Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Design and Search Strategy
2.3. Data Collection and Study Quality Assessment
2.4. Risk of Bias Assessment
3. Results
4. Discussion
- Manufacturing technologies
- Laser sintering
- Milling
- Stereolithography
- Other technologies
- -
- improved patient cooperation and comfort
- -
- decreased chair-side and laboratory time
- -
- enhanced precision
- -
- enhanced efficacy and effectiveness
- Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsolakis, I.A.; Gizani, S.; Panayi, N.; Antonopoulos, G.; Tsolakis, A.I. Three-Dimensional Printing Technology in Orthodontics for Dental Models: A Systematic Review. Children 2022, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.P.; Dourado, P.H.N.; de Araújo, C.A.R.; No-Cortes, J.; Pinhata-Baptista, O.H. Digital workflow to produce esthetic space maintainers for growing patients. J. Prosthet. Dent. 2022, 2022, S0022-3913. [Google Scholar] [CrossRef] [PubMed]
- Dursun, E.; Costa, A.M.-D.; Moussally, C. Chairside CAD/CAM Composite Onlays for the Restoration Of Primary Molars. J. Clin. Pediatr. Dent. 2018, 42, 349–354. [Google Scholar] [CrossRef]
- Dhanotra, K.G.; Bhatia, R. Digitainers-Digital Space Maintainers: A Review. Int. J. Clin. Pediatr. Dent. 2021, 14 (Suppl. 1), S69–S75. [Google Scholar] [CrossRef] [PubMed]
- Jheon, A.H.; Oberoi, S.; Solem, R.C.; Kapila, S. Moving towards precision orthodontics: An evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod. Craniofac. Res. 2017, 20 (Suppl. 1), 106–113. [Google Scholar] [CrossRef] [PubMed]
- Barbería, E.; Lucavechi, T.; Cárdenas, D.; Maroto, M. Free-end space maintainers: Design, utilization and advantages. J. Clin. Pediatr. Dent. 2006, 31, 5–8. [Google Scholar] [CrossRef]
- Nadelman, P.; Magno, M.B.; Pithon, M.M.; Castro, A.C.R.; Maia, L.C. Does the premature loss of primary anterior teeth cause morphological, functional and psychosocial consequences? Braz. Oral Res. 2021, 35, e092. [Google Scholar] [CrossRef]
- Uribe, F.; Meiers, J.C.; Nanda, R. Fixed retention of congenitally missing maxillary lateral incisors using a chairside, prefabricated fiber-reinforced composite bridge. World J. Orthod. 2008, 9, 349–354. [Google Scholar]
- Dogan, M.C.; Dogan, S.K.; Kendi, E. Complications of pediatric denture misuse: A case report. Oral Health Prev Dent. 2005, 3, 127–130. [Google Scholar]
- Watt, E.; Ahmad, A.; Adamji, R.; Katsimpali, A.; Ashley, P.; Noar, J. Space maintainers in the primary and mixed dentition-a clinical guide. Br. Dent. J. 2018, 225, 293–298, Erratum in: Br. Dent. J. 2018, 225, 555. [Google Scholar] [CrossRef]
- Vij, A.A.; Reddy, A. Using digital impressions to fabricate space maintainers: A case report. Clin. Case Rep. 2020, 8, 1274–1276. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, C.P.; Ehrenfeld, M. The Use of MMF Screws: Surgical Technique, Indications, Contraindications, and Common Problems in Review of the Literature. Craniomaxillofac Trauma Reconstr. 2010, 3, 55–80. [Google Scholar] [CrossRef] [PubMed]
- Fathian, M.; Kennedy, D.B.; Nouri, M.R. Laboratory-made space maintainers: A 7-year retrospective study from private pediatric dental practice. Pediatr Dent. 2007, 29, 500–506. [Google Scholar]
- American Academy of Pediatric Dentistry. Management of the developing dentition and occlusion in pediatric dentistry. The reference manual of pediatric dentistry. Chic. Ill Am. Acad. Pediatr. Dent. 2020, 33, 393–409. [Google Scholar]
- Law, C.S. Management of premature primary tooth loss in the child patient. J. Calif. Dent. Assoc. 2013, 41, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, Y.; Zhao, Y.; Liu, H. Computer-aided design of polyetheretherketone for application to removable pediatric space maintainers. BMC Oral Health. 2020, 20, 201. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Grover, J.; Panthri, P. Space maintenance with an innovative “tube and loop” space maintainer (Nikhil appliance). Int. J. Clin. Pediatr. Dent. 2016, 9, 86. [Google Scholar]
- Kawara, M.; Komiyama, O.; Kimoto, S.; Kobayashi, N.; Kobayashi, K.; Nemoto, K. Distortion behavior of heat-activated acrylic denture-base resin in conventional and long, low-temperature processing methods. J. Dent. Res. 1998, 77, 1446–1453. [Google Scholar] [CrossRef]
- Krishnamurthy, D.M.; Singh, R.; Mistry, G. Interim three-dimensional printed overlay prosthesis for an adolescent patient with oligodontia. J. Indian Prosthodont. Soc. 2021, 21, 304–307. [Google Scholar] [CrossRef]
- Ahmad, A.J.; Parekh, S.; Ashley, P.F. Methods of space maintenance for premature loss of a primary molar: A review. Eur. Arch. Paediatr. Dent. 2018, 19, 311–320. [Google Scholar] [CrossRef]
- Garg, A.; Samadi, F.; Jaiswal, J.N.; Saha, S. ‘Metal to resin’: A comparative evaluation of conventional band and loop space maintainer with the fiber reinforced composite resin space maintainer in children. J. Indian Soc. Pedod. Prev. Dent. 2014, 32, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.Z.; Kennedy, D.B. Space control in the primary and mixed dentitions. Dent. Clin. N. Am. 1978, 22, 579–601. [Google Scholar] [CrossRef]
- Laing, E.; Ashley, P.; Naini, F.B.; Gill, D.S. Space maintenance. Int. J. Paediatr. Dent. 2009, 19, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kirzioğlu, Z.; Ertürk, M.S. Success of reinforced fiber material space maintainers. J. Dent. Child. 2004, 71, 158–162. [Google Scholar]
- Soni, H.K. Application of CAD-CAM for Fabrication of Metal-Free Band and Loop Space Maintainer. Clin. Diagn. Res. 2017, 11, ZD14–ZD16. [Google Scholar] [CrossRef]
- Hill, C.J.; Sorenson, H.W.; Mink, J.R. Space maintenance in a child dental care program. J. Am. Dent. Assoc. 1975, 90, 811–815. [Google Scholar] [CrossRef]
- Pawar, B.A. Maintenance of space by innovative three-dimensional-printed band and loop space maintainer. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 205–208. [Google Scholar] [CrossRef]
- Kargul, B.; Caglar, E.; Kabalay, U. Glass fiber reinforced composite resin space maintainer: Case reports. J. Dent. Child. 2003, 70, 258–261. [Google Scholar]
- Kargul, B.; Caglar, E.; Kabalay, U. Glass fiber-reinforced composite resin as fixed space maintainers in children: 12-month clinical follow-up. J. Dent. Child. 2005, 72, 109–112. [Google Scholar]
- Mittal, S.; Sharma, A.; Sharma, A.K.; Gupta, K.K.; Gaur, A.; Pathania, V. Banded versus Single-sided bonded space maintainers: A Comparative Study. J. Dent. Sci. 2018, 10, 29–36. [Google Scholar]
- Subramaniam, P.; Babu, G.; Sunny, R. Glass fiber-reinforced composite resin as a space maintainer: A clinical study. J. Indian Soc. Pedod. Prev. Dent. 2008, 26 (Suppl. 3), S98–S103. [Google Scholar] [PubMed]
- Tuloglu, N.; Bayrak, S.; Tunc, E.S. Different clinical applications of bondable reinforcement ribbond in pediatric dentistry. Eur. J. Dent. 2009, 3, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Ierardo, G.; Luzzi, V.; Lesti, M.; Vozza, I.; Brugnoletti, O.; Polimeni, A.; Bossù, M. Peek polymer in orthodontics: A pilot study on children. J. Clin. Exp. Dent. 2017, 9, e1271–e1275. [Google Scholar] [CrossRef] [PubMed]
- Zarean, P.; Zarean, P.; Thieringer, F.M.; Mueller, A.A.; Kressmann, S.; Erismann, M.; Sharma, N.; Benitez, B.K. A Point-of-Care Digital Workflow for 3D Printed Passive Presurgical Orthopedic Plates in Cleft Care. Children 2022, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Madhuri, G.; Sharma, N.; Ranjan, S.; Ade, S.; Pusa, D. Glimpse of 3D printing in dentistry: A review. J. Adv. Med. Dent. Scie Res. 2021, 9, 127–130. [Google Scholar]
- Vasudavan, S.; Sullivan, S.R.; Sonis, A.L. Comparison of intraoral 3D scanning and conventional impressions for fabrication of orthodontic retainers. J. Clin. Orthod. 2010, 44, 495–497. [Google Scholar]
- Yilmaz, H.; Aydin, M.N. Digital versus conventional impression method in children: Comfort, preference and time. Int. J. Paediatr. Dent. 2019, 29, 728–735. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tokuc, M.; Yilmaz, H. Comparison of fit accuracy between conventional and CAD/CAM-fabricated band-loop space maintainers. Int. J. Paediatr. Dent. 2022, 32, 764–771. [Google Scholar] [CrossRef]
- Khanna, S.; Rao, D.; Panwar, S.; Pawar, B.A.; Ameen, S. 3D Printed Band and Loop Space Maintainer: A Digital Game Changer in Preventive Orthodontics. J. Clin. Pediatr. Dent. 2021, 45, 147–151. [Google Scholar] [CrossRef]
- Lee, J.H. Fully digital workflow for the fabrication of a tooth-colored space maintainer for a young patient. J. Esthet. Restor. Dent. 2022, 35, 561–566. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Feng, S.; Liu, H. Laser Medical Image Reconstruction and Computer Aided Design of Polymethyl Methacrylate for Pediatric Removable Space Maintainer Applications. J. Med. Imaging Health Inform. 2020, 10, 2842–2848. [Google Scholar] [CrossRef]
- Mondal, K.; Tripathy, P.K. Preparation of Smart Materials by Additive Manufacturing Technologies: A Review. Materials 2021, 14, 6442. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Nahar, P.; Ali, H.M. Current perspectives of 3D printing in dental applications. Braz. Dent. Sci. 2021, 24, 1–9. [Google Scholar] [CrossRef]
- Oberoi, G.; Nitsch, S.; Edelmayer, M.; Janjić, K.; Müller, A.S.; Agis, H. 3D Printing-Encompassing the Facets of Dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172. [Google Scholar] [CrossRef]
- Zandinejad, A.; Khanlar, L.N.; Barmak, A.B.; Ikeda, M.; Tagami, J.; Masri, R. Shear bond strength of porcelain to milled and stereolithography additively manufactured zirconia with and without surface treatment: An in vitro study. J. Prosthet. Dent. 2023, in press. [CrossRef]
- Revilla-León, M.; Gómez-Polo, M.; Park, S.H.; Barmak, A.B.; Özcan, M. Adhesion of veneering porcelain to cobalt-chromium dental alloys processed with casting, milling, and additive manufacturing methods: A systematic review and meta-analysis. J. Prosthet. Dent. 2022, 128, 575–588. [Google Scholar] [CrossRef]
- Hegedus, T.; Kreuter, P.; Kismarczi-Antalffy, A.A.; Demeter, T.; Banyai, D.; Vegh, A.; Geczi, Z.; Hermann, P.; Payer, M.; Zsembery, A.; et al. User Experience and Sustainability of 3D Printing in Dentistry. Int. J. Environ. Res. Public Health 2022, 19, 1921. [Google Scholar] [CrossRef]
- Huang, S.; Wei, H.; Li, D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front. Bioeng. Biotechnol. 2023, 11, 1100155. [Google Scholar] [CrossRef]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. J. Prosthodont. 2020, 29, 579–593. [Google Scholar] [CrossRef]
- Lee, S. Prospect for 3D printing technology in medical, dental and pediatric dental field. J. Korean Acad. Pediatr. Dent. 2016, 43, 93–108. [Google Scholar] [CrossRef]
- Byakodi, J. Application of 3D printing in dentistry-review. Eur. J. Pharm. Med. Res. 2019, 6, 139–141. [Google Scholar]
- Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef] [PubMed]
- Nagib, R.; Szuhanek, C.; Moldoveanu, B.; Negrutiu, M.L.; Sinescu, C.; Brad, S. Custom designed orthodontic attachment manufactured using a biocompatible 3D printing material. Mater. Plast. 2017, 54, 757–758. [Google Scholar] [CrossRef]
- Al-Halabi, M.N.; Bshara, N.; Nassar, J.A.; Comisi, J.C.; Rizk, C.K. Clinical Performance of Two Types of Primary Molar Indirect Crowns Fabricated by 3D Printer and CAD/CAM for Rehabilitation of Large Carious Primary Molars. Eur. J. Dent. 2021, 15, 463–468. [Google Scholar] [CrossRef]
- Pillai, S.; Upadhyay, A.; Khayambashi, P.; Farooq, I.; Sabri, H.; Tarar, M.; Lee, K.T.; Harb, I.; Zhou, S.; Wang, Y.; et al. Dental 3D-Printing: Transferring Art from the Laboratories to the Clinics. Polymers 2021, 13, 157. [Google Scholar] [CrossRef]
- Du, Y.; Yang, D.; Pang, Y.; Liu, C.; Zhang, K. Application of CAD and 3D printing in the treatment of pediatric multiple mandible fractures: A case report. Med. Case Rep. Study Protoc. 2021, 2, e0095. [Google Scholar] [CrossRef]
- Dupret-Bories, A.; Vergez, S.; Meresse, T.; Brouillet, F.; Bertrand, G. Contribution of 3D printing to mandibular reconstruction after cancer. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 133–136. [Google Scholar] [CrossRef]
- Lee, A.Y.; Patel, N.A.; Kurtz, K.; Edelman, M.; Koral, K.; Kamdar, D.; Goldstein, T. The use of 3D printing in shared decision making for a juvenile aggressive ossifying fibroma in a pediatric patient. Am. J. Otolaryngol. 2019, 40, 779–782. [Google Scholar] [CrossRef]
- Dong, Z.; Li, Q.; Bai, S.; Zhang, L. Application of 3-Dimensional Printing Technology to Kirschner Wire Fixation of Adolescent Condyle Fracture. J. Oral Maxillofac. Surg. 2015, 73, 1970–1976. [Google Scholar] [CrossRef]
- Chakravarthy, C.; Gupta, N.C.; Patil, R. A Simplified Digital Workflow for the Treatment of Pediatric Mandibular Fractures Using Three-Dimensional (3D) Printed Cap Splint: A Case Report. Craniomaxillofacial Trauma Reconstr. Open 2019, 3, e67–e70. [Google Scholar] [CrossRef]
- Obregon, F.; Vaquette, C.; Ivanovski, S.; Hutmacher, D.W.; Bertassoni, L.E. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J. Dent. Res. 2015, 94 (Suppl. 9), 143S–152S. [Google Scholar] [CrossRef]
- Tibbits, S. 4D printing: Multi-material shape change. Archit Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Kessler, A.; Hickel, R.; Reymus, M. 3D Printing in Dentistry-State of the Art. Oper. Dent. 2020, 45, 30–40. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.-F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef] [PubMed]
- Dolabdjian, H.; Strietzel, R. Method of Manufacture of Dental Prostheses and Auxiliary Elements. European Patent Application 1 021 997 B2, 26 July 2000. (In German). [Google Scholar]
- Kumar, S. Selective laser sintering: A qualitative and objective approach. JOM 2003, 55, 43–47. [Google Scholar] [CrossRef]
- Venkatesh, K.V.; Nandini, V.V. Direct metal laser sintering: A digitised metal casting technology. J. Indian Prosthodont Soc. 2013, 13, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Zarean, P.; Malgaroli, P.; Zarean, P.; Seiler, D.; de Wild, M.; Thieringer, F.M.; Sharma, N. Effect of Printing Parameters on Mechanical Performance of Material-Extrusion 3D-Printed PEEK Specimens at the Point-of-Care. Appl. Sci. 2023, 13, 1230. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, N.; Kango, S.; Sharma, S. Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. Eur. Polym. J. 2021, 147, 110295. [Google Scholar] [CrossRef]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Müller, W.D. Flexural behavior of PEEK materials for dental application. Dent. Mater. 2015, 31, 1377–1384. [Google Scholar] [CrossRef]
- Zoidis, P.; Papathanasiou, I.; Polyzois, G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. J. Prosthodont. 2016, 25, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Fang, Y.; Liao, Y.; Chen, G.; Gao, C.; Zhu, P. 3D printing and digital processing techniques in dentistry: A review of literature. Adv. Eng. Mater. 2019, 21, 1801013. [Google Scholar] [CrossRef]
- Mcomie, M. Aesthetic Long-Span Bridge Using BruxZir. Dental Tribune Middle East & Africa Edition; September–October. Available online: https://www.yumpu.com/en/document/read/50868219/esthetic-long-span-bridgeusing-bruxzir (accessed on 27 May 2023).
# | Medline | Results |
---|---|---|
1 | (“computer aided design”[MeSH Terms]) OR (“3d print*“[Title/Abstract]) OR (“three dimensional print*”[Title/Abstract]) OR (“computer aided design*”[Title/Abstract]) OR (“computer assisted design*”[Title/Abstract]) OR (“computer aided manufacturing”[Title/Abstract]) OR (“computer assisted manufacturing”[Title/Abstract]) OR (“CAD-CAM”[Title/Abstract]) OR (Digital Technology [MeSH Terms]) OR (Digital Technology [Title/Abstract]) OR (CAD/CAM [Title/Abstract]) OR (additive manufacturing [Title/Abstract]) OR (rapid prototyping [Title/Abstract]) OR (computer aided modeling [Title/Abstract]) | 55,251 |
2 | “pediatric dentist*”[MeSH Terms] OR “Pedodontics”[Title/Abstract] OR “pediatric dentist*”[Title/Abstract] OR “dental care for children”[MeSH Terms] OR “dental care for children”[Title/Abstract] OR “dentistry for children”[Title/Abstract] OR “pediatrics”[MeSH Terms] OR “pediatrics”[Title/Abstract] OR (paediatric dentist* [Title/Abstract]) OR (paediatric* [Title/Abstract]) OR (orthodontic* [Title/Abstract]) OR (Orthodontics, Preventive [MeSH Terms]) OR (Preventive Orthodontics [Title/Abstract]) | 229,474 |
3 | “space maintenance, orthodontic”[MeSH Terms]) OR (“orthodontic space maintenance*”[Title/Abstract]) OR (“space maintenance*”[Title/Abstract]) OR (“space maintainer*”[Title/Abstract]) OR (space retainer* [Title/Abstract]) OR (orthodontic space retainer* [Title/Abstract]) OR (“band and loop”[Title/Abstract]) OR (“band and loop space maintainer*”[Title/Abstract]) OR (band loop [Title/Abstract]) | 1096 |
#1 AND #2 AND #3 | 8 | |
Embase | ||
1 | ‘computer aided design/computer aided manufacturing’/de OR ‘computer aided design/computer aided manufacturing’/exp OR ‘computer aided design/computer aided manufacturing’:ab,ti OR ‘computer aided design’/exp OR ‘computer aided design’/de OR ‘computer aided design’:ab,ti OR ‘computer aided manufacture*’:ab,ti OR ‘computer assisted manufactur*’:ab,ti OR ‘computer assisted design*’:ab,ti OR ‘three dimensional printing’/de OR ‘three dimensional print*’:ab,ti OR ‘3 dimensional print*’:ab,ti OR ‘3D print*’:ab,ti OR ‘CAD/CAM software’/de OR ‘CAD/CAM software’:ab,ti OR ‘dental CAD/CAM system’/de OR ‘dental CAD/CAM system’:ab,ti OR ‘digital technology’/de OR ‘digital technology’:ab,ti OR ‘additive manufactur*’:ab,ti | 65,767 |
2 | ‘space maintenance*’:ab,ti OR ‘orthodontic space maintenance*’:ab,ti OR ‘space maintainer*’:ab,ti OR ‘space retainer*’:ab,ti OR ‘orthodontic space maintainer’/exp OR ‘orthodontic space maintainer’:ab,ti OR ‘orthodontic space retainer*’:ab,ti OR ‘band and loop’:ab,ti OR ‘band and loop space maintainer*’:ab,ti OR ‘preventive orthodontics’:ab,ti | 681 |
3 | ‘pediatric dentistry’/exp OR ‘pediatric dentistry’/de OR ‘pediatric dentist*’:ab,ti OR ‘pedodontics’:ab,ti OR ‘paediatric dentist*’:ab,ti OR ‘dental care for children’:ab,ti OR ‘dentistry for children’:ab,ti OR ‘orthodontic*’:ab,ti | 48,896 |
#1 AND #2 AND #3 | 6 | |
Web of Science | ||
1 | TS = (pediatric dentist*) OR TS = (Pedodontics) OR TS = (paediatric dentist*) OR TS = (dental care for children) OR TS = (dentistry for children) OR TS = (pediatric*) OR TS = (orthodontic*) OR TS = (Preventive Orthodontic*) | 326,793 |
2 | TS = (orthodontic space maintenance*) OR TS = (space maintenance*) OR TS=(space maintainer*) OR TS = (space retainer*) OR TS = (orthodontic space retainer*) OR TS = (band and loop) OR TS = (band and loop space maintainer*) | 22,275 |
3 | TS = (computer aided design*) OR TS = (3d print*) OR TS = (three dimensional print*) OR TS=(computer assisted design*) OR TS = (3 dimensional print*) OR TS = (computer aided manufacture*) OR TS = (computer assisted manufacture*) OR TS = (CAD-CAM) OR TS = (CAD/CAM) OR TS = (Digital Technology) OR TS = (additive manufacturing) OR TS = (rapid prototyping) OR TS = (computer aided model*) | 224,773 |
#1 AND #2 AND #3 | 8 |
Author, Year | Type of Study | Type of Intraoral Scanner | CAD Software | CAM Software/Manufacturing Method | Type/Material of Space Maintainer | Cementation | |
---|---|---|---|---|---|---|---|
1 | Rodrigues LP, et al., 2022 [2] | Technique report | TRIOS 3, 3Shape, Copenhagen, Denmark | DentalCAD, Exocad GmbH, Darmstadt, Germany | PrograMill CAM 4.1, Ivoclar; 5-axis milling device (CAM PM7, Ivoclar) | Esthetic space maintainers/PMMA | Glass ionomer cement (Riva Light Cure, SDI) |
2 | Tokuc M, et al., 2022 [39] | Original article | TRIOS 3 Cart, 3Shape, Copenhagen, Denmark | Appliance design software, 3Shape, Copenhagen, Denmark | HBD-100 metal 3D-printer (Shanghai Hanbang, China) | Band–loop space maintainers/titanium powder metallurgy | Low-viscosity condensation silicone material (Zhermack Oranwash, Badia, Italy) (in vitro visualization of cement space) |
3 | Pawar BA, et al., 2019 [27] | Case report | Medit T500, Medit Corp., Seongbuk-gu, Republic of Korea (cast was scanned) | DentalCAD 2.2 Valletta, Exocad GmbH, Darmstadt, Germany | Micro laser sintering technology; Form 2 3D-printer (Formlabs) | Band–loop/titanium powder metallurgy (Ti64 Gd23, LPW Technology, Cheshire, UK), and clear photopolymer resin (Formlabs, Somerville, MA, USA) | Glass ionomer cement (GC Fuji I, GC, Tokyo, Japan) |
4 | Khanna S, et al., 2021 [40] | Case report | Medit T500 3D digital dental scanner, Medit Corp., Seongbukgu, Republic of Korea (cast was scanned) | DentalCAD 2.2 Valletta, exocad, Darmstadt, Germany | Micro laser sintering technology | Band–loop space maintainers/titanium powder metallurgy (Ti64 Gd23, LPW Technology, Cheshire, UK) | Glass ionomer cement (GC Fuji I, GC, Tokyo, Japan) |
5 | Guo H, et al., 2020 [16] | Research article | D800 3D model scanner, 3Shape, Copenhagen, Denmark (cast was scanned) | Dental System 2017, 3Shape, Denmark, and Geomagic 2014 reverse engineering software, Geomagic, Morrisville, NC, USA | 5-axis numerical-control milling machine (Organical Multi, R + K CAD/CAM Technology, Germany) | Removable space maintainers/PEEK | - |
6 | Ierardo G, et al., 2017 [33] | Pilot study | D810 extraoral scanner, 3Shape, Copenhagen, Denmark (cast was scanned) | Dental Design software, 3Shape, Copenhagen, Denmark | 5-axis milling machine (Roland DWX-50) | PEEK polymer | CVI |
7 | Soni HK, et al., 2017 [25] | Case report | - | N/A | N/A | BruxZir zirconia | Resin luting cement (RelyX ARC, self-adhering flowable composite, 3M/ESPE) |
8 | Lee J, et al., 2022 [41] | Clinical article | TRIOS Color Cart; 3Shape, Copenha-gen, Copenhagen, Denmark | DentalSystem; 3Shape, Copenhagen, Denmark | 5-axis milling machine (Zenotecselect hybrid; Wieland Dental, Pforzheim, German) | Zirconia block (1100 Enamel; DENTALMAX, Seoul, Republic of Korea | adhesive resin cement (Panavia F 2.0; Kuraray Noritake Dental) |
9 | Guo H, et al., 2020 [42] | Research article | D800, 3Shape A/S, Copenhagen, Denmark (cast was scanned) | Dental System 2018, 3Shape A/S, produced in Copenhagen, Denmark and Geomagic Studio 2014, Geomagic Inc., Morrisville, NC, USA | Organical Multi, R + K GmBH, Germany | Removable space maintainers/PMMA | - |
Authors, Year | Advantages and Disadvantages | |
---|---|---|
1 | Rodrigues, et al. 2022 [2] |
|
2 | Tokuc, et al. 2022 [39] |
|
3 | Pawar, et al. 2019 [27] |
|
4 | Khanna, et al. 2019 [40] |
|
5 | Guo, et al. 2020 [16] |
|
6 | Ierardo, et al. 2017 [33] |
|
7 | Soni, et al. 2017 [25] |
|
8 | Lee J, et al. 2022 [41] |
|
9 | Guo H, et al. 2020 [42] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarean, P.; Zarean, P.; Sendi, P.; Neuhaus, K.W. Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing. Appl. Sci. 2023, 13, 6998. https://doi.org/10.3390/app13126998
Zarean P, Zarean P, Sendi P, Neuhaus KW. Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing. Applied Sciences. 2023; 13(12):6998. https://doi.org/10.3390/app13126998
Chicago/Turabian StyleZarean, Paridokht, Parichehr Zarean, Pedram Sendi, and Klaus W. Neuhaus. 2023. "Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing" Applied Sciences 13, no. 12: 6998. https://doi.org/10.3390/app13126998
APA StyleZarean, P., Zarean, P., Sendi, P., & Neuhaus, K. W. (2023). Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing. Applied Sciences, 13(12), 6998. https://doi.org/10.3390/app13126998