CrossRef] [Green Version]
- Bernath, P.F. The Atmospheric Chemistry Experiment (ACE). J. Quant. Spectrosc. Radiat. Transf. 2017, 186, 3–16. [Google Scholar] [CrossRef]
- Nash, J.; Saunders, R. A Review of Stratospheric Sounding Unit Radiance Observations for Climate Trends and Reanalyses. Q. J. R. Meteorol. Soc. 2015, 141, 2103–2113. [Google Scholar] [CrossRef]
- Sofieva, V.F.; Dalaudier, F.; Hauchecorne, A.; Kan, V. High-Resolution Temperature Profiles Retrieved from Bichromatic Stellar Scintillation Measurements by GOMOS/Envisat. Atmos. Meas. Tech. 2019, 12, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Christy, J.R.; Norris, W.B.; Spencer, R.W.; Hnilo, J.J. Tropospheric Temperature Change since 1979 from Tropical Radiosonde and Satellite Measurements. J. Geophys. Res. 2007, 112, D06102. [Google Scholar] [CrossRef]
- Mears, C.A.; Schabel, M.C.; Wentz, F.J. A Reanalysis of the MSU Channel 2 Tropospheric Temperature Record. J. Clim. 2003, 16, 3650–3664. [Google Scholar] [CrossRef]
- Ramanathan, V.; Ramana, M.V.; Roberts, G.; Kim, D.; Corrigan, C.; Chung, C.; Winker, D. Warming Trends in Asia Amplified by Brown Cloud Solar Absorption. Nature 2007, 448, 575–578. [Google Scholar] [CrossRef]
- Madhura, R.K.; Krishnan, R.; Revadekar, J.V.; Mujumdar, M.; Goswami, B.N. Changes in Western Disturbances over the Western Himalayas in a Warming Environment. Clim. Dyn. 2015, 44, 1157–1168. [Google Scholar] [CrossRef]
- Mallik, C.; Lal, S. Changing Long-Term Trends in Tropospheric Temperature over Two Megacities in the Indo-Gangetic Plain. Curr. Sci. 2011, 101, 637–644. [Google Scholar]
- Kothawale, D.R.; Singh, H.N. Recent Trends in Tropospheric Temperature over India during the Period 1971–2015: Indian Tropospheric Temperature Trend. Earth Space Sci. 2017, 4, 240–246. [Google Scholar] [CrossRef]
- Jindal, P.; Thapliyal, P.K.; Shukla, M.V.; Sharma, S.K.; Mitra, D. Trend Analysis of Atmospheric Temperature, Water Vapour, Ozone, Methane and Carbon-Monoxide over Few Major Cities of India Using Satellite Data. J. Earth Syst. Sci. 2020, 129, 60. [Google Scholar] [CrossRef]
- Guo, Y.; Weng, F.; Wang, G.; Xu, W. The Long-Term Trend of Upper-Air Temperature in China Derived from Microwave Sounding Data and Its Comparison with Radiosonde Observations. J. Clim. 2020, 33, 7875–7895. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.-M. Premonsoon Aerosol Characterization and Radiative Effects over the Indo-Gangetic Plains: Implications for Regional Climate Warming. J. Geophys. Res. 2010, 115, D17208. [Google Scholar] [CrossRef]
- Qin, Z.; Zou, X. Modulation Effect of the Annual Cycle on Interdecadal Warming Trends over the Tibetan Plateau during 1998–2020. J. Clim. 2023, 36, 2917–2931. [Google Scholar] [CrossRef]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent Glacial Retreat and Its Impact on Hydrological Processes on the Tibetan Plateau, China, and Surrounding Regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, S.; Nüsser, M. Changes of High Altitude Glaciers in the Trans-Himalaya of Ladakh over the Past Five Decades (1969–2016). Geosciences 2017, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Sharma, M.C.; Murari, M.K.; Nüsser, M.; Schmidt, S. Half-a-Century (1971–2020) of Glacier Shrinkage and Climatic Variability in the Bhaga Basin, Western Himalaya. J. Mt. Sci. 2023, 20, 299–324. [Google Scholar] [CrossRef]
- Rashid, I.; Majeed, U.; Najar, N.; Bhat, I. Retreat of Machoi Glacier, Kashmir Himalaya between 1972 and 2019 Using Remote Sensing Methods and Field Observations. Sci. Total Environ. 2021, 785, 147376. [Google Scholar] [CrossRef]
- Schmidt, S.; Nüsser, M. Changes of High Altitude Glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India. Arct. Antarct. Alp. Res. 2012, 44, 107–121. [Google Scholar] [CrossRef]
- Zhao, W.; He, J.; Wu, Y.; Xiong, D.; Wen, F.; Li, A. An Analysis of Land Surface Temperature Trends in the Central Himalayan Region Based on MODIS Products. Remote Sens. 2019, 11, 900. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D.; Immerzeel, W.W.; De Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and Mechanisms of the Karakoram Glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, K. The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect’, Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Strecker, M.R. Large Surface Velocity Fluctuations of Biafo Glacier, Central Karakoram, at High Spatial and Temporal Resolution from Optical Satellite Images. J. Glaciol. 2012, 58, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, S.; Tian, L.; Nüsser, M. No Significant Mass Loss in the Glaciers of Astore Basin (North-Western Himalaya), between 1999 and 2016. J. Glaciol. 2019, 65, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate Change Will Affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Desinayak, N.; Prasad, A.K.; El-Askary, H.; Kafatos, M.; Asrar, G.R. Snow Cover Variability and Trend over the Hindu Kush Himalayan Region Using MODIS and SRTM Data. Ann. Geophys. 2022, 40, 67–82. [Google Scholar] [CrossRef]
- Ren, J.; Jing, Z.; Pu, J.; Qin, X. Glacier Variations and Climate Change in the Central Himalaya over the Past Few Decades. Ann. Glaciol. 2006, 43, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, S.; Zhang, S.; Guo, W.; Wang, J. Recent Changes in Glacial Area and Volume on Tuanjiefeng Peak Region of Qilian Mountains, China. PLoS ONE 2013, 8, e70574. [Google Scholar] [CrossRef] [PubMed]
- Jianping, Y.; Yongjian, D.; Rensheng, C.; Shiyin, L.; Anxin, L. Causes of Glacier Change in the Source Regions of the Yangtze and Yellow Rivers on the Tibetan Plateau. J. Glaciol. 2003, 49, 539–546. [Google Scholar] [CrossRef] [Green Version]
- Lu, A.; Yao, T.; Liu, S. Glacier Change in the Geladandong Area of the Tibetan Plateau Monitored by Remote Sensing. J. Glaciol. Geocryol. 2002, 24, 559–562. [Google Scholar]
- Khromova, T.E.; Dyurgerov, M.B.; Barry, R.G. Late-Twentieth Century Changes in Glacier Extent in the Ak-Shirak Range, Central Asia, Determined from Historical Data and ASTER Imagery: Changes in Glacier Extent in the Ak-Shirak Range. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Cruz, R.V.; Harasawa, H.; Lal, M.; Wu, S.; Anokhin, Y.; Punsalmaa, B.; Honda, Y.; Jafari, M.; Li, C.; Huu Ninh, N. Climate Change 2007: Impacts, Adaptation and Vulnerability; Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; pp. 469–506. [Google Scholar]
- Raina, V.K.; Sangewar, C. Siachen Glacier of Karakorum Mountains, Ladakh Its Secular Retreat. J. Geol. Soc. India 2007, 70, 11–16. [Google Scholar]
- Karma, T.; Ageta, Y.; Naito, N.; Iwata, S.; Yabuki, H. Glacier Distribution in the Himalayas and Glacier Shrinkage from 1963 to 1993 in the Bhutan Himalayas. Bull. Glaciol. Res. 2003, 20, 29–40. [Google Scholar]
- Asahi, K.; Wataoabe, T. Past and Recent Glacier Fluctuations in Kanchenjunga Himal, Nepal. J. Nepal Geol. Soc. 2000, 22, 481–490. [Google Scholar] [CrossRef]
- Bajracharya, S.R.; Maharjan, S.B.; Shresth, F. Glaciers Shrinking in Nepal Himalaya. In Climate Change—Geophysical Foundations and Ecological Effects; Blanco, J.A., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-419-1. [Google Scholar]
- Racoviteanu, A.E.; Glasser, N.F.; Robson, B.A.; Harrison, S.; Millan, R.; Kayastha, R.B.; Kayastha, R. Recent Evolution of Glaciers in the Manaslu Region of Nepal From Satellite Imagery and UAV Data (1970–2019). Front. Earth Sci. 2022, 9, 767317. [Google Scholar] [CrossRef]
- Munir, S. Satellite-Based Study of Glaciers Retreat in Northern Pakistan. In Proceedings of the 37th COSPAR Scientific Assembly, Montréal, QC, Canada, 13-20 July 2008; Volume 37, p. 2135. [Google Scholar]
- Mayewski, P.A.; Jeschke, P.A. Himalayan and Trans-Himalayan Glacier Fluctuations Since AD 1812. Arct. Alp. Res. 1979, 11, 267. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Jin, H.; Kang, E.; Che, T.; Jin, R.; Wu, L.; Nan, Z.; Wang, J.; Shen, Y. Cryospheric Change in China. Glob. Planet. Chang. 2008, 62, 210–218. [Google Scholar] [CrossRef]
- Kehrwald, N.M.; Thompson, L.G.; Tandong, Y.; Mosley-Thompson, E.; Schotterer, U.; Alfimov, V.; Beer, J.; Eikenberg, J.; Davis, M.E. Mass Loss on Himalayan Glacier Endangers Water Resources. Geophys. Res. Lett. 2008, 35, L22503. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hou, S.; Hong, S.; Hur, S.D.; Liu, Y. Glacier Extent and Volume Change (1966∼2000) on the Su-Lo Mountain in Northeastern Tibetan Plateau, China. J. Mt. Sci. 2008, 5, 299–309. [Google Scholar] [CrossRef]
- Shangguan, D.; Liu, S.; Ding, Y.; Li, J.; Zhang, Y.; Ding, L.; Wang, X.; Xie, C.; Li, G. Glacier Changes in the West Kunlun Shan from 1970 to 2001 Derived from Landsat TM/ETM+ and Chinese Glacier Inventory Data. Ann. Glaciol. 2007, 46, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Pu, J.-c.; Yao, T.-d.; Wang, N.-l.; Ding, L.-f.; Zhang, Q.-h. Recent Variation of the Malan Glacier in Hoh Xil Region of the Tibetan Plateau. J. Glaciol. Geocryol. 2001, 23, 189–192. [Google Scholar]
- Liu, J.; Yao, X.; Liu, S.; Guo, W.; Xu, J. Glacial Changes in the Gangdisê Mountains from 1970 to 2016. J. Geogr. Sci. 2020, 30, 131–144. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote Sensing Estimates of Glacier Mass Balances in the Himachal Pradesh (Western Himalaya, India). Remote Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.; Bahuguna, I.; Rathore, B.; Singh, S.; Randhawa, S.; Sood, R.; Dhar, S. Glacial Retreat in Himalayas Using Indian Remote Sensing Satellite Data. Curr. Sci. 2007, 92, 69–74. [Google Scholar]
- Vohra, C.P. Himalayan Glaciers. In The Himalayan Aspect of Change; Oxford University Press: New Delhi, India, 1981; pp. 138–151. [Google Scholar]
- Bhambri, R.; Bolch, T.; Kumar, R. Chaujar Frontal Recession of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2006, Measured through Highresolution Remote Sensing Data. Curr. Sci. 2012, 102, 489–494. [Google Scholar]
- Lu, N.; Trenberth, K.E.; Qin, J.; Yang, K.; Yao, L. Detecting Long-Term Trends in Precipitable Water over the Tibetan Plateau by Synthesis of Station and MODIS Observations. J. Clim. 2015, 28, 1707–1722. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Christy, J.R.; Hurrell, J.W. Monitoring Global Monthly Mean Surface Temperatures. J. Clim. 1992, 5, 1405–1423. [Google Scholar] [CrossRef]
- Steiner, A.K.; Ladstädter, F.; Randel, W.J.; Maycock, A.C.; Fu, Q.; Claud, C.; Gleisner, H.; Haimberger, L.; Ho, S.-P.; Keckhut, P.; et al. Observed Temperature Changes in the Troposphere and Stratosphere from 1979 to 2018. J. Clim. 2020, 33, 8165–8194. [Google Scholar] [CrossRef]
- Mountain Research Initiative EDW Working Group. Elevation-Dependent Warming in Mountain Regions of the World. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Singh, R.P. Changes in Aerosol Parameters during Major Dust Storm Events (2001–2005) over the Indo-Gangetic Plains Using AERONET and MODIS Data. J. Geophys. Res. 2007, 112, D09208. [Google Scholar] [CrossRef] [Green Version]
- Mears, C.A.; Wentz, F.J. Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders. J. Atmos. Ocean. Technol. 2009, 26, 1040–1056. [Google Scholar] [CrossRef] [Green Version]
- Mears, C.A.; Wentz, F.J. Construction of the RSS V3.2 Lower-Tropospheric Temperature Dataset from the MSU and AMSU Microwave Sounders. J. Atmos. Ocean. Technol. 2009, 26, 1493–1509. [Google Scholar] [CrossRef]
- Christy, J.R.; Spencer, R.W.; Braswell, W.D. MSU Tropospheric Temperatures: Dataset Construction and Radiosonde Comparisons. J. Atmos. Ocean. Technol. 2000, 17, 1153–1170. [Google Scholar] [CrossRef]
- Po-Chedley, S.; Thorsen, T.J.; Fu, Q. Removing Diurnal Cycle Contamination in Satellite-Derived Tropospheric Temperatures: Understanding Tropical Tropospheric Trend Discrepancies. J. Clim. 2015, 28, 2274–2290. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Wang, W. Intersatellite Calibration of AMSU-A Observations for Weather and Climate Applications: Amsu-A Intersatellite Calibration. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Fu, Q.; Johanson, C.M.; Warren, S.G.; Seidel, D.J. Contribution of Stratospheric Cooling to Satellite-Inferred Tropospheric Temperature Trends. Nature 2004, 429, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Spencer, R.W.; Christy, J.R. Precision and Radiosonde Validation of Satellite Gridpoint Temperature Anomalies. Part II: A Tropospheric Retrieval and Trends during 1979–90. J. Clim. 1992, 5, 858–866. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J. The Effect of Diurnal Correction on Satellite-Derived Lower Tropospheric Temperature. Science 2005, 309, 1548–1551. [Google Scholar] [CrossRef] [Green Version]
- Christy, J.R.; Spencer, R.W.; Norris, W.B.; Braswell, W.D.; Parker, D.E. Error Estimates of Version 5.0 of MSU–AMSU Bulk Atmospheric Temperatures. J. Atmos. Ocean. Technol. 2003, 20, 613–629. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Gao, M.; Goldberg, M.D. Error Structure and Atmospheric Temperature Trends in Observations from the Microwave Sounding Unit. J. Clim. 2009, 22, 1661–1681. [Google Scholar] [CrossRef] [Green Version]
- Mears, C.A.; Wentz, F.J. Sensitivity of Satellite-Derived Tropospheric Temperature Trends to the Diurnal Cycle Adjustment. J. Clim. 2016, 29, 3629–3646. [Google Scholar] [CrossRef]
- Mears, C.A.; Wentz, F.J. A Satellite-Derived Lower-Tropospheric Atmospheric Temperature Dataset Using an Optimized Adjustment for Diurnal Effects. J. Clim. 2017, 30, 7695–7718. [Google Scholar] [CrossRef]
- Dey, S. Influence of Dust Storms on the Aerosol Optical Properties over the Indo-Gangetic Basin. J. Geophys. Res. 2004, 109, D20211. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.K.; Singh, R.P. Comparison of MISR-MODIS Aerosol Optical Depth over the Indo-Gangetic Basin during the Winter and Summer Seasons (2000–2005). Remote Sens. Environ. 2007, 107, 109–119. [Google Scholar] [CrossRef]
- Ladstädter, F.; Steiner, A.K.; Gleisner, H. Resolving the 21st Century Temperature Trends of the Upper Troposphere–Lower Stratosphere with Satellite Observations. Sci. Rep. 2023, 13, 1306. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. (Eds.) The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-92287-4. [Google Scholar]
- Prasad, A.K.; Singh, R.P.; Singh, A. Seasonal Climatology of Aerosol Optical Depth over the Indian Subcontinent: Trend and Departures in Recent Years. Int. J. Remote Sens. 2006, 27, 2323–2329. [Google Scholar] [CrossRef]
- Chand, K.; Kuniyal, J.C.; Kanga, S.; Guleria, R.P.; Meraj, G.; Kumar, P.; Farooq, M.; Singh, S.K.; Nathawat, M.S.; Sahu, N.; et al. Aerosol Characteristics and Their Impact on the Himalayan Energy Budget. Sustainability 2021, 14, 179. [Google Scholar] [CrossRef]
- Guleria, R.P.; Kuniyal, J.C.; Rawat, P.S.; Sharma, N.L.; Thakur, H.K.; Dhyani, P.P.; Singh, M. The Assessment of Aerosol Optical Properties over Mohal in the Northwestern Indian Himalayas Using Satellite and Ground-Based Measurements and an Influence of Aerosol Transport on Aerosol Radiative Forcing. Meteorol. Atmos. Phys. 2011, 113, 153–169. [Google Scholar] [CrossRef]
- Guleria, R.P.; Kuniyal, J.C. Characteristics of Atmospheric Aerosol Particles and Their Role in Aerosol Radiative Forcing over the Northwestern Indian Himalaya in Particular and over India in General. Air Qual. Atmos. Health 2016, 9, 795–808. [Google Scholar] [CrossRef]
Ref. | Region | Time Period | Data | Trend (°K decade−1) |
---|---|---|---|---|
[29] | Yangtze River reaches, China | 1979–2018 | MSU (TLT) | 0.20 |
[29] | Yangtze River reaches, China | 1979–2018 | MSU (TMT) | 0.19 |
[13] | Western IG Plain (Annual) | 1979–2008 | MSU (TMT) | 0.18 ± 0.05 |
[30] | Western Himalayas (Annual) | 1979–2007 | MSU (TMT) | 0.26 ± 0.09 |
[13] | Western Himalayas (Annual) | 1979–2008 | MSU (TMT) | 0.16 ± 0.05 |
[29] | Tibetan Plateau, China | 1979–2018 | MSU (TLT) | 0.40 |
[29] | Tibetan Plateau, China | 1979–2018 | MSU (TMT) | 0.32 |
[31] | Tibetan Plateau (Qinghai), China | 1998–2020 | AMSU | Enhanced tropospheric warming |
[13] | Tibetan Plateau | 1979–2008 | MSU (TMT) | 0.08 ± 0.06 |
[13] | IG plains (Annual) | 1979–2008 | MSU (TLT) | 0.32 ± 0.27 |
[30] | Himalayan-Hindu Kush (Annual) | 1979–2007 | MSU (TMT) | 0.21 ± 0.08 |
[13] | Eastern IG Plain (Annual) | 1979–2008 | MSU (TMT) | 0.13 ± 0.04 |
[30] | Eastern Himalayas (Annual) | 1979–2007 | MSU (TMT) | 0.182 ± 0.08 |
Ref. | Glacier/Region | Location | Period | Retreat Pattern |
---|---|---|---|---|
[44] | Qomolangma (Mount Everest) | Central Himalayas | 1960–2006 | 5.5 to 9.5 ma−1 |
[45] | Tuanjiefeng Peak, Qilian Mountains | China | 1966–2010 | 9.9 ± 3.9% deglaciation |
[46] | Yehelong Glacier | China | 1966–2000 | 23.2% deglaciation |
[47] | Geladandong area | China | 1969–2000 | 1.70% deglaciation |
[48] | Ak-shirak Range, central Tien Shan plateau | China | 1977–2001 | 20% deglaciation |
[9] | 885 glaciers of Bhutan Himalaya | E. Himalaya | 1977–2010 | 23.3 ± 0.9% glacial area loss (~1980 and 2010) |
[49] | Zemu Glacier, Sikkim | E. Himalaya | 1977–1984 | 27.7 ma−1 |
[50] | Siachen | E. Karakoram region (N. Ladakh) | 1929–1958 | Higher during the 20th century than 1862–1909 |
[51] | Imja Glacier | Nepal Himalayas | 2001–2006 | 370 m retreat |
[52] | 57 glaciers of Ghunsa Khola | Nepal Himalayas | 1958–1992 | 50% retreat, 38% stationary, and 12% advancing |
[53] | Langtang sub-basin | Nepal Himalayas | 1977–2009 | 26% deglaciation |
[54] | Manaslu | Nepal Himalayas | 1970–2019 | 0.26 ± 0.0001% a−1 |
[55] | Baturat Glacier | Northwest Karakoram, Pakistan | 1992–2000 | 17 km2 deglaciation |
[56] | Bada Shigri, Himachal Pradesh | NW. Himalayas | 1890–1906 | 20.0 ma−1 |
[49] | Bada Shigri, Himachal Pradesh | NW. Himalayas | 1977–1995 | 36.1 ma−1 |
[49] | Chota Shigri, Himachal Pradesh | NW. Himalayas | 1986–1995 | 6.70 ma−1 |
[56] | Kolhani, Jammu and Kashmir | NW. Himalayas | 1857–1909 | 15.0 ma−1 |
[56] | Kolhani, Jammu and Kashmir | NW. Himalayas | 1912–1961 | 16.0 ma−1 |
[6] | Pir Panjal (12,243 glaciers), Greater Himalaya, Shamaswari, Zanaskar, Ladakh, Karakoram | NW. Himalayas | 2000–2012 | 0.35 ± 0.33 ma−1 |
[57] | Glaciers in China | Qinghai-Tibetan Plateau | 1960–2008 | 26.7% deglaciation |
[58] | Naimonanyi, Himalayas | Tibet | 1950–2004 | No net accum. of ice mass |
[59] | Su-lo Mountain | Tibetan Plateau, China | 1966–1999 | Area loss of 34.7 km2 |
[60] | Kunlun shan (278 glaciers) | Tibetan Plateau, China | 1970–2001 | 0.40% deglaciation |
[61] | Malan, Hoh Xil | Tibetan Plateau, China | 1970–2000 | 1.0 to 1.7 ma−1 |
[62] | Gangdisê Mountains | Trans Himalaya, China | 1970–2016 | 1.09% a−1 |
[4] | Ladakh (864 glaciers) | W. Himalayas | 1991–2014 | 12.8% deglaciation |
[63] | Himachal Glacier region | W. Himalayas | 1999–2004 | Increased rate of glacial ice loss compared to 1977–1999 |
[64] | Chenab, Parbati, and Baspa basins (466 glaciers) | W. Himalayas | 1962–2007 | 21.0% deglaciation |
[65] | Milam, Uttaranchal | W. Himalayas | 1849–1957 | 12.5 ma−1 |
[65] | Pindari, Uttarakhand | W. Himalayas | 1845–1966 | 23.0 ma−1 |
[65] | Gangotri, Uttarakhand | W. Himalayas | 1935–1976 | 15.0 ma−1 |
[66] | Gangotri, Uttarakhand | W. Himalayas | 1965–2006 | 0.01 km2a−1 |
Area | Trend | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tibet | Slope | 0.024 | 0.034 | 0.033 | 0.019 | 0.018 | 0.017 | 0.018 | 0.017 | 0.020 | 0.023 | 0.030 | 0.034 |
SE | 0.010 | 0.010 | 0.009 | 0.008 | 0.008 | 0.008 | 0.006 | 0.006 | 0.006 | 0.010 | 0.010 | 0.010 | |
Himalaya W | Slope | 0.005 | 0.012 | 0.015 | 0.013 | 0.019 | 0.012 | 0.012 | 0.007 | 0.012 | 0.011 | 0.007 | 0.006 |
SE | 0.005 | 0.005 | 0.004 | 0.004 | 0.005 | 0.005 | 0.004 | 0.003 | 0.004 | 0.005 | 0.004 | 0.005 | |
Himalaya E | Slope | 0.033 | 0.045 | 0.041 | 0.026 | 0.023 | 0.019 | 0.021 | 0.020 | 0.030 | 0.029 | 0.034 | 0.044 |
SE | 0.013 | 0.013 | 0.011 | 0.011 | 0.010 | 0.007 | 0.006 | 0.006 | 0.007 | 0.013 | 0.011 | 0.011 | |
IG West | Slope | 0.006 | 0.012 | 0.017 | 0.009 | 0.014 | 0.005 | 0.008 | 0.009 | 0.012 | 0.012 | 0.008 | 0.013 |
SE | 0.006 | 0.007 | 0.006 | 0.006 | 0.007 | 0.004 | 0.004 | 0.003 | 0.004 | 0.007 | 0.006 | 0.006 | |
IG East | Slope | 0.014 | 0.025 | 0.024 | 0.017 | 0.016 | 0.009 | 0.017 | 0.010 | 0.017 | 0.014 | 0.019 | 0.031 |
SE | 0.009 | 0.009 | 0.009 | 0.011 | 0.008 | 0.006 | 0.006 | 0.004 | 0.005 | 0.009 | 0.009 | 0.009 |
Area | Anom. | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tibet | avg. | 0.396 | 0.515 | 0.421 | 0.359 | 0.201 | 0.156 | 0.185 | 0.114 | 0.182 | 0.193 | 0.352 | 0.477 |
std. | 0.281 | 0.346 | 0.300 | 0.256 | 0.180 | 0.112 | 0.165 | 0.104 | 0.145 | 0.146 | 0.253 | 0.318 | |
Himalaya W | avg. | 0.077 | 0.152 | 0.213 | 0.216 | 0.273 | 0.168 | 0.132 | 0.084 | 0.088 | 0.116 | 0.108 | 0.107 |
std. | 0.173 | 0.228 | 0.289 | 0.308 | 0.382 | 0.249 | 0.195 | 0.133 | 0.134 | 0.162 | 0.184 | 0.197 | |
Himalaya E | avg. | 0.504 | 0.705 | 0.587 | 0.477 | 0.288 | 0.208 | 0.167 | 0.224 | 0.254 | 0.252 | 0.438 | 0.606 |
std. | 0.190 | 0.166 | 0.123 | 0.122 | 0.114 | 0.087 | 0.057 | 0.111 | 0.068 | 0.054 | 0.096 | 0.164 | |
IG West | avg. | 0.095 | 0.159 | 0.256 | 0.242 | 0.235 | 0.063 | 0.095 | 0.091 | 0.110 | 0.140 | 0.089 | 0.188 |
std. | 0.090 | 0.150 | 0.230 | 0.243 | 0.243 | 0.094 | 0.106 | 0.090 | 0.125 | 0.125 | 0.122 | 0.174 | |
IG East | avg. | 0.136 | 0.333 | 0.436 | 0.409 | 0.227 | 0.099 | 0.155 | 0.083 | 0.133 | 0.120 | 0.283 | 0.371 |
std. | 0.089 | 0.059 | 0.071 | 0.121 | 0.069 | 0.034 | 0.071 | 0.059 | 0.071 | 0.027 | 0.045 | 0.077 |
Area Code | Area Name | Anom. (avg.) in °K | Anom. (stdev.) in °K | Trend (°K/year) | Trend SE (°K/year) | Trend (°K/decade) | Trend SE (°K/decade) | Total Change °K (1978–2022; 45 years) | Trend Is Significant |
---|---|---|---|---|---|---|---|---|---|
A | Tibet | - | - | - | - | - | - | - | - |
B | Himalaya W. | - | - | - | - | - | - | - | - |
C | Himalaya E. | - | - | - | - | - | - | - | - |
D | IG West | 0.030 | 0.094 | 0.005 | 0.004 | 0.048 | 0.036 | 0.21 | No |
E | IG East | 0.201 | 0.062 | 0.015 | 0.003 | 0.155 | 0.029 | 0.70 | Yes |
Area | Trend | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tibet | Slope | - | - | - | - | - | - | - | - | - | - | - | - |
SE | - | - | - | - | - | - | - | - | - | - | - | - | |
Himalaya W | Slope | - | - | - | - | - | - | - | - | - | - | - | - |
SE | - | - | - | - | - | - | - | - | - | - | - | - | |
Himalaya E | Slope | - | - | - | - | - | - | - | - | - | - | - | - |
SE | - | - | - | - | - | - | - | - | - | - | - | - | |
IG West | Slope | 0.013 | 0.008 | 0.006 | 0.015 | 0.014 | 0.016 | 0.009 | 0.015 | 0.019 | 0.015 | 0.000 | 0.009 |
SE | 0.007 | 0.007 | 0.007 | 0.005 | 0.006 | 0.005 | 0.004 | 0.004 | 0.004 | 0.005 | 0.006 | 0.007 | |
IG East | Slope | 0.012 | 0.002 | 0.020 | 0.031 | 0.024 | 0.015 | 0.016 | 0.023 | 0.019 | 0.027 | 0.012 | 0.015 |
SE | 0.011 | 0.011 | 0.011 | 0.008 | 0.007 | 0.005 | 0.006 | 0.005 | 0.006 | 0.008 | 0.008 | 0.009 |
Area | Anom. | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tibet | avg. | - | - | - | - | - | - | - | - | - | - | - | - |
std. | - | - | - | - | - | - | - | - | - | - | - | - | |
Himalaya W | avg. | - | - | - | - | - | - | - | - | - | - | - | - |
std. | - | - | - | - | - | - | - | - | - | - | - | - | |
Himalaya E | avg. | - | - | - | - | - | - | - | - | - | - | - | - |
std. | - | - | - | - | - | - | - | - | - | - | - | - | |
IG West | avg. | −0.066 | 0.152 | 0.269 | 0.165 | 0.078 | −0.163 | −0.002 | 0.013 | −0.025 | −0.008 | −0.047 | −0.008 |
std. | 0.153 | 0.197 | 0.293 | 0.228 | 0.230 | 0.209 | 0.138 | 0.146 | 0.180 | 0.169 | 0.137 | 0.127 | |
IG East | avg. | 0.008 | 0.367 | 0.352 | 0.428 | −0.046 | 0.068 | 0.227 | 0.292 | 0.258 | 0.089 | 0.167 | 0.193 |
std. | 0.110 | 0.122 | 0.138 | 0.182 | 0.184 | 0.209 | 0.098 | 0.142 | 0.109 | 0.080 | 0.068 | 0.096 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desinayak, N.; Prasad, A.K.; Vinod, A.; Mishra, S.; Shukla, A.; Nayak, S. Rise in Mid-Tropospheric Temperature Trend (MSU/AMSU 1978–2022) over the Tibet and Eastern Himalayas. Appl. Sci. 2023, 13, 9088. https://doi.org/10.3390/app13169088
Desinayak N, Prasad AK, Vinod A, Mishra S, Shukla A, Nayak S. Rise in Mid-Tropospheric Temperature Trend (MSU/AMSU 1978–2022) over the Tibet and Eastern Himalayas. Applied Sciences. 2023; 13(16):9088. https://doi.org/10.3390/app13169088
Chicago/Turabian StyleDesinayak, Nirasindhu, Anup Krishna Prasad, Arya Vinod, Sameeksha Mishra, Anubhav Shukla, and Suren Nayak. 2023. "Rise in Mid-Tropospheric Temperature Trend (MSU/AMSU 1978–2022) over the Tibet and Eastern Himalayas" Applied Sciences 13, no. 16: 9088. https://doi.org/10.3390/app13169088
APA StyleDesinayak, N., Prasad, A. K., Vinod, A., Mishra, S., Shukla, A., & Nayak, S. (2023). Rise in Mid-Tropospheric Temperature Trend (MSU/AMSU 1978–2022) over the Tibet and Eastern Himalayas. Applied Sciences, 13(16), 9088. https://doi.org/10.3390/app13169088