Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure
Abstract
1. Introduction
2. Structure Design and Simulation
3. Simulation Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shelby, R.A.; Smith, D.R.; Schultz, S. Experimental verification of a negative index of refraction. Science 2001, 292, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Diincer, F.; Sabah, C.; Karaaslan, M.; Unal, E.; Bakir, M.; Erdiven, U. Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial. Prog. Electromagn. Res. 2013, 140, 227–239. [Google Scholar] [CrossRef][Green Version]
- Diincer, F.; Karaaslan, M.; Akgol, O.; Unal, E.; Sabah, C. Asymmetric transmission of linearly polarized electromagnetic waves using chiral metamaterials with constant chirality over a certain frequency band. Mode. Phys. Lett. B 2014, 28, 1450250. [Google Scholar] [CrossRef]
- Bae, M.H.; Oh, J.H. Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. Mech. Syst. Signal Process. 2022, 170, 108832. [Google Scholar] [CrossRef]
- Li, C.Q.; Song, Z.Y. Tailoring terahertz wavefront with state switching in VO2 Pancharatnam–Berry metasurfaces. Opt. Laser Technol. 2023, 157, 108764. [Google Scholar] [CrossRef]
- Li, J.P.; Jin, R.H.; Geng, J.P.; Liang, X.L.; Wang, K.; Premaratne, M.; Zhu, W.R. Design of a broadband metasurface luneburg lens for full-angle operation. IEEE Trans. Antennas. Propag. 2019, 67, 2442–2451. [Google Scholar] [CrossRef]
- Cummer, S.A.; Popa, B.I.; Schurig, D.; Smith, D.R.; Pendry, J. Full-wave simulations of electromagnetic cloaking structures. Phys. Rev. E 2006, 74, 036621. [Google Scholar] [CrossRef]
- Cai, W.S.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical cloaking with metamaterials. Nat. Photonics 2007, 1, 224–227. [Google Scholar] [CrossRef]
- Kwon, D.H.; Werner, P.L.; Werner, D.H. Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation. Opt. Express 2008, 16, 11802–11807. [Google Scholar] [CrossRef]
- Almoneef, T.S.; Ramahi, M. Metamaterial electromagnetic energy harvester with near unity efficiency. Appl. Phys. Lett. 2015, 106, 153902. [Google Scholar] [CrossRef]
- Landy, N.I.; Sajuyigbe, S.; Mock, J.J.; Smith, D.R.; Padilla, W.J. Perfect metamaterial absorber. Phys. Rev. Lett. 2008, 100, 207402. [Google Scholar] [CrossRef] [PubMed]
- Shen, N.H.; Massaouti, M.; Gokkavas, M.; Manceau, J.M.; Ozbay, E.; Kafesaki, M.; Koschny, T.; Tzortzakis, S.; Soukoulis, C.M. Optically implemented broadband blueshift switch in the terahertz regime. Phys. Rev. Lett. 2011, 106, 037403. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.X.; Wang, G.Z. Temperature tunable metamaterial absorber at THz frequencies. J. Mater. Sci.-Mater. Electron. 2017, 28, 8487–8493. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Li, Y.; Cao, Y.Y.; Liu, Y.Z.; Zhang, H.Y. Graphene induced tunable and polarization-insensitive broadband metamaterial absorber. Opt. Commun. 2017, 382, 281–287. [Google Scholar] [CrossRef]
- Pan, W.; Yu, X.; Zhang, J.; Zeng, W. A novel design of broadband terahertz metamaterial absorber based on nested circle rings. IEEE Photon. Technol. Lett. 2016, 28, 2335–2338. [Google Scholar] [CrossRef]
- Rahmanzadeh, M.; Rajabalipanah, H.; Abdolali, A. Multilayer graphene-based metasurfaces: Robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers. Appl. Opt. 2018, 57, 959–968. [Google Scholar] [CrossRef]
- Campbell, S.D.; Grobe, S.D.; Goodin, I.L.; Su, Q.; Grobe, R. Limitations of decomposition-based imaging of longitudinal absorber configurations. Phys. Rev. A 2008, 77, 023821. [Google Scholar] [CrossRef]
- Chen, H.; Ma, W.; Huang, Z.; Zhang, Y.; Huang, Y.; Chen, Y. Graphene-Based Materials toward Microwave and THz Absorbing Stealth Technologies. Adv. Opt. Mater. 2019, 7, 1801318. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Jayabala, P.; Ramachandran, S.; Dhanabalan, S.S.; Sivanesan, T.; Ponnusamy, M. Tunable Optimal Dual Band Metamaterial Absorber for High Sensitivity THz Refractive Index Sensing. Nanomaterials 2022, 15, 2693. [Google Scholar] [CrossRef]
- Li, Z.R.; Cheng, Y.Z.; Luo, H.; Chen, F.; Li, X.C. Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J. Alloys Compd. 2022, 925, 166617. [Google Scholar] [CrossRef]
- Liu, W.W.; Song, Z.Y. Terahertz absorption modulator with largely tunable bandwidth and intensity. Carbon 2022, 174, 617–624. [Google Scholar] [CrossRef]
- Wen, Q.Y.; Zhang, H.W.; Yang, Q.H.; Chen, Z.; Long, Y.; Jing, Y.L.; Lin, Y.; Zhang, P.X. A tunable hybrid metamaterial absorber based on vanadium oxide films. J. Phys. D Appl. Phys. 2012, 45, 235106. [Google Scholar] [CrossRef]
- Deng, H.; Stan, L.; Czaplewski, D.A.; Gao, J.; Yang, X. Broadband infrared absorbers with stacked double chromium ring resonators. Opt. Express 2017, 25, 28295–28304. [Google Scholar] [CrossRef]
- Hao, J.P.; Lheurette, E.; Burgnies, L.; Okada, E.; Lippens, D. Bandwidth enhancement in disordered metamaterial absorbers. Appl. Phys. Lett. 2014, 105, 081102. [Google Scholar] [CrossRef]
- Chen, L.; Song, Z. Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial. Opt. Express 2020, 28, 6565–6571. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, J. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same THz frequencies. Opt. Express 2020, 28, 12487–12497. [Google Scholar] [CrossRef]
- Cheng, Y.; Gong, R.; Cheng, Z. A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for THz waves. Opt. Commun. 2016, 361, 41–46. [Google Scholar] [CrossRef]
- Wang, R.; Li, L.; Liu, J.; Yan, F.; Tian, F.; Tian, H.; Zhang, J.; Sun, W. Triple-band tunable perfect THz metamaterial absorber with liquid crystal. Opt. Express 2017, 25, 32280–32289. [Google Scholar] [CrossRef]
- Li, J.S.; Yan, D.X.; Sun, J.Z. Flexible dual-band all-graphene-dielectric THz absorber. Opt. Mater. Express 2019, 9, 2067–2075. [Google Scholar] [CrossRef]
- Liu, L.; Liu, W.; Song, Z. Ultra-broadband THz absorber based on a multilayer graphene metamaterial. J. Appl. Phys. 2020, 128, 093104. [Google Scholar] [CrossRef]
- Jiang, M.; Song, Z.; Liu, Q. Ultra-broadband wide-angle THz absorber realized by a doped silicon metamaterial. Opt. Commun. 2020, 471, 125835. [Google Scholar] [CrossRef]
- Song, Z.; Wei, M.; Wang, Z.; Cai, G.; Liu, Y.; Zhou, Y. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces. IEEE Photon. J. 2019, 11, 4600607. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, S.; Fan, F.; Wang, S.; Sun, X.; Miao, Y.; Chang, S. Tunable broadband THz absorber using vanadium dioxide metamaterials. Opt. Commun. 2019, 452, 292–295. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Chen, Z. Broadband Tunable Terahertz Absorber Based on Hybrid Graphene-Vanadium Dioxide Metamaterials. Chin. J. Lasers 2020, 47, 0903001. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Z. Switchable bifunctional metamaterial for terahertz anomalous reflection and broadband absorption. Phys. Scr. 2021, 96, 115506. [Google Scholar] [CrossRef]
- Jiao, X.F.; Zhang, Z.H.; Li, T.; Xu, Y.; Song, G.F. Tunable Dual Broadband Terahertz Metamaterial Absorber Based on Vanadium Dioxide. Appl. Sci. 2020, 10, 7259. [Google Scholar] [CrossRef]
- Huang, J.; Li, J.; Yang, Y.; Li, J.; Li, J.; Zhang, Y.; Yao, J. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces. Opt. Express 2020, 28, 17832–17840. [Google Scholar] [CrossRef]
- Yang, G.; Yan, F.; Du, X.; Li, T.; Wang, W.; Lv, Y.; Zhou, H.; Hou, Y. Tunable broadband terahertz metamaterial absorber based on vanadium dioxide. AIP Adv. 2022, 12, 045219. [Google Scholar] [CrossRef]
- Wen, Q.Y.; Zhang, H.W.; Yang, Q.H.; Xie, Y.S.; Chen, K.; Liu, Y.L. THz metamaterials with VO2 cut-wires for thermal tunability. Appl. Phys. Lett. 2010, 97, 021111. [Google Scholar] [CrossRef]
- Liu, M.; Hwang, H.Y.; Tao, H.; Strikwerda, A.C.; Fan, K.; Keiser, G.R.; Sternbach, A.J.; West, K.G.; Kittiwatanakul, S.; Lu, J.; et al. THz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 2012, 487, 345–348. [Google Scholar] [CrossRef]
- Wang, S.; Kang, L.; Werner, D.H. Hybrid resonators and highly tunable terahertz metamaterials enabled by vanadium dioxide (VO2). Sci. Rep. 2017, 7, 4326. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wong, L.; Wang, S.; Tang, S.; Zhang, X. Ultrafast insulator–metal phase transition in vanadium dioxide studied using optical pump–THz probe spectroscopy. J. Phys. Condens. Matter 2012, 24, 415604. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kang, L.; Mayer, T.S.; Werner, D.H. Hybrid metamaterials for electrically triggered multifunctional control. Nat. Commun. 2016, 7, 13236. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Schultz, S.; Markoš, P.; Soukoulis, C.M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 2002, 65, 195104. [Google Scholar] [CrossRef]
Reference | Material | Bandwidth (Absorptance over 90%) (THz) | Relative Bandwidth (%) | Tunable Range (%) |
---|---|---|---|---|
[32] | VO2 | 0.99 − 0.47 = 0.52 | 71.2 | 5–100 |
[33] | VO2 | 5.57 − 4.32 = 1.25 | 25.3 | 15–96 |
[34] | VO2 and graphene | 3.21 − 1.69 = 1.52 | 62.0 | 22.6–99.2 |
[35] | VO2 and graphene | 3.08 − 1.29 = 1.79 | 81.9 | 20–99 |
[36] | VO2 | 4.19 − 1.87 = 2.32 10.73 − 8.70 = 2.03 | 76.6 20.9 | 2–94 |
[37] | VO2 | 4.30 − 1.85 = 2.45 | 79.7 | 4–100 |
[38] | VO2 | 6.79 − 3.01 = 3.78 | 77.1 | 2.7–98.9 |
This paper | VO2 | 7.27 − 3.01 = 4.26 | 82.9 | 4–100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, G.; Wang, Y.; Liu, J. Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure. Appl. Sci. 2023, 13, 252. https://doi.org/10.3390/app13010252
Wang X, Wu G, Wang Y, Liu J. Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure. Applied Sciences. 2023; 13(1):252. https://doi.org/10.3390/app13010252
Chicago/Turabian StyleWang, Xiaoxin, Guozhang Wu, Yuandong Wang, and Jianguo Liu. 2023. "Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure" Applied Sciences 13, no. 1: 252. https://doi.org/10.3390/app13010252
APA StyleWang, X., Wu, G., Wang, Y., & Liu, J. (2023). Terahertz Broadband Adjustable Absorber Based on VO2 Multiple Ring Structure. Applied Sciences, 13(1), 252. https://doi.org/10.3390/app13010252