Windowed Eigen-Decomposition Algorithm for Motion Artifact Reduction in Optical Coherence Tomography-Based Angiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation
2.2. Handheld SSOCT System
2.3. Mathematics for wED
2.4. Evaluation Method
3. Results
3.1. Data Distribution Analysis
3.2. Window Size Optimization
3.3. In Vivo Results Comparisons
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aumann, S.; Donner, S.; Fischer, J.; Müller, F. Optical Coherence Tomography (OCT): Principle and Technical Realization. In High Resolution Imaging in Microscopy and Ophthalmology; Springer: Cham, Switzerland, 2019; pp. 59–85. [Google Scholar] [CrossRef] [Green Version]
- Tomlins, P.H.; Wang, R.K. Theory, Developments and Applications of Optical Coherence Tomography. J. Phys. D Appl. Phys. 2005, 38, 2519. [Google Scholar] [CrossRef]
- Fercher, A.F.; Drexler, W.; Hitzenberger, C.K.; Lasser, T. Optical Coherence Tomography—Principles and Applications. Rep. Prog. Phys. 2003, 66, 239. [Google Scholar] [CrossRef]
- Chen, C.-L.; Wang, R.K. Optical Coherence Tomography Based Angiography [Invited]. Biomed. Opt. Express 2017, 8, 1056–10828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, D.M.; Fingler, J.; Kim, D.Y.; Zawadzki, R.J.; Morse, L.S.; Park, S.S.; Fraser, S.E.; Werner, J.S. Phase-Variance Optical Coherence Tomography: A Technique for Noninvasive Angiography. Ophthalmology 2014, 121, 180–187. [Google Scholar] [CrossRef] [Green Version]
- Leitgeb, R.A.; Werkmeister, R.M.; Blatter, C.; Schmetterer, L. Doppler Optical Coherence Tomography. Prog. Retin. Eye Res. 2014, 41, 26. [Google Scholar] [CrossRef] [Green Version]
- Mariampillai, A.; Standish, B.A.; Moriyama, E.H.; Khurana, M.; Munce, N.R.; Leung, M.K.K.; Jiang, J.; Cable, A.; Wilson, B.C.; Vitkin, I.A.; et al. Speckle Variance Detection of Microvasculature Using Swept-Source Optical Coherence Tomography. Opt. Lett. 2008, 33, 1530. [Google Scholar] [CrossRef] [Green Version]
- Jia, Y.; Tan, O.; Tokayer, J.; Potsaid, B.; Wang, Y.; Liu, J.J.; Kraus, M.F.; Subhash, H.; Fujimoto, J.G.; Hornegger, J.; et al. Split-Spectrum Amplitude-Decorrelation Angiography with Optical Coherence Tomography. Opt. Express 2012, 20, 4710. [Google Scholar] [CrossRef] [Green Version]
- Enfield, J.; Jonathan, E.; Leahy, M. In Vivo Imaging of the Microcirculation of the Volar Forearm Using Correlation Mapping Optical Coherence Tomography (CmOCT). Biomed. Opt. Express 2011, 2, 1184. [Google Scholar] [CrossRef] [Green Version]
- Braaf, B.; Donner, S.; Nam, A.S.; Bouma, B.E.; Vakoc, B.J. Complex Differential Variance Angiography with Noise-Bias Correction for Optical Coherence Tomography of the Retina. Biomed. Opt. Express 2018, 9, 486. [Google Scholar] [CrossRef]
- Yousefi, S.; Zhi, Z.; Wang, R.K. Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography. IEEE Trans. Biomed. Eng. 2011, 58, 2316–2323. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wang, J.; Wang, R.K. Highly Efficient Eigen Decomposition Based Statistical Optical Microangiography. Quant. Imaging Med. Surg. 2016, 6, 557–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Yaghi, N.E.; Obiedat, A.F.; Alnawaiseh, T.I.; Hamad, A.M.; Bani Ata, B.A.; Quzli, A.A.; Alryalat, S.A. Optical Coherence Tomography Angiography in Healthy Adult Subjects: Normative Values, Frequency, and Impact of Artifacts. Biomed. Res. Int. 2022, 2022, 7286252. [Google Scholar] [CrossRef] [PubMed]
- Liba, O.; Lew, M.D.; Sorelle, E.D.; Dutta, R.; Sen, D.; Moshfeghi, D.M.; Chu, S.; de La Zerda, A. Speckle-Modulating Optical Coherence Tomography in Living Mice and Humans. Nat. Commun. 2017, 8, 15845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jian, Y.; Zawadzki, R.J.; Sarunic, M.V. Adaptive Optics Optical Coherence Tomography for in Vivo Mouse Retinal Imaging. J. Biomed. Opt. 2013, 18, 056007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkle, C.W.; Cooke, D.F.; Radhakrishnan, H.; Krubitzer, L.; Chong, S.P.; Zhang, T.; Srinivasan, V.J. Noninvasive, in Vivo Imaging of Subcortical Mouse Brain Regions with 1.7 μm Optical Coherence Tomography. Optics. Lett. 2015, 40, 4911–4914. [Google Scholar] [CrossRef]
- Kim, T.H.; Son, T.; Lu, Y.; Alam, M.; Yao, X. Comparative Optical Coherence Tomography Angiography of Wild-Type and Rd10 Mouse Retinas. Transl. Vis. Sci. Technol. 2018, 7, 42. [Google Scholar] [CrossRef] [Green Version]
- Zhi, Z.; Chao, J.R.; Wietecha, T.; Hudkins, K.L.; Alpers, C.E.; Wang, R.K. Noninvasive Imaging of Retinal Morphology and Microvasculature in Obese Mice Using Optical Coherence Tomography and Optical Microangiography. Invest. Ophthalmol. Vis. Sci. 2014, 55, 1024–1030. [Google Scholar] [CrossRef] [Green Version]
- de Carlo, T.E.; Romano, A.; Waheed, N.K.; Duker, J.S. A Review of Optical Coherence Tomography Angiography (OCTA). Int. J. Retin. Vitr. 2015, 1, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi Falavarjani, K.; Al-Sheikh, M.; Akil, H.; Sadda, S.R. Image Artefacts in Swept-Source Optical Coherence Tomography Angiography. Br. J. Ophthalmol. 2017, 101, 564–568. [Google Scholar] [CrossRef]
- Govindaswamy, N.; Gadde, S.G.; Chidambara, L.; Bhanushali, D.; Anegondi, N.; Sinha Roy, A. Quantitative Evaluation of Optical Coherence Tomography Angiography Images of Diabetic Retinopathy Eyes before and after Removal of Projection Artifacts. J. Biophotonics 2018, 11, e201800003. [Google Scholar] [CrossRef]
- Tomlinson, A.; Hasan, B.; Lujan, B.J. Importance of Focus in OCT Angiography. Ophthalmol. Retin. 2018, 2, 748–749. [Google Scholar] [CrossRef] [PubMed]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K. Image Artifacts in Optical Coherence Angiography. Retina 2015, 35, 2163. [Google Scholar] [CrossRef] [PubMed]
- Stepien, K.E.; Konda, S.M.; Etheridge, T.; Holmen, I.; Kopplin, L.; Pak, J.W.; Domalpally, A. Impact of Artifacts in Optical Coherence Tomography Angiography Image Analysis. Invest. Ophthalmol. Vis. Sci. 2020, 61, 4818. [Google Scholar]
- Lavinsky, F.; Lavinsky, D. Novel Perspectives on Swept-Source Optical Coherence Tomography. Int. J. Retin. Vitr. 2016, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yasin Alibhai, A.; Or, C.; Witkin, A.J. Swept Source Optical Coherence Tomography: A Review. Curr. Ophthalmol. Rep. 2018, 6, 7–16. [Google Scholar] [CrossRef]
- Ren, J.; Park, K.; Pan, Y.; Ling, H. Self-Supervised Bulk Motion Artifact Removal in Optical Coherence Tomography Angiography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 19–24 June 2022; pp. 20617–20625. [Google Scholar]
- Xie, C.; Gao, W.; Zhang, Y. Fourier Spatial Transform-Based Method of Suppressing Motion Noises in OCTA. Optics. Lett. 2022, 47, 4544–4547. [Google Scholar] [CrossRef]
- Camino, A.; Jia, Y.; Liu, G.; Wang, J.; Huang, D. Regression-Based Algorithm for Bulk Motion Subtraction in Optical Coherence Tomography Angiography. Biomed. Opt. Express 2017, 8, 3053–3066. [Google Scholar] [CrossRef] [Green Version]
- Torti, E.; Toma, C.; Vujosevic, S.; Nucci, P.; de Cillà, S.; Leporati, F. Cyst Detection and Motion Artifact Elimination in Enface Optical Coherence Tomography Angiograms. Appl. Sci. 2020, 10, 3994. [Google Scholar] [CrossRef]
- Li, P.; Huang, Z.; Yang, S.; Ren, Q.; Li, P.; Liu, X. Adaptive Classifier Allows Enhanced Flow Contrast in OCT Angiography Using a Histogram-Based Motion Threshold and 3D Hessian Analysis-Based Shape Filtering. Opt. Lett. 2017, 42, 4816–4819. [Google Scholar] [CrossRef]
- Li, A.; Zeng, G.; Du, C.; Zhang, H.; Pan, Y. Automated Motion-Artifact Correction in an OCTA Image Using Tensor Voting Approach. Appl. Phys. Lett. 2018, 113, 101102. [Google Scholar] [CrossRef]
- Wei, D.W.; Deegan, A.J.; Wang, R.K. Automatic Motion Correction for In Vivo Human Skin Optical Coherence Tomography Angiography through Combined Rigid and Nonrigid Registration. J. Biomed. Opt. 2017, 22, 066013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camino, A.; Zhang, M.; Dongye, C.; Pechauer, A.D.; Hwang, T.S.; Bailey, S.T.; Lujan, B.; Wilson, D.J.; Huang, D.; Jia, Y. Automated Registration and Enhanced Processing of Clinical Optical Coherence Tomography Angiography. Quant. Imaging Med. Surg. 2016, 6, 391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Y.; Chu, Z.; Wang, R.K. Robust Three-Dimensional Registration on Optical Coherence Tomography Angiography for Speckle Reduction and Visualization. Quant. Imaging Med. Surg. 2021, 11, 879. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.C.H.; Lovstakken, L. Eigen-Based Clutter Filter Design for Ultrasound Color Flow Imaging: A Review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 1096–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mogensen, M.; Morsy, H.A.; Thrane, L.; Jemec, G.B.E. Morphology and Epidermal Thickness of Normal Skin Imaged by Optical Coherence Tomography. Dermatology 2008, 217, 14–20. [Google Scholar] [CrossRef]
- Welzel, J. Optical Coherence Tomography in Dermatology: A Review. Ski. Res. Technol. 2001, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Feng, K.; Li, C.; Huang, Z. A Weighted Average Phase Velocity Inversion Model for Depth-Resolved Elasticity Evaluation in Human Skin In-Vivo. IEEE Trans. Biomed. Eng. 2021, 68, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Yang, S.; Zhou, K.; Rocliffe, H.R.; Pellicoro, A.; Cash, J.L.; Wang, R.; Li, C.; Huang, Z. Deep-Learning Approach for Automated Thickness Measurement of Epithelial Tissue and Scab Using Optical Coherence Tomography. J. Biomed. Opt. 2022, 27, 015002. [Google Scholar] [CrossRef]
- Kruse, D.E.; Ferrara, K.W. A New High Resolution Color Flow System Using an Eigendecomposition-Based Adaptive Filter for Clutter Rejection. IEEE Trans Ultrason. Ferroelectr. Freq. Control 2002, 49, 1384–1399. [Google Scholar] [CrossRef]
- Kendall, M.G. The Advanced Theory of Statistics; Charles Griffin and Co., Ltd.: London, UK, 1946. [Google Scholar]
- Fisher, R.A. Statistical Methods for Research Workers. In Breakthroughs in Statistics; Springer: New York, NY, USA, 1992; pp. 66–70. [Google Scholar] [CrossRef]
- Fürnkranz, J.; Chan, P.K.; Craw, S.; Sammut, C.; Uther, W.; Ratnaparkhi, A.; Jin, X.; Han, J.; Yang, Y.; Morik, K.; et al. Mean Squared Error. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2011; p. 653. [Google Scholar] [CrossRef]
- Marstal, K.; Berendsen, F.; Staring, M.; Klein, S. SimpleElastix: A User-Friendly, Multi-Lingual Library for Medical Image Registration. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 574–582. [Google Scholar] [CrossRef]
- Shamonin, D.P.; Bron, E.E.; Lelieveldt, B.P.F.; Smits, M.; Klein, S.; Staring, M. Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer’s Disease. Front. Neuroinform. 2014, 7, 50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Zhou, K.; Rocliffe, H.R.; Pellicoro, A.; Cash, J.L.; Wang, W.; Wang, Z.; Li, C.; Huang, Z. Windowed Eigen-Decomposition Algorithm for Motion Artifact Reduction in Optical Coherence Tomography-Based Angiography. Appl. Sci. 2023, 13, 378. https://doi.org/10.3390/app13010378
Zhang T, Zhou K, Rocliffe HR, Pellicoro A, Cash JL, Wang W, Wang Z, Li C, Huang Z. Windowed Eigen-Decomposition Algorithm for Motion Artifact Reduction in Optical Coherence Tomography-Based Angiography. Applied Sciences. 2023; 13(1):378. https://doi.org/10.3390/app13010378
Chicago/Turabian StyleZhang, Tianyu, Kanheng Zhou, Holly R. Rocliffe, Antonella Pellicoro, Jenna L. Cash, Wendy Wang, Zhiqiong Wang, Chunhui Li, and Zhihong Huang. 2023. "Windowed Eigen-Decomposition Algorithm for Motion Artifact Reduction in Optical Coherence Tomography-Based Angiography" Applied Sciences 13, no. 1: 378. https://doi.org/10.3390/app13010378
APA StyleZhang, T., Zhou, K., Rocliffe, H. R., Pellicoro, A., Cash, J. L., Wang, W., Wang, Z., Li, C., & Huang, Z. (2023). Windowed Eigen-Decomposition Algorithm for Motion Artifact Reduction in Optical Coherence Tomography-Based Angiography. Applied Sciences, 13(1), 378. https://doi.org/10.3390/app13010378