Historical Eco-Environmental Quality Mapping in China with Multi-Source Data Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
- (1)
- Synthesis of annual data: MOD17A3 (NPP) data [30] are annual data synthesized by averaging the monthly data. MOD13A2 (NDVI) data [31] are annual data synthesized by averaging the growing season data. MCD12Q1 (LUCC) data [32] are annual data synthesized by averaging the monthly data. MOD16A3 (PET) data [33] are annual data synthesized by averaging the monthly data. Precipitation (PRE) data [34] are annual data synthesized by summing the monthly data. Temperature (TEMP) data [34] are annual data synthesized by averaging the monthly data.
- (2)
- Projection transformation: MRT software was used to perform the projection transformation NPP, NDVI, LUCC and PET data and unify them into the WGS 1984 geographic coordinate system.
- (3)
- Resampling: all data was resampled to 1000 m resolution.
- (4)
- Data format transformation: MRT software was used to perform data format transformation of NPP, NDVI, LUCC and PET data, and HDF was transformed to TIFF format. In addition, Matlab was used to transform the data format of PRE and TEMP from NETCDF (.nc) to TIFF.
- (5)
- Data stitching and cropping: 19 sheets MODIS data covering the Chinese region were stitched together.
2.3. Assessment of China’s EEQ
2.3.1. Principle of Indicator Selection
2.3.2. Calculation of EEQ
2.4. Trend Analysis
3. Results
3.1. Spatial Pattern of EEQ in China
3.2. Spatial and Temporal Changes in China’s EEQ
3.3. EEQ of the Yangtze and Yellow River Basins
3.3.1. Monitoring of the EEQ of the Yangtze River Basin
3.3.2. Monitoring of the EEQ of the Yellow River Basin
3.4. EEQ of Major Cities
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Su, M. The effects of urbanization and industrialization on decoupling economic growth from carbon emission—A case study of China. Sustain. Cities Soc. 2019, 51, 101758. [Google Scholar] [CrossRef]
- Ernstson, H. The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landsc. Urban Plan. 2013, 109, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Yang, F.; Yu, L.; Zhou, Y.; Li, H.; Ma, J.; Huang, J.; Wei, J.; Xu, Y.; Zhang, C.; et al. Quantization of the coupling mechanism between eco-environmental quality and urbanization from multisource remote sensing data. J. Clean. Prod. 2021, 321, 128948. [Google Scholar] [CrossRef]
- Xu, D.; Cheng, J.; Xu, S.; Geng, J.; Yang, F.; Fang, H.; Xu, J.; Wang, S.; Wang, Y.; Huang, J.; et al. Understanding the Relationship between China’s Eco-Environmental Quality and Urbanization Using Multisource Remote Sensing Data. Remote Sens. 2022, 14, 198. [Google Scholar] [CrossRef]
- Greenfield, P.M. Linking social change and developmental change: Shifting pathways of human development. Dev. Psychol. 2009, 45, 401. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.A. From Habitat II to Pachamama: A growing agenda and diminishing expectations for Habitat III. Environ. Urban. 2016, 28, 35–48. [Google Scholar] [CrossRef]
- Dale, A.; Newman, L.L. Sustainable development for some: Green urban development and affordability. Local Environ. 2009, 14, 669–681. [Google Scholar] [CrossRef]
- Wang, X.; Yan, F.; Zeng, Y.; Chen, M.; Su, F.; Cui, Y. Changes in Ecosystems and Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area since the Reform and Opening Up in China. Remote Sens. 2021, 13, 1611. [Google Scholar] [CrossRef]
- Liu, C.; Cai, W.; Zhai, M.; Zhu, G.; Zhang, C.; Jiang, Z. Decoupling of wastewater eco-environmental damage and China’s economic development. Sci. Total Environ. 2021, 789, 147980. [Google Scholar] [CrossRef]
- Charfeddine, L.; Mrabet, Z. The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renew. Sustain. Energy Rev. 2017, 76, 138–154. [Google Scholar] [CrossRef]
- Sachs, J.D.; Schmidt-Traub, G.; Mazzucato, M.; Messner, D.; Nakicenovic, N.; Rockström, J. Six transformations to achieve the sustainable development goals. Nat. Sustain. 2019, 2, 805–814. [Google Scholar] [CrossRef]
- Liu, D.; Chang, Q. Ecological security research progress in China. Acta Ecol. Sin. 2015, 35, 111–121. [Google Scholar] [CrossRef]
- Wolfslehner, B.; Vacik, H. Evaluating sustainable forest management strategies with the Analytic Network Process in a Pressure-State-Response framework. J. Environ. Manag. 2008, 88, 1–10. [Google Scholar] [CrossRef]
- Abdelhady, A.A.; Khalil, M.M.; Ismail, E.; Mohamed, R.S.A.; Ali, A.; Snousy, M.G.; Fan, J.; Zhang, S.; Yanhong, L.; Xiao, J. Potential biodiversity threats associated with the metal pollution in the Nile–Delta ecosystem (Manzala lagoon, Egypt). Ecol. Indic. 2019, 98, 844–853. [Google Scholar] [CrossRef]
- Ducrot, R.; Le Page, C.; Bommel, P.; Kuper, M. Articulating land and water dynamics with urbanization: An attempt to model natural resources management at the urban edge. Comput. Environ. Urban Syst. 2004, 28, 85–106. [Google Scholar] [CrossRef]
- Vaalgamaa, S. The effect of urbanisation on Laajalahti Bay, Helsinki City, as reflected by sediment geochemistry. Mar. Pollut. Bull. 2004, 48, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yeom, D.H.; An, K.G. A new approach of Integrated Health Responses (IHRs) modeling for ecological risk/health assessments of an urban stream. Chemosphere 2014, 108, 376–382. [Google Scholar] [CrossRef]
- Shan, W.; Jin, X.; Ren, J.; Wang, Y.; Xu, Z.; Fan, Y.; Gu, Z.; Hong, G.; Lin, J.; Zhou, Y. Ecological environment quality assessment based on remote sensing data for land consolidation. J. Clean. Prod. 2019, 239, 118126. [Google Scholar] [CrossRef]
- Ji, J.; Tang, Z.; Zhang, W.; Liu, W.; Jin, B.; Xu, X.; Wang, F.; Zhang, R.; Guo, B.; Xu, Z.; et al. Spatiotemporal and Multiscale Analysis of the Coupling Coordination Degree between Economic Development Equality and Eco-Environmental Quality in China from 2001 to 2020. Remote Sens. 2022, 14, 737. [Google Scholar] [CrossRef]
- Shi, Y. Self-Improvement Led by Soft Gentrification: China’s Bottom-Up Sustainable Heritage Protection. Politecnico di Milano, Milan, Italy. 2021. Available online: https://www.politesi.polimi.it/handle/10589/177176 (accessed on 1 March 2023).
- Sillero, N. What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecol. Model. 2011, 222, 1343–1346. [Google Scholar] [CrossRef]
- Jie, B.; Wang, X. A study on the competitiveness of Gansu cities based on ecological position theory. Resour. Environ. Arid. Reg. 2009, 23, 30–34. [Google Scholar]
- Liu, G.; Niu, J.; Guo, W.; An, X.; Zhao, L. Ecological and health risk-based characterization of agricultural soils contaminated with polycyclic aromatic hydrocarbons in the vicinity of a chemical plant in China. Chemosphere 2016, 163, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Li, Z.; Wang, T.; Chen, A.; Wang, X.; Du, M.; Jia, G.; Li, Y.; Luo, W.; Ma, Y. A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric. For. Meteorol. 2018, 253, 84–93. [Google Scholar] [CrossRef]
- Bai, T.; Cheng, J.; Zheng, Z.; Zhang, Q.; Li, Z.; Xu, D. Drivers of eco-environmental quality in China from 2000 to 2017. J. Clean. Prod. 2023, 396, 136408. [Google Scholar] [CrossRef]
- Zhang, Z. Decoupling China’s carbon emissions increase from economic growth: An economic analysis and policy implications. World Dev. 2000, 28, 739–752. [Google Scholar] [CrossRef]
- Zhou, X.; Niu, A.; Lin, C. Optimizing carbon emission forecast for modelling China’s 2030 provincial carbon emission quota allocation. J. Environ. Manag. 2023, 325, 116523. [Google Scholar] [CrossRef]
- Chen, G.; Li, X.; Liu, X. Global land projection based on plant functional types with a 1-km resolution under socio-climatic scenarios. Sci. Data 2022, 9, 1–18. [Google Scholar] [CrossRef]
- Wang, X.; Meng, X.; Long, Y. Projecting 1 km-grid population distributions from 2020 to 2100 globally under shared socioeconomic pathways. Sci. Data 2022, 9, 1–13. [Google Scholar] [CrossRef]
- Running, S.; Mu, Q.; Zhao, Z. MOD17A3H MODIS/Terra Net Primary Production Yearly L4 Global 500m SIN Grid V006. 2015. Available online: https://lpdaac.usgs.gov/products/mod17a3hv006/ (accessed on 25 January 2023).
- Didan, K. MOD13A3 MODIS/Terra vegetation Indices Monthly L3 Global 1km SIN Grid V006. 2015. Available online: https://lpdaac.usgs.gov/products/mod13a3v006/ (accessed on 25 January 2023).
- Friedl, M.; Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006. 2019. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 25 January 2023).
- Running, S.; Mu, Q.; Zhao, M. MOD16A3 MODIS/Terra Net Evapotranspiration Yearly L4 Global 500m SIN Grid V006. 2017. Available online: https://lpdaac.usgs.gov/products/mod16a3v006/ (accessed on 25 January 2023).
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Luo, F. Discussion on the construction of an ecological environment quality evaluation system. Environ. Dev. 2020, 32, 7. [Google Scholar]
- Kaplan, D. Estimator conditioning diagnostics for covariance structure models. Sociol. Methods Res. 1994, 23, 200–229. [Google Scholar] [CrossRef]
- Thompson, C.G.; Kim, R.S.; Aloe, A.M.; Becker, B.J. Extracting the variance inflation factor and other multicollinearity diagnostics from typical regression results. Basic Appl. Soc. Psychol. 2017, 39, 81–90. [Google Scholar] [CrossRef]
- Wei, G.W. Gray relational analysis method for intuitionistic fuzzy multiple attribute decision making. Expert Syst. Appl. 2011, 38, 11671–11677. [Google Scholar] [CrossRef]
- Vaidya, O.S.; Kumar, S. Analytic hierarchy process: An overview of applications. Eur. J. Oper. Res. 2006, 169, 1–29. [Google Scholar] [CrossRef]
- Zou, Z.H.; Yi, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Kitanidis, P.K.; VoMvoris, E.G. A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations. Water Resour. Res. 1983, 19, 677–690. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Yin, C.; Sun, J.; Ge, C. Construction and countermeasure discussion on government performance evaluation model of air pollution control: A case study from Beijing-Tianjin-Hebei region. J. Clean. Prod. 2020, 254, 120072. [Google Scholar] [CrossRef]
- Xing, J.; Zhang, Y.; Wang, S.; Liu, X.; Cheng, S.; Zhang, Q.; Chen, Y.; Streets, D.G.; Jang, C.; Hao, J. Modeling study on the air quality impacts from emission reductions and atypical meteorological conditions during the 2008 Beijing Olympics. Atmos. Environ. 2011, 45, 1786–1798. [Google Scholar] [CrossRef]
- Ma, X.; Li, C.; Dong, X.; Liao, H. Empirical analysis on the effectiveness of air quality control measures during mega events: Evidence from Beijing, China. J. Clean. Prod. 2020, 271, 122536. [Google Scholar] [CrossRef]
- He, K.; Huo, H.; Zhang, Q. Urban air pollution in China: Current status, characteristics, and progress. Annu. Rev. Environ. Resour. 2002, 27, 397. [Google Scholar] [CrossRef]
- Liu, M.; Xie, H.; He, Y.; Zhang, Q.; Sun, H.; Yu, C.; Chen, L.; Zhang, W.; Zhang, Q.; Wang, X. Sources and transport of methylmercury in the Yangtze River and the impact of the Three Gorges Dam. Water Res. 2019, 166, 115042. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ye, F.; Wu, S.; Yan, J.; Xu, K.; Hong, Y. Biogeographic pattern of bacterioplanktonic community and potential function in the Yangtze River: Roles of abundant and rare taxa. Sci. Total Environ. 2020, 747, 141335. [Google Scholar] [CrossRef]
- Shi, C.; Zhao, Y.; Zhang, C.; Pang, Q.; Chen, Q.; Li, A. Research on the driving effect of production electricity consumption changes in the Yangtze River Economic Zone-Based on regional and industrial perspectives. Energy 2022, 238, 121635. [Google Scholar] [CrossRef]
- Fu, G.; Chen, S.; Liu, C.; Shepard, D. Hydro-climatic trends of the Yellow River basin for the last 50 years. Clim. Chang. 2004, 65, 149–178. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.B. Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agric. Ecosyst. Environ. 2000, 82, 97–103. [Google Scholar] [CrossRef]
- Yao, D.; Whalley, J. The China (Shanghai) pilot free trade zone: Background, developments and preliminary assessment of initial impacts. World Econ. 2016, 39, 2–15. [Google Scholar] [CrossRef]
- Yuan, F.; Gao, J.; Wu, J. Nanjing-an ancient city rising in transitional China. Cities 2016, 50, 82–92. [Google Scholar] [CrossRef]
- Ng, M.K.; Xu, J. Second Metamorphosis? Urban Restructuring and Planning Responses in Guangzhou and Shenzhen in the Twenty-First Century. In Maturing Megacities; Springer: Dordrecht, The Netherlands, 2014; pp. 29–60. [Google Scholar]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in jing-jin-ji, the yangtze, river delta and the pearl river delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Smith, C.J.; Himmelfarb, K.M.G. Restructuring Beijing’s social space: Observations on the Olympic Games in 2008. Eurasian Geogr. Econ. 2007, 48, 543–554. [Google Scholar] [CrossRef]
- Ma, X.; Li, N.; Yang, H.; Li, Y. Exploring the relationship between urbanization and water environment based on coupling analysis in Nanjing, East China. Environ. Sci. Pollut. Res. 2022, 29, 4654–4667. [Google Scholar] [CrossRef]
- Chen, D.; Lu, X.; Hu, W.; Zhang, C.; Lin, Y. How urban sprawl influences eco-environmental quality: Empirical research in China by using the Spatial Durbin model. Ecol. Indic. 2021, 131, 108113. [Google Scholar] [CrossRef]
- Lv, J.; Zhou, W. Ecological Environmental Quality in China: Spatial and Temporal Characteristics, Regional Differences, and Internal Transmission Mechanisms. Sustainability 2023, 15, 3716. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.B.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Tebaldi, C.; Van Vuuren, D.P.; Eyring, V.; Friedlingstein, P.; Hurtt, G.; Knutti, R.; Kriegler, E.; Lamarque, J.-F.; Lowe, J. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 2016, 9, 3461–3482. [Google Scholar] [CrossRef] [Green Version]
Data Name | Time Range | Spatial Resolution | Time Resolution | Source |
---|---|---|---|---|
Precipitation | 2000–2017 | 1000 m | Monthly | NTPDC a |
Temperature | 2000–2017 | 1000 m | Monthly | NTPDC a |
Net primary productivity (MOD17A3) | 2000–2017 | 1000 m | Annual | NASA b |
Vegetation coverage (MOD13A2) | 2000–2017 | 250 m | 16-day | NASA b |
DEM (SRTM) | 2000–2017 | 250 m | — | USGS c |
Land-use and cover change (MCD12Q1) | 2001–2017 | 500 m | Annual | NASA b |
Population (Landscan) | 2000–2017 | 1000 m | Annual | ORNL d |
Potential evapotranspiration (MOD16A3) | 2000–2017 | 500 m | 8-day | NASA b |
Land-use and cover change (CLUD) | 2000 | 1000 m | Annual | CAS e |
CMIP 6 | 2020–2100 | 1° | Annual | NASA b |
Predicting LUCC | 2020–2100 | 1000 m | Annual | Paper [28] |
Predicting POP | 2020–2100 | 1000 m | Annual | Paper [29] |
Index | 2017 | |
---|---|---|
Variance Inflation Factor | Tolerance | |
VIF | TOL | |
PRE | 8.097 | 0.123 |
TEMP | 9.411 | 0.106 |
NPP | 5.758 | 0.174 |
NDVI | 5.922 | 0.169 |
DEM | 2.975 | 0.336 |
LUCC | 4.095 | 0.244 |
POP | 1.349 | 0.741 |
PET | 2.634 | 0.380 |
Criteria | ≥0.60 | 045~0.60 | 0.30~0.45 | 0.15~0.30 | ≤0.15 |
---|---|---|---|---|---|
Level | Excellent | Good | Average | Poor | Bad |
M-RSEQI | ||||||||
---|---|---|---|---|---|---|---|---|
<4 | −4~−2 | −2~−1 | −1~0 | 0~1 | 1~2 | 2~4 | >4 | |
Percentage | 0.02 | 0.24 | 2.50 | 36.94 | 51.11 | 8.77 | 0.42 | 0.00 |
Level | Area (10,000 × km2) | Percentage (%) |
---|---|---|
M-RSEQI Reduced | 14.44 | 5.96 |
M-RSEQI Unchanged | 202.18 | 83.40 |
M-RSEQI Improvement | 25.79 | 10.64 |
Level | Area (10,000 × km2) | Percentage (%) |
---|---|---|
M-RSEQI Reduced | 1.00 | 0.86 |
M-RSEQI Unchanged | 87.94 | 74.80 |
M-RSEQI Improvement | 28.61 | 24.34 |
City | Year | M-RSEQI | ISA (km2) | Speed_ISA (km2/a) |
---|---|---|---|---|
Beijing | 2000 | 0.183 | 1961.68 | 149.10 |
2008 | 0.193 | 3188.98 | ||
2017 | 0.193 | 4645.54 | ||
Shanghai | 2000 | 0.193 | 1324.74 | 132.55 |
2008 | 0.181 | 2241.25 | ||
2017 | 0.187 | 3710.68 | ||
Guangzhou | 2000 | 0.227 | 841.00 | 61.15 |
2008 | 0.208 | 1330.20 | ||
2017 | 0.223 | 1941.66 | ||
Nanjing | 2000 | 0.184 | 750.25 | 61.09 |
2008 | 0.183 | 1094.85 | ||
2017 | 0.190 | 1849.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Cao, L.; Xu, D.; Zhao, C. Historical Eco-Environmental Quality Mapping in China with Multi-Source Data Fusion. Appl. Sci. 2023, 13, 8051. https://doi.org/10.3390/app13148051
Wu S, Cao L, Xu D, Zhao C. Historical Eco-Environmental Quality Mapping in China with Multi-Source Data Fusion. Applied Sciences. 2023; 13(14):8051. https://doi.org/10.3390/app13148051
Chicago/Turabian StyleWu, Shaoteng, Lei Cao, Dong Xu, and Caiyu Zhao. 2023. "Historical Eco-Environmental Quality Mapping in China with Multi-Source Data Fusion" Applied Sciences 13, no. 14: 8051. https://doi.org/10.3390/app13148051
APA StyleWu, S., Cao, L., Xu, D., & Zhao, C. (2023). Historical Eco-Environmental Quality Mapping in China with Multi-Source Data Fusion. Applied Sciences, 13(14), 8051. https://doi.org/10.3390/app13148051