A Managerial Approach to Investigate Fall Risk in a Rehabilitation Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Define Phase
2.2. The Measure Phase
2.3. The Analyze Phase
3. Results
- Overall, 46.6% of falls involved assisted patients with aids, i.e., those requiring help from medical staff while walking and using auxiliary aids (111 patients);
- In total, 25.2% of falls occurred among autonomous patients with aids, i.e., those not requiring help from medical staff while walking but using auxiliary aids (60 patients);
- Of those experiencing falls, 13.4% were autonomous patients without aids (32 patients);
- In total, 8% were bedridden patients (19 patients);
- Lastly, 6.7% were assisted patients without aids (16 patients).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Report on Falls Prevention in Older Age; World Health Organization: Geneva, Switzerland, 2007; pp. 1–47.
- Oliver, D.O.; Healey, F.; Haines, T.P. Preventing Falls and Fall-Related Injuries in Hospitals. Clin. Geriatr. Med. 2010, 26, 645–692. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, J.A.; Friedkin, R.; Williams, C.S.; Nabors, J.; Acampora, D.; Tinetti, M.E. Health Care Utilization and Costs in a Medicare Population by Fall Status. Med. Care 1998, 38, 1174–1188. [Google Scholar] [CrossRef]
- Oliver, D.; Britton, M.; Seed, P.; Martin, F.C.; Hopper, A.H. Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: Case-control and cohort studies. BMJ 1997, 315, 1049–1053. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Nakamura, T.; Hagino, H.; Endo, N.; Mori, S.; Muto, Y.; Harada, A.; Nakano, T.; Yamamoto, S.; Kushida, K.; et al. Report on the Japanese Orthopaedic Association’s 3-year project observing hip fractures at fixed-point hospitals. J. Orthop. Sci. 2006, 11, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.; Healey, F. Falls risk prediction tools for hospital inpatients: Do they work? Nurs. Times 2009, 105, 18–21. [Google Scholar]
- Healey, F.; Scobie, S.; Oliver, D.; Pruyce, A.; Thomson, R.; Glampson, B. Falls in English and Welsh hospitals: A national observational study based on retrospective analysis of 12 months of patient safety incident reports. BMJ Qual. Saf. 2008, 17, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Strini, V.; Schiavolin, R.; Prendin, A. Fall Risk Assessment Scales: A Systematic Literature Review. Nurs. Rep. 2021, 11, 430–443. [Google Scholar] [CrossRef]
- Morse, J.M.; Morse, R.M.; Tylko, S.J. Development of a Scale to Identify the Fall-Prone Patient. Can. J. Aging 1989, 8, 366–377. [Google Scholar] [CrossRef]
- Tao, S.P. Fall Risk Assessment Tools–Validity Considerations and a Recommended Approach. Ital. J. Med. 2019, 13, 200–204. [Google Scholar] [CrossRef]
- Fanti, M.P.; Ukovich, W. Discrete Event Systems Models and Methods for Different Problems in Healthcare Management. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), Barcelona, Spain, 16–19 September 2014. [Google Scholar]
- Forbus, J.J.; Berleant, D. Discrete-Event Simulation in Healthcare Settings: A Review. Modelling 2022, 3, 417–433. [Google Scholar] [CrossRef]
- Vázquez-Serrano, J.I.; Peimbert-García, R.E.; Cárdenas-Barrón, L.E. Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 12262. [Google Scholar] [CrossRef]
- Ponsiglione, A.M.; Romano, M.; Amato, F. A Finite-State Machine Approach to Study Patients Dropout from Medical Examinations. In Proceedings of the IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Naples, Italy, 6–9 September 2021. [Google Scholar]
- Ricciardi, C.; Cesarelli, G.; Ponsiglione, A.M.; Tommasi, G.D.; Cesarelli, M.; Romano, M.; Improta, G.; Amato, F. Combining simulation and machine learning for the management of healthcare systems. In Proceedings of the IEEE International Conference on Metrology for Extended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE), Rome, Italy, 26–28 October 2022. [Google Scholar]
- Boyle, L.M.; Marshall, A.H.; Mackay, M. A Framework for Developing Generalisable Discrete Event Simulation Models of Hospital Emergency Departments. Eur. J. Oper. Res. 2021, 302, 337–347. [Google Scholar] [CrossRef]
- Franck, T.; Augusto, V.; Xie, X.; Gonthier, R.; Achour, E. Performance Evaluation of an Integrated Care for Geriatric Departments Using Discrete-Event Simulation. In Proceedings of the Winter Simulation Conference (WSC), Huntington Beach, CA, USA, 6–9 December 2015. [Google Scholar]
- Zouri, M.; Cumpat, C.; Zouri, N.; Leon, M.-M.; Mastaleru, A.; Ferworn, A. Decision Support for Resource Optimization Using Discrete Event Simulation in Rehabilitation Hospitals. Rev. Cercet. Interv. Soc. 2019, 65, 82–96. [Google Scholar] [CrossRef]
- Yan, C.; McClure, N.; Dukelow, S.P.; Mann, B.; Round, J. Optimal Planning of Health Services through Genetic Algorithm and Discrete Event Simulation: A Proposed Model and Its Application to Stroke Rehabilitation Care. MDM Policy Pract. 2022, 7, 238146832211340. [Google Scholar] [CrossRef] [PubMed]
- Improta, G.; Donisi, L.; Bossone, E.; Vallefuoco, E.; Ponsiglione, A.M.; Amato, F. Discrete Event Simulation to Improve Clinical Consultations in a Rehabilitation Cardiology Unit. In Proceedings of the E-Health and Bioengineering Conference (EHB), Iasi, Romania, 17–18 November 2022. [Google Scholar]
- Salleh, S.; Thokala, P.; Brennan, A.; Hughes, R.; Dixon, S. Discrete Event Simulation-Based Resource Modelling in Health Technology Assessment. PharmacoEconomics 2017, 35, 989–1006. [Google Scholar] [CrossRef] [PubMed]
- D’Antò, M.; Cosentino, C.; Cuomo, A.; Accardo, R.; Bifulco, P.; Donisi, L.; Romano, M. Evaluation of a New Endobronchial Double Lumen Tube with Integrated Camera: A Hospital Based HTA Experience. IFMBE Proc. 2019, 76, 1028–1037. [Google Scholar]
- Rayhan, D.S.A. A Review on Existing Health Technology Assessment (HTA) Methodologies. Int. J. Health Syst. Transl. Med. 2022, 2, 1–27. [Google Scholar] [CrossRef]
- Yock, P.G.; Zenios, S.; Makower, J.; Brinton, T.J.; Kumar, U.N.; Watkins, F.T.J.; Denend, L.; Krummel, T.M.; Kurihara, C.Q. Biodesign: The Process of Innovating Medical Technologies, 2nd ed.; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Schwartz, J.G.; Kumar, U.N.; Azagury, D.E.; Brinton, T.J.; Yock, P.G. Needs-Based Innovation in Cardiovascular Medicine: The Stanford Biodesign Process. JACC Basic Transl. Sci. 2016, 1, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Augustin, D.A.; Chertow, G.M.; Azagury, D.E. Innovation in Hemodialysis: Using the Biodesign Process to Identify Unmet Needs. J. Vasc. Surg. 2020, 22, 509–514. [Google Scholar] [CrossRef]
- Augustin, D.A.; Yock, C.A.; Wall, J.; Lucian, L.; Krummel, T.; Pietzsch, J.B.; Azagury, D.E. Stanford’s Biodesign Innovation Program: Teaching Opportunities for Value-Driven Innovation in Surgery. Surgery 2020, 167, 535–539. [Google Scholar] [CrossRef]
- Rivers, C.A.; Roher, H.; Boissonault, B.A.; Klinger, C.A.; Mirza, R.M.; Foty, R. Examining Fall Risk Assessment in Geriatric Rehabilitation Settings Using Translational Research. Rehabilit. Nurs. 2020, 46, 137–145. [Google Scholar] [CrossRef] [PubMed]
- de Koning, H.; Verver, J.P.S.; van den Heuvel, J.; Bisgaard, S.; Does, R.J.M.M. Lean Six Sigma in Healthcare. J. Healthc. Qual. 2006, 28, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Heuvel, J.V.D.; Does, R.J.M.M.; Koning, H.D. Lean Six Sigma in a Hospital. Int. J. Six Sigma Compet. Advant. 2006, 2, 377–388. [Google Scholar] [CrossRef]
- McDermott, O.; Antony, J.; Bhat, S.; Jayaraman, R.; Rosa, A.; Marolla, G.; Parida, R. Lean Six Sigma in Healthcare: A Systematic Literature Review on Motivations and Benefits. Processes 2022, 10, 1910. [Google Scholar] [CrossRef]
- Rathi, R.; Vakharia, A.; Shadab, M. Lean Six Sigma in the Healthcare Sector: A Systematic Literature Review. Mater. Today Proc. 2021, 50, 773–781. [Google Scholar] [CrossRef]
- Ahmed, S. Integrating DMAIC Approach of Lean Six Sigma and Theory of Constraints toward Quality Improvement in Healthcare. Rev. Environ. Health 2019, 34, 427–434. [Google Scholar] [CrossRef]
- Monday, L.M. Define, Measure, Analyze, Improve, Control (DMAIC) Methodology as a Roadmap in Quality Improvement. Glob. J. Qual. Saf. Healthc. 2022, 5, 44–46. [Google Scholar] [CrossRef]
- Aboelmaged, M.G. Lean Six Sigma in Healthcare. In Lean Six Sigma Approaches in Manufacturing, Services, and Production, 1st ed.; Tetteh, E.G., Uzochukwu, B.M., Eds.; IGI Global: Hershey, PA, USA, 2015; pp. 231–261. [Google Scholar]
- Ricciardi, C.; Sorrentino, A.; Improta, G.; Abbate, V.; Latessa, I.; Perrone, A.; Triassi, M.; Dell’aversana Orabona, G. A Health Technology Assessment between Two Pharmacological Therapies through Six Sigma: The Case Study of Bone Cancer. TQM J. 2020, 32, 1507–1524. [Google Scholar] [CrossRef]
- Cesarelli, G.; Montella, E.; Scala, A.; Raiola, E.; Triassi, M.; Improta, G. DMAIC Approach for the Reduction of Healthcare-Associated Infections in the Neonatal Intensive Care Unit of the University Hospital of Naples ‘Federico II’. In IFMBE Proceedings, Proceedings of the 8th European Medical and Biological Engineering Conference, EMBEC 2020, Portorož, Slovenia, 29 November–3 December 2020; Jarm, T., Cvetkoska, A., Mahniˇc-Kalamiza, S., Miklavcic, D., Eds.; Springer: Cham, Switzerland, 2021; Volume 80, p. 80. [Google Scholar]
- Ponsiglione, A.M.; Ricciardi, C.; Scala, A.; Fiorillo, A.; Sorrentino, A.; Triassi, M.; Dell’Aversana Orabona, G.; Improta, G. Application of DMAIC Cycle and Modeling as Tools for Health Technology Assessment in a University Hospital. J. Healthc. Eng. 2021, 2021, e8826048. [Google Scholar] [CrossRef]
- Latessa, I.; Ricciardi, C.; Jacob, D.; Jónsson, H., Jr.; Gambacorta, M.; Improta, G.; Gargiulo, P. Health Technology Assessment through Six Sigma Methodology to Assess Cemented and Uncemented Protheses in Total Hip Arthroplasty. Eur. J. Transl. Myol. 2021, 31, 9651. [Google Scholar] [CrossRef]
- Ricciardi, C.; Gubitosi, A.; Vecchione, D.; Cesarelli, G.; De Nola, F.; Ruggiero, R.; Docimo, L.; Improta, G. Comparing Two Approaches for Thyroidectomy: A Health Technology Assessment through DMAIC Cycle. Healthcare 2022, 10, 124. [Google Scholar] [CrossRef]
- Mansur dos Reis, M.E.D.; de Abreu, M.F.; Neto, O.d.O.B.; Viera, L.E.V.; Torres, L.F.; Calado, R.D. DMAIC in Improving Patient Care Processes: Challenges and Facilitators in Context of Healthcare. IFAC-PapersOnLine 2022, 55, 215–220. [Google Scholar] [CrossRef]
- Cesarelli, G.; Petrelli, R.; Ricciardi, C.; D’Addio, G.; Monce, O.; Ruccia, M.; Cesarelli, M. Reducing the Healthcare-Associated Infections in a Rehabilitation Hospital under the Guidance of Lean Six Sigma and DMAIC. Healthcare 2021, 9, 1667. [Google Scholar] [CrossRef] [PubMed]
- Al Kuwaiti, A.; Subbarayalu, A.V. Reducing patients’ falls rate in an Academic Medical Center (AMC) using Six Sigma “DMAIC” approach. Int. J. Health Care Qual. Assur. 2017, 30, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Hill, K.; Hawk, C.; Frye, D.; Kutz, T. 20 Lean six-sigma significantly reduces hospital patient falls by 40% & falls with injury by 72%. BMJ Open Qual. 2022, 11, A27–A28. [Google Scholar]
- Castaldi, S.; Principi, N.; Carnevali, D.; Tiwana, N.; Pietronigro, A.; Mosillo, M.; Marrazzo, M.; Colombo, R.; Avanzi, G.M.; Corna, S. Correlation between fall risk increasing drugs (FRIDs) and fall events at a rehabilitation hospital. Acta Biomed. 2021, 92, e2021397. [Google Scholar]
- Lee, K.-B.; Lee, J.-S.; Jeon, I.-P.; Choo, D.-Y.; Baik, M.-J.; Kim, E.-H.; Kim, W.-S.; Park, C.-S.; Kim, J.-Y.; Shin, Y.-I.; et al. An analysis of fall incidence rate and risk factors in an inpatient rehabilitation unit: A retrospective study. Top. Stroke Rehabil. 2021, 28, 81–87. [Google Scholar] [CrossRef]
- Ivziku, D.; Matarese, M.; Pedone, C. Predictive validity of the Hendrich fall risk model II in an acute geriatric unit. Int. J. Nurs. Stud. 2011, 48, 468–474. [Google Scholar] [CrossRef]
- Rosario, E.R.; Thomas, D.; Do, A.; Nordholm, E. Casa Colina Fall Risk Assessment Scale—Revised: Predicting Falls in Inpatient Rehabilitation Facilities. Arch. Rehab. Res. Clin. Trans. 2022, 4, 100233. [Google Scholar] [CrossRef]
- Chiari, P.; Mosci, D.; Fontana, S. Valutazione di due strumenti di misura del rischio di cadute dei pazienti. Assist. Inferm. Ric. 2002, 21, 117–124. [Google Scholar]
- Nassar, N.; Helou, N.; Madi, C. Predicting falls using two instruments (the Hendrich Fall Risk Model and the Morse Fall Scale) in an acute care setting in Lebanon. J. Clin. Nurs. 2013, 23, 1620–1629. [Google Scholar] [CrossRef]
- Kim, E.A.N.; Mordiffi, S.Z.; Bee, W.H.; Devi, K.; Evans, D. Evaluation of three fall-risk assessment tools in an acute care setting. J. Adv. Nurs. 2007, 60, 427–435. [Google Scholar] [CrossRef]
- Castellini, G.; Demarchi, A.; Lanzoni, M.; Castaldi, S. Fall prevention: Is the STRATIFY tool the right instrument in Italian Hospital inpatient? A retrospective observational study. BMC Health Serv. Res. 2007, 17, 656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Prevenzione Delle Cadute in Ospedale. Available online: https://www.regione.toscana.it/documents/10180/603668/La+prevenzione+delle+cadute+in+ospedale.pdf/96a548bc-23e5-4eea-b7ea-665f30bfb2fe (accessed on 18 March 2023).
- Roman de Mettelinge, T.; Cambier, D. Understanding the Relationship between Walking Aids and Falls in Older Adults. J. Geriatr. Phys. Ther. 2015, 38, 127–132. [Google Scholar] [CrossRef]
- Vieira, E.R.; Freund-Heritage, R.; da Costa, B.R. Risk factors for geriatric patient falls in rehabilitation hospital settings: A systematic review. Clin. Rehabil. 2011, 25, 788–799. [Google Scholar] [CrossRef]
- Callis, N. Falls prevention: Identification of predictive fall risk factors. Appl. Nurs. Res. 2016, 29, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Fischer, I.D.; Krauss, M.J.; Dunagan, W.C.; Birge, S.; Hitcho, E.; Johnson, S.; Costantinou, E.; Fraser, V.J. Patterns and Predictors of Inpatient Falls and Fall-Related Injuries in a Large Academic Hospital. Infect. Control Hosp. Epidemiol. 2005, 26, 822–827. [Google Scholar] [CrossRef] [Green Version]
- Anderson, L.K.; Lane, K. Characteristics of Falls and Recurrent Falls in Residents of an Aging in Place Community: A Case-Control Study. Appl. Nurs. Res. 2020, 51, 151190. [Google Scholar] [CrossRef]
- Hitcho, E.B.; Krauss, M.J.; Birge, S.; Dunagan, W.C.; Fischer, I.; Johnson, S.; Nast, P.A.; Costantinou, E.; Fraser, V.J. Characteristics and Circumstances of Falls in a Hospital Setting. J. Gen. Intern. Med. 2004, 19, 732–739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Project Title | |
---|---|
A Managerial Approach to Investigating Fall Risks in a Rehabilitation Hospital | |
Problem Statement | Objective Statement |
Excessive number of falls in a rehabilitation hospital | Introduce clinical measures that can solve and reduce the presented problem |
Critical to quality | Target |
Clinical effects and consequential interventions due to falls | Analyze the rehabilitative hospital context in relation to falls and eventually realize corrective measures |
Fall recurrences | |
Extra costs due to falls | |
Timeline | |
Define → January 2022–April 2022 | |
Measure → Μay 2022–August 2022 | |
Analyze → September 2022–December 2022 | |
In scope | Out of Scope |
Falls | All other clinical accidents |
Istituti Clinici Scientifici Maugeri, Bari, Italy | All other structures |
Business need | |
Reducing falls and their impact on public health |
Variables | Categories | Statistics | |
---|---|---|---|
Years, mean ± St. dev. | // | 72.6 ± 11.9 | |
Mobility, n [%] | Bedridden | 19 [8.0] | |
Assisted with aids | 111 [46.6] | ||
Assisted without aids | 16 [6.7] | ||
Autonomous with aids | 60 [25.2] | ||
Autonomous without aids | 32 [13.4] | ||
State of consciousness, n [%] | Psychomotor agitation | 14 [5.9] | |
Confusion | 15 [6.3] | ||
Vigilant | 209 [87.8] | ||
Drugs acting on vital signs | Antiarrhythmics, n [%] | Yes | 59 [24.8] |
No | 179 [75.2] | ||
Diuretics, n [%] | Yes | 126 [52.9] | |
No | 112 [47.1] | ||
Hypotensive, n [%] | Yes | 165 [69.3] | |
No | 73 [30.7] | ||
Hypoglycemics, n [%] | Yes | 13 [5.5] | |
No | 225 [94.5] | ||
Laxatives, n [%] | Yes | 14 [5.9] | |
No | 224 [94.1] | ||
Psychoactive drugs | Hypnotics, n [%] | Yes | 21 [8.8] |
No | 217 [91.2] | ||
Opioid, n [%] | Yes | 3 [1.2] | |
No | 235 [98.8] | ||
Sedatives, n [%] | Yes | 49 [20.5] | |
No | 189 [79.5] | ||
Visual impairment, n [%] | Yes | 24 [10.1] | |
No | 214 [89.98] | ||
Antidepressants, n [%] | Yes | 39 [16.4] | |
No | 199 [83.6] | ||
Antiepileptics, n [%] | Yes | 32 [13.4] | |
No | 206 [86.6] | ||
No drug therapy, n [%] | Yes | 7 [2.9] | |
No | 231 [97.1] | ||
Antiparkinsonians, n [%] | Yes | 3 [1.2] | |
No | 235 [98.8] | ||
Systemic antihistamines, n [%] | Yes | 1 [0.4] | |
No | 237 [99.6] | ||
Morse, mean ± St. dev. | // | 33.3 ± 18.5 | |
Stratify, n [%] | 0 | 9 [13.2] | |
1 | 31 [45.6] | ||
2 | 23 [33.8] | ||
3 | 5 [7.4] | ||
Risk, n [%] | Yes, preventive personalized measures | 69 [29.0] | |
Yes, preventive standard measures | 169 [71.0] | ||
Hour of fall, n [%] | Morning | 97 [40.8] | |
Night | 48 [20.2] | ||
Afternoon | 59 [24.8] | ||
Evening | 34 [14.2] | ||
Location, n [%] | Elevator | 1 [0.4] | |
Bathroom | 32 [13.4] | ||
Room | 183 [76.9] | ||
Corridor | 10 [4.2] | ||
Outdoors | 3 [1.3] | ||
Gym | 3 [1.3] | ||
Waiting room | 5 [2.1] | ||
Other | 1 [0.4] | ||
Mechanism, n [%] | Tripped | 20 [8.4] | |
Loss of consciousness | 6 [2.5] | ||
Loss of balance | 58 [24.4] | ||
Loss of strength | 30 [12.6] | ||
Slipped | 83 [34.9] | ||
Others | 41 [17.2] | ||
Dynamic, n [%] | Waiting in wheelchair | 8 [3.3] | |
Falling from bed while sleeping | 5 [2.1] | ||
While urinating | 15 [6.3] | ||
During assisted movements | 8 [3.3] | ||
During personal cleaning | 9 [3.8] | ||
While dressing up | 4 [1.7] | ||
Not available | 18 [7.6] | ||
While picking up items | 9 [3.8] | ||
While getting in/out of bed | 64 [26.9] | ||
While getting in/out of the wheelchair/chair | 56 [23.5] | ||
While removing restrains aids | 4 [1.7] | ||
Other | 38 [16.0] | ||
Clinical impact, n [%] | With injury | 76 [31.9] | |
Without apparent injury | 162 [68.1] | ||
Contusions, n [%] | Yes | 28 [11.8] | |
No | 210 [88.2] | ||
Distortions, n [%] | Yes | 1 [0.4] | |
No | 237 [99.6] | ||
Hematoma, n [%] | Yes | 6 [2.5] | |
No | 232 [97.5] | ||
Excoriation, n [%] | Yes | 26 [10.9] | |
No | 212 [89.1] | ||
Wounds, n [%] | Yes | 9 [3.8] | |
No | 229 [96.2] | ||
Fractures, n [%] | Yes | 8 [3.4] | |
No | 230 [96.6] | ||
Head trauma, n [%] | Yes | 17 [7.1] | |
No | 221 [92.9] | ||
No injuries, n [%] | Yes | 25 [10.5] | |
No | 213 [89.5] | ||
Cryotherapy, n [%] | Yes | 17 [7.1] | |
No | 221 [92.9] | ||
Emergency department, n [%] | Yes | 4 [1.7] | |
No | 234 [98.3] | ||
Medication, n [%] | Yes | 35 [14.7] | |
No | 203 [85.3] | ||
No interventions, n [%] | Yes | 106 [44.5] | |
No | 132 [55.5] | ||
Observation, n [%] | Yes | 52 [21.8] | |
No | 186 [78.2] | ||
RX, n [%] | Yes | 37 [15.5] | |
No | 201 [84.5] | ||
CT brain, n [%] | Yes | 30 [12.6] | |
No | 208 [87.4] | ||
Medical therapy, n [%] | Yes | 8 [3.4] | |
No | 230 [96.6] | ||
Prognosis, n [%] | None | 169 [71.0] | |
Mild ≤ 3 days | 50 [21.0] | ||
Moderate (from 4 to 20 days) | 15 [6.3] | ||
Severe (from 21 to 39 days) | 3 [1.3] | ||
Serious ≥ 40 days | 1 [0.4] | ||
Sentinel event, n [%] | Yes | 93 [39.1] | |
No | 145 [60.9] |
Variables | Categories | without Recurrences (n = 200) | with Recurrences (n = 38) | p-Value | |
---|---|---|---|---|---|
Years, mean ± St. dev. | - | 72.6 ± 12.1 | 72.1 ± 10.9 | 0.406 | |
Mobility, n [%] | Bedridden | 15 [7.5] | 4 [10.5] | 0.106 | |
Assisted with aids | 90 [45.0] | 25 [65.8] | |||
Assisted without aids | 14 [7.0] | 2 [5.3] | |||
Autonomous with aids | 53 [26.5] | 5 [13.1] | |||
Autonomous without aids | 28 [14.0] | 2 [5.3] | |||
State of consciousness, n [%] | Psychomotor agitation | 6 [3.0] | 8 [21.0] | <0.001 *** | |
Confusion | 11 [5.5] | 5 [13.2] | |||
Vigilant | 183 [91.5] | 25 [65.8] | |||
Drugs acting on vital signs | Antiarrhythmics, n [%] | Yes | 51 [25.5] | 5 [13.2] | 0.100 |
No | 149 [74.5] | 33 [86.8] | |||
Diuretics, n [%] | Yes | 105 [52.5] | 18 [47.4] | 0.562 | |
No | 95 [47.5] | 20 [52.6] | |||
Hypotensive, n [%] | Yes | 136 [68.0] | 30 [78.9] | 0.178 | |
No | 64 [32.0] | 8 [21.1] | |||
Hypoglycemics, n [%] | Yes | 10 [5.0] | 5 [13.2] | 0.058 | |
No | 190 [95.0] | 33 [86.8] | |||
Laxatives, n [%] | Yes | 14 [7.0] | 3 [7.9] | 0.844 | |
No | 186 [93.0] | 35 [92.1] | |||
Psychoactive drugs | Hypnotics, n [%] | Yes | 17 [8.5] | 7 [18.4] | 0.063 |
No | 183 [91.5] | 31 [81.6] | |||
Opioid, n [%] | Yes | 2 [1.0] | 0 [0.0] | 0.536 | |
No | 198 [99.0] | 38 [100.0] | |||
Sedatives, n [%] | Yes | 38 [19.0] | 13 [34.2] | 0.036 | |
No | 162 [81.0] | 25 [65.8] | |||
Visual impairment, n [%] | Yes | 20 [10.0] | 2 [5.3] | 0.428 | |
No | 180 [90.0] | 36 [94.7] | |||
Antidepressants, n [%] | Yes | 32 [16.0] | 13 [34.2] | 0.009 ** | |
No | 168 [84.0] | 25 [65.8] | |||
Antiepileptics, n [%] | Yes | 28 [14.0] | 5 [13.2] | 0.890 | |
No | 172 [86.0] | 33 [86.8] | |||
No drug therapy, n [%] | Yes | 6 [3.0] | 1 [2.6] | 0.902 | |
No | 194 [97.0] | 37 [97.4] | |||
Antiparkinsonians, n [%] | Yes | 3 [1.5] | 0 [0.0] | 0.447 | |
No | 197 [98.5] | 38 [100.0] | |||
Systemic antihistamines, n [%] | Yes | 1 [0.5] | 0 [0.0] | 0.662 | |
No | 199 [99.5] | 38 [100.0] | |||
Morse, mean ± St. dev. | - | 32.5 ± 17.8 | 53.3 ± 22.1 | <0.001 *** | |
Stratify, n [%] | 0 | 8 [15.4] | 0 [0.0] | 0.004 ** | |
1 | 26 [50.0] | 5 [23.8] | |||
2 | 16 [30.8] | 10 [47.6] | |||
3 | 2 [3.8] | 5 [23.8] | |||
4 | 0 [0.0] | 1 [4.8] | |||
Risk, n [%] | Yes, preventive personalized measures | 51 [25.5] | 15 [39.5] | <0.001 *** | |
Yes, preventive standard measures | 149 [74.5] | 23 [60.5] | |||
Hour of fall, n [%] | Morning | 86 [43.0] | 14 [36.8] | 0.875 | |
Night | 36 [18.0] | 8 [21.1] | |||
Afternoon | 48 [24.0] | 9 [23.7] | |||
Evening | 30 [15.0] | 7 [18.4] | |||
Location, n [%] | Elevator | 1 [0.5] | 1 [2.6] | 0.162 | |
Bathroom | 30 [15.0] | 2 [5.3] | |||
Room | 148 [74.0] | 34 [89.5] | |||
Corridor | 9 [4.5] | 0 [0.0] | |||
Outdoors | 3 [1.5] | 0 [0.0] | |||
Gym | 3 [1.5] | 0 [0.0] | |||
Waiting room | 5 [2.5] | 0 [0.0] | |||
Other | 1 [0.5] | 1 [2.6] | |||
Mechanism, n [%] | Tripped | 17 [8.5] | 2 [5.3] | 0.015 | |
Loss of consciousness | 6 [3.0] | 0 [0.0] | |||
Loss of balance | 52 [26.0] | 7 [18.4] | |||
Loss of strength | 26 [13.0] | 3 [7.9] | |||
Slipped | 70 [35.0] | 11 [28.9] | |||
Others | 29 [14.5] | 15 [39.5] | |||
Dynamic, n [%] | Waiting in wheelchair | 6 [3.0] | 1 [2.6] | 0.350 | |
Falling from bed while sleeping | 4 [2.0] | 2 [5.3] | |||
While urinating | 15 [7.5] | 0 [0.0] | |||
During assisted movements | 8 [4.0] | 0 [0.0] | |||
During personal cleaning | 8 [4.0] | 1 [2.6] | |||
While dressing up | 4 [2.0] | 0 [0.0] | |||
Not available | 16 [8.0] | 4 [10.6] | |||
While picking up items | 7 [3.5] | 0 [0.0] | |||
While getting in/out of bed | 52 [26.0] | 8 [21.1] | |||
While getting in/out of the wheelchair/chair | 49 [24.5] | 11 [28.9] | |||
While removing restrains aids | 2 [1.0] | 1 [2.6] | |||
Other | 29 [14.5] | 10 [26.3] | |||
Clinical impact, n [%] | With injury | 69 [34.5] | 13 [34.2] | 0.973 | |
Without apparent injury | 131 [65.5] | 25 [65.8] | |||
Contusions, n [%] | Yes | 24 [12.0] | 3 [7.9] | 0.464 | |
No | 176 [88.0] | 35 [92.1] | |||
Distortions, n [%] | Yes | 1 [0.5] | 0 [0.0] | 0.662 | |
No | 199 [99.5] | 38 [100.0] | |||
Hematoma, n [%] | Yes | 6 [3.0] | 0 [0.0] | 0.280 | |
No | 194 [97.0] | 38 [100.0] | |||
Excoriation, n [%] | Yes | 22 [11.0] | 3 [7.9] | 0.567 | |
No | 178 [89.0] | 35 [92.1] | |||
Wounds, n [%] | Yes | 9 [4.5] | 2 [5.3] | 0.837 | |
No | 191 [95.5] | 36 [94.7] | |||
Fractures, n [%] | Yes | 7 [3.5] | 2 [5.3] | 0.601 | |
No | 193 [96.5] | 36 [94.7] | |||
Head trauma, n [%] | Yes | 17 [8.5] | 2 [5.3] | 0.500 | |
No | 183 [91.5] | 36 [94.7] | |||
No injuries, n [%] | Yes | 20 [10.0] | 6 [15.8] | 0.294 | |
No | 180 [90.0] | 32 [84.2] | |||
Cryotherapy, n [%] | Yes | 16 [8.0] | 3 [7.9] | 0.982 | |
No | 184 [92.0] | 35 [92.1] | |||
Emergency department, n [%] | Yes | 4 [2.0] | 0 [0.0] | 0.379 | |
No | 196 [98.0] | 38 [100.0] | |||
Medication, n [%] | Yes | 31 [15.5] | 6 [15.8] | 0.964 | |
No | 169 [84.5] | 32 [84.2] | |||
No interventions, n [%] | Yes | 82 [41.0] | 17 [44.7] | 0.668 | |
No | 118 [59.0] | 21 [55.3] | |||
Observation, n [%] | Yes | 44 [22.0] | 7 [18.4] | 0.622 | |
No | 156 [78.0] | 31 [81.6] | |||
RX, n [%] | Yes | 32 [16.0] | 4 [10.5] | 0.388 | |
No | 168 [84.0] | 34 [89.5] | |||
CT brain, n [%] | Yes | 27 [13.5] | 5 [13.2] | 0.955 | |
No | 173 [86.5] | 33 [86.8] | |||
Medical therapy, n [%] | Yes | 7 [3.5] | 0 [0.0] | 0.242 | |
No | 193 [96.5] | 38 [100.0] | |||
Prognosis, n [%] | None | 137 [68.5] | 27 [71.0] | 0.706 | |
Mild ≤ 3 days | 45 [22.5] | 7 [18.4] | |||
Moderate (from 4 to 20 days) | 14 [7.0] | 2 [5.3] | |||
Severe (from 21 to 39 days) | 3 [1.5] | 2 [5.3] | |||
Serious ≥ 40 days | 1 [0.5] | 0 [0.0] | |||
Sentinel event, n [%] | Yes | 80 [40.0] | 13 [34.2] | 0.851 | |
No | 120 [60.0] | 25 [65.8] |
Variables | Categories | Statistics |
---|---|---|
No interventions, n [%] | Yes | 132 [45.4] |
No | 159 [54.6] | |
Cryotherapy, n [%] | Yes | 21 [7.2] |
No | 270 [92.8] | |
Emergency department, n [%] | Yes | 4 [1.4] |
No | 287 [98.6] | |
Medication, n [%] | Yes | 42 [14.4] |
No | 249 [85.6] | |
Observation, n [%] | Yes | 61 [21.0] |
No | 230 [79.0] | |
RX, n [%] | Yes | 42 [14.4] |
No | 249 [85.6] | |
CT brain, n [%] | Yes | 37 [12.7] |
No | 254 [87.3] | |
Medical therapy, n [%] | Yes | 8 [2.7] |
No | 283 [97.3] | |
Prognosis, n [%] | None | 209 [71.8] |
Mild ≤ 3 days | 59 [20.3] | |
Moderate (from 4 to 20 days) | 17 [5.8] | |
Severe (from 21 to 39 days) | 5 [1.7] | |
Serious ≥ 40 days | 1 [0.4] | |
Sentinel event, n [%] | Yes | 111 [38.1] |
No | 180 [61.9] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesarelli, G.; Petrelli, R.; Adamo, S.; Monce, O.; Ricciardi, C.; Cristallo, E.; Ruccia, M.; Cesarelli, M. A Managerial Approach to Investigate Fall Risk in a Rehabilitation Hospital. Appl. Sci. 2023, 13, 7847. https://doi.org/10.3390/app13137847
Cesarelli G, Petrelli R, Adamo S, Monce O, Ricciardi C, Cristallo E, Ruccia M, Cesarelli M. A Managerial Approach to Investigate Fall Risk in a Rehabilitation Hospital. Applied Sciences. 2023; 13(13):7847. https://doi.org/10.3390/app13137847
Chicago/Turabian StyleCesarelli, Giuseppe, Rita Petrelli, Sarah Adamo, Orjela Monce, Carlo Ricciardi, Emanuele Cristallo, Maria Ruccia, and Mario Cesarelli. 2023. "A Managerial Approach to Investigate Fall Risk in a Rehabilitation Hospital" Applied Sciences 13, no. 13: 7847. https://doi.org/10.3390/app13137847
APA StyleCesarelli, G., Petrelli, R., Adamo, S., Monce, O., Ricciardi, C., Cristallo, E., Ruccia, M., & Cesarelli, M. (2023). A Managerial Approach to Investigate Fall Risk in a Rehabilitation Hospital. Applied Sciences, 13(13), 7847. https://doi.org/10.3390/app13137847